
A Class of Greedy Algorithms And Its Relationto GreedoidsSrinivas NedunuriDept. of Computer SienesUniversity of Texas at Austinnedunuri�s.utexas.edu, Douglas R. SmithKestrel Institutesmith�kestrel.edu, and William R. CookDept. of Computer SienesUniversity of Texas at Austinook�s.utexas.eduNo Institute GivenAbstrat. We de�ne a lass of greedy algorithms as a speialization ofa form of Branh and Bound alled Global Searh. We show that ourlass generalizes a well-known haraterization of greedy problems alledgreedoids, whih are themselves a generalization of matroids. Finally, wederive a harateristi reurrene from a statement of optimality, whihan then be transformed into a program for our greedy lass, analogousto the Greedy Algorithm for matroids and greedoids.1 IntrodutionA greedy algorithm repeatedly makes a loally optimal hoie. For some prob-lems this an lead to a globally optimal solution. In addition to developingindividual greedy algorithms, there has been long-term interest in �nding a gen-eral haraterization of greedy algorithms that highlights their ommon stru-ture. Edmonds [Edm71℄ haraterized greedy algorithms in terms of matroids. In1981, Korte and Lovasz generalized matroids to de�ne greedoids, [KLS91℄. Thequestion of whether a greedy algorithm exists for a partiular problem reduesto whether there exists a translation of the problem into a matroid/greedoid.However, there are several problems for whih a matroid/greedoid formulationeither does not exist or is very di�ult to onstrut. For example, no knowngreedoid formulations exist for problems suh as Hu�man Pre�x-free enodingor Ativity Seletion, [CLRS01℄.An alternative approah to onstruting algorithms is to take a very generalprogram shema and speialize it with problem-spei� information. The resultan be a very e�ient algorithm for the given problem, [SPW95,NC09℄. One suhlass of algorithms, Global Searh [Smi88℄, operates by ontrolled searh, where



at eah level in the searh tree there are a number of hoies to be explored.Under ertain onditions, this olletion of hoies redues to a single loallyoptimal hoie, whih is the essene of a greedy algorithm. In this paper weaxiomatially haraterize those onditions. We all our speialization of GlobalSearh Greedy Global Searh (GGS). We also show that this haraterization ofgreedy algorithms generalizes greedoids, and therefore also matroids. Our proofdoes not rely on any partiular algorithm, suh as the greedy algorithm, but isbased solely on the properties of greedoid theory and GGS theory. Finally, wederive a reurrene equation from the statement of orretness of GGS whihan be transformed into an exeutable program through orretness-preservingprogram transformations. Suh a program plays the same role for GGS theoryas the Greedy Algorithm does for greedoids.2 Bakground2.1 Spei�ations and MorphismsWe brie�y review some of the standard terminology and de�nitions from alge-bra. A signature Σ = (S,F) onsists of a set of sort symbols S and a family
F = {Fv ,s} of �nite disjoint sets indexed by S∗ × S, where Fv ,s is the set ofoperation symbols of rank (v, s). We write f : v → s to denote f ∈ Fv,s for
v ∈ S∗, s ∈ S when the signature is lear from ontext. For any signature Σ the
Σ-terms are indutively de�ned in the usual way as the well-sorted ompositionof operator symbols and variables. A Σ-formula is a boolean valued term builtfrom Σ-terms and the quanti�ers ∀ and ∃. A Σ-sentene is a losed Σ-formula.A spei�ation T = 〈S,F , A〉 omprises a signature Σ = (S,F) and a set of Σ-sentenes A alled axioms. The generi term expression is used to refer to a term,formula, or sentene. A spei�ation T ′ = 〈S′,F ′, A′〉 extends T = 〈S,F , A〉 if
S ⊆ S′, Fv ,s ⊆ F ′

v ,s for every v ∈ S∗, s ∈ S, and A ⊆ A′. Alternatively, we saythat T ′ is an extension of T . A model for T is a struture for (S,F) that satis�esthe axioms.We shall use modus ponens, substitution of equals/equivalents, andother natural rules of inferene in T . The theory of T is the set of senteneslosed under the rules of inferene from the axioms of T . We shall sometimesloosely refer to T as a theory. A sentene s is a theorem of T , written T ⊢ s if sis in the theory of T .A signature morphism f : (S,F) → (S′,F ′) maps S to S′ and F to F 'suh that the ranks of operations are preserved. A signature morphism extendsin a unique way to a translation of expressions (as a homomorphism betweenterm algebras) or sets of expressions. A spei�ation morphism is a signaturemorphism that preserves theorems. Let T = 〈S,F , A〉 and T ′ = 〈S′,F ,′ A′〉 bespei�ations and let f : (S,F) → (S′,F ′) be a signature morphism betweenthem. f is a spei�ation morphism if for every axiom a ∈ A, f(a) is a theoremof T ′, ie. T ′ ⊢ f(a). It follows that a spei�ation morphism translates theoremsof the soure spei�ation to theorems of the target spei�ation. The semantisof a spei�ation morphism is given by a model onstrution: If f : T → T ′ isa spei�ation morphism then every model M′ of T ′ an be made into a model



of T by simply �forgetting� some struture of M′. We say that T ′ speializes
T . Pratially, this means that any problem that an be expressed in T ′ an beexpressed in T .It is onvenient to generalize the de�nition of signature morphism slightly toallow the translations of operator symbols to be expressions in the target spei-�ation and the translations of sort symbols to be onstrutions (e.g. produts)over the target sorts. A symbol-to-expression morphism is alled an interpreta-tion, notated i : T ⇒ T ′ where T and T ′ are the soure and target resp. of themorphism.Finally we note that spei�ations and signature morphisms form a ategory.Colimits in this ategory are easily omputed.2.2 Matroids And GreedoidsMatroids date bak to the work of Whitney in the 1930's. Greedoids are a gen-eralization of matroids proposed by Korte and Lovasz, [KLS91℄. Both have beenextensively studied as important algebrai strutures with appliations in a va-riety of areas, [BZ92℄. Underlying both strutures is the notion of a set system:De�nition 21. A set system is a pair 〈S, I〉 where S is a �nite nonempty setand I is a nonempty olletion of subsets of SA matroid introdues onstraints on I:De�nition 22. A matroid is a set system 〈S, I〉, where the elements of I arealled the independent subsets, satisfying the following axioms:Hereditary ∀Y ∈ I, ∀X ⊆ Y. X ∈ IExhange ∀X, Y ∈ I. ‖X‖ < ‖Y ‖⇒ ∃a ∈ Y − X. X ∪ {a} ∈ IThe Hereditary axiom requires that every subset of an independent set isalso independent. The Exhange axiom implies that all maximal (ordered by ⊆)independent sets are the same size. Suh sets are alled bases. The lassi exampleof a matroid (and indeed the inspiration for matroids) is the set of independentvetors (I) in a vetor spae (S). Another example is the olletion of aylisubgraphs (I) of a an undireted graph (S). By assoiating a weight funtion
w:S → Nat assigning a weight to eah item in S, there is a Greedy Algorithm[Edm71℄ that will ompute a (neessarily maximal) weighted independent set
z∗ ∈ I , i.e. z∗ suh that z∗ ∈ I ∧ (∀z′ ∈ I · c(x, z∗) ≥ c(x, z′)) where c(z) =∑

i∈z w(i).Greedoids [KLS91℄ are a generalization of matroids in whih the Hereditaryaxiom ∀Y ∈ I, ∀X ⊆ Y. X ∈ I is replaed with a weaker requirement alledAessibility.De�nition 23. A greedoid is a set system 〈S, I〉, where the elements of I arealled the feasible subsets, satisfying the following axioms:Aessibility X ∈ I. X 6= ∅ ⇒ ∃a ∈ X. X − {a} ∈ I



Exhange ∀X, Y ∈ I. ‖X‖ < ‖Y ‖⇒ ∃a ∈ Y − X. X ∪ {a} ∈ IRemark. The Hereditary and Aessibility axioms are easier to ompare if theHereditary Axiom is written as:
∀X ∈ I, ∀a ∈ X. X − {a} ∈ Iwhih an be shown to be equivalent to the original formulation by indution.Why are greedoids important? Consider the problem of �nding spanningtrees. It is true that given a matroid 〈S, I〉 where S is a set of edges forming aonneted graph and I is the set of ayli subgraphs on that graph, the GreedyAlgorithm (see Setion 2.4) instantiated on this matroid with an appropriateost funtion, is equivalent to Kruskal's algorithm, [CLRS01℄ and returns a min-imum spanning tree. However, the olletion of trees (that is, onneted aylisubgraphs) over a graph does not form a matroid, beause the Hereditary Axiomdoes not hold for a tree. To see this, onsider a set system where S is the set ofedges {(a, b), (a, c), (b, d)} (see Fig. 2.1) and I is the set of trees on this graph.Clearly S is feasible but the subset of edges {(a, c), (b, d)} is not. However, theweaker Aessibility Axiom does hold, so 〈S, I〉 where S is as above, and I is theset of trees on S forms a greedoid. Instantiated with this greedoid representa-tion of the problem, the Greedy Algorithm is equivalent to Prim's algorithm forMSTs,[CLRS01℄.
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Fig. 2.1. When the Hereditary axiom does not hold2.3 Greedoid LanguagesThe impliation of the weaker Aessibility axiom for greedoids is that feasiblesets should be onstruted in an ordered manner, sine it is no longer guaranteedthat a partiular feasible set is reahable from any subset. There is an alternativeformulation of greedoids that makes this order expliit [BZ92℄ whih we willutilize. In what follows, a simple word over an alphabet S is any word in whihno letter ours more than one and S∗
s is the (�nite) set of simple words in S∗.De�nition 24. A greedoid language is a pair 〈S, L) where S is a �nite groundset and L is a simple language L ⊆ S∗

s satisfying the following onditions:Hereditary ∀XY ∈ L · X ∈ LExhange ∀X, Y ∈ L · ‖X‖ < ‖Y ‖ ⇒ ∃a ∈ Y. Xa ∈ L



The hereditary and exhange axioms are analogous to the orrespondingaxioms for matroids, subjet to their appliation to words. That is, the hereditaryaxiom requires that any pre�x of a feasible word is also a feasible. The exhangeaxiom requires that a shorter feasible word an be extended to a longer feasibleone by appending a letter ontained in the longer word to the shorter one. As aonsequene, all maximal words in L have the same length.Bjorner and Ziegler [BZ92℄ show that the set and language formulations ofgreedoids are equivalent, that is for every greedoid there is a unique isomorphigreedoid language and v.v. Intuitively, this is beause the language version ofthe greedoid is just enforing the onstrution order implied by the feasible setof the greedoid.2.4 The Greedy Algorithm and Admissible Cost FuntionsThe greedy algorithm, due to Edmonds [Edm71℄, is a program shema that isparametrized on a suitable struture suh as a matroid or greedoid. The followingshows the struture of a pseudo-Haskell program for the greedy algorithm thathas been parametrized on a greedoid language. First we de�ne the onept of afeasible extensionDe�nition 25. Given a greedoid language 〈S, L〉, the set of feasible extensionsof a word A ∈ L, written ext(A) is the set {a | Aa ∈ L}.ga(x,y,w) =in if exts(ya) = ∅then yelse let m = arbPik(opt(w, exts(ya))) in ga(x,ym,w)opt(w, s) = {a: ∀a'∈ s . w(a) >= w(a')}where arbPik is a funtion that piks some element from its argument set. Forthe the greedy algorithm to be optimal, the ost funtion must be ompatiblewith the partiular struture, or admissible. Linear funtions are admissible formatroids, but unfortunately not for all greedoids. Admissibility for all greedoidsis de�ned as follows:De�nition 26. Given a greedoid language 〈S, L〉, a ost funtion c : L → R isadmissible if, for any A ∈ L, a ∈ ext(A), whenever ∀b ∈ ext(A) · c(Aa) ≥ c(Ab),the following two onditions hold:
∀b ∈ S, ∀B, C ∈ S∗ · ABaC ∈ L ∧ ABbC ∈ L ⇒ c(ABaC) ≥ c(ABbC) (2.1)and
∀b ∈ S, ∀B, C ∈ S∗ · AaBbC ∈ L ∧ AbBaC ∈ L ⇒ c(AaBbC) ≥ c(AbBaC)(2.2)The �rst ondition states that if a is the best hoie immediately after A thenit ontinues to be the best hoie. The seond ondition states that a �rst and

b later is better than b �rst and a later. A ost funtion that does not depend



on the order of elements in a word immediately satis�es the seond ondition.Bottlenek funtions (funtions of the form min{w(X) | X ∈ S}) are an exampleof admissible funtions. Any admissible ost funtion with a greedoid strutureis optimized by the greedy algorithm sheme.De�nition 24 of a greedoid language along with De�nition 26of an admissibleost funtion is what we all Greedoid Language Theory (GL).2.5 Global Searh and Problem Spei�ationsGlobal Searh with Optimality (GSO) is a lass of algorithms that operate byontrolled searh. GSO has an axiomati haraterization as a spei�ation,[Smi88℄. In the same way that the greedy algorithm is parametrized on a matroidor greedoid spei�ation, the GSO lass has an assoiated program shema thatis parametrized on the GSO spei�ation. We will formalize a spei�ation ofGGS that speializes GSO. Before doing so, we will desribe a root spei�ationthat GSO itself speializes, alled an optimization problem spei�ation (P).
P is a 6-tuple 〈D, R, C, i, o, c〉 speifying the problem to be solved. D is thetype of problem inputs, R is the type of problem outputs, augmented with thedistinguished value None. (C,≤) is a total order representing some ost domain.

i : D → Boolean is an input ondition haraterizing valid problem inputs overthe domain D, o : D×R → Boolean is the output ondition haraterizing validor feasible solutions and c : D × R → C is a ost funtion that returns the ostof a solution. The intent is that any funtion that meets this spei�ation willtake any input x : D that satis�es i and return a z : R that satis�es o for thegiven x.A given problem an be lassi�ed as an optimization problem by giving aninterpretation from the symbols of P to the terms and de�nitions of the givenproblem. Here for example is a morphism from P to the Minimum SpanningTree (MST) problem. The input is a set of edges, where eah edge is a pair ofnodes with a weight, and nodes are represented by numbers.
D 7→ {Edge}

Edge
.
= {a : Node, b : Node, w : Nat}

Node
.
= Nat

R 7→ {Edge}
C 7→ Nat
i 7→ λx. true

o 7→ λx, z. connected(z ) ∧ acyclic(z)
c 7→ λ(x, z).

∑
e∈x e.w

(2.3)
Appropriate de�nitions of onneted and ayli are assumed. Note that anoptimal solution to this problem (one that satis�es o and maximizes c) is auto-matially a spanning tree.



3 Greedy Global Searh TheoryWe �rst give an axiomati spei�ation of GGS. The interested reader may referto Setion 3.4 for the assoiated program shema that is parametrized on thistheory.Sorts The sorts of a GGS theory are D, R, R̂ and C, where D, R, and Care inherited from P , the optimization problem theory, and R̂ is the sort ofspae desriptors. A spae desriptor is a ompat representation of a spae andrepresents all the possible solutions in that spae. It is ommon to make R̂ = R.Operations In addition to i, o, c whih are inherited from P , GGS theory addsadditional operators, as be�ts being a riher theory. As with P , a given probleman be lassi�ed as a GGS problem by providing a morphism from the symbolsof GGS to the given problem. The operator ⋖ orresponds to the split operationmentioned in setion 2.5 and χ to the extrat operation. Note that χ and γare de�ned as prediates for uniformity of reasoning in proofs. They are moreintuitively thought of as partial funtions, one possibly extrating a solutionfrom a spae and the other possibly greedily hoosing a subspae of a spae.
ẑ0 : D → R̂ initial spae

∈: R × R̂ → bool is the solution ontained in the spae?
⋖ : D × R̂ × R̂ → bool is the 1st spae a subspae of the 2nd spae?

χ : R × R̂ → bool is the solution extratable from the spae?
γ : D × R̂ × {R̂} → bool su�ient ond for the spae to greedily dominate the setFor ease of reading, ternary operators that take the input x as one of theirarguments will from here on be often written in a subsripted in�x form. Forexample,γ(x, ẑ, Z) will be written ẑ γx Z.Axioms Finally, the following axioms serve to de�ne the semantis of the op-erations. ⋖∗ denotes a �nite number of appliations of the ⋖ operator and isde�ned as

ŝ ⋖
∗
x r̂ = ∃i ≥ 0 · ŝ ⋖

i
x r̂where ŝ ⋖0

x r̂ = (r̂ = ŝ) and s ⋖i+1
x r̂ = ∃t̂ · t̂ ⋖x r̂ ∧ ŝ ⋖i

x t̂. All free variables areuniversally quanti�ed, and all variables are assumed to have their appropriatetype.A1. i(x) ∧ o(x, z) ⇒ z ∈ ẑ0(x)A2. i(x) ⇒ (z ∈ ŷ ⇔ ∃ẑ · ẑ ⋖∗
x ŷ ∧ χ(z, ẑ))A3. ẑ γx ss(x, ŷ) ⇒ (∃z ∈ ẑ, o(x, z), ∀ẑ′ ∈ ss(x, ŷ), ∀z′ ∈ ẑ′ · o(x, z′) ⇒ ∧ c(x, z) ≥ c(x, z′))A4. i(x) ∧ (∃z ∈ ŷ · o(x, z)) ⇒

(∃z∗ · χ(z∗, ŷ) ∧ o(x, z∗) ∧ c(x, z∗) = c∗(ŷ)) ∨ ∃ẑ∗ ⋖x ŷ · ẑ∗ γx ss(ŷ)



A1 provides the semantis for the initial spae - it states that all feasiblesolutions are ontained in the initial spae.A2 provides the semantis for the subspae operator ⋖ - namely an outputobjet z is in the spae denoted by ŷ i� z an be extrated after �nitely manyappliations of ⋖ to ŷ . For onveniene it is useful to de�ne a funtion ss(x, ŷ) =
{ẑ : ẑ ⋖x ŷ}.A3 onstrains γ to be a greedy dominane relation. (Dominane relations havea long history in algorithm development and provide a way of quikly eliminat-ing subspaes that annot possibly lead to optimal solutions, [BS74℄,[ANCK08℄,[NC09℄). That is, ẑ γx Z is su�ient to ensure that ẑ will always lead to at leastone feasible solution better than any feasible solution in any spae ẑ′ in Z. Aswe will shortly demonstrate, A3 also provides a way of alulating the desired γby a proess alled derived anteedents.A4 plaes an additional onstraint on γ when applied to the subspaes of
ŷ: An optimal feasible solution in a spae ŷ that ontains feasible solutionsmust be immediately extratable or a subspae of ŷ must greedily dominate thesubspaes of ŷ. Note that extrat is not on�ned to leaves of the searh tree: itis possible that a solution an be extrated from a spae that an also be splitinto subspaes.Remark. A4 is a little stronger than neessary. In fat, in the ase that an optimalfeasible solution annot be immediately extrated from a spae, some subspaeof that spae need only greedily dominate other subspaes in the ase that the(parent) spae was itself the result of a series of greedy hoies. Weakening A4in this way would ompliate its statement without, we felt, muh of a bene�tin pratie.We will show that the lass of problems solvable by GGS-theory generalizesthe lass of problems for whih a greedoid representation exists. The way inwhih this is done is by de�ning a signature morphism from GGS theory toGL theory, showing the signature morphism is a spei�ation morphism, andthen omposing that with the isomorphism between Greedoid Languages andGreedoids allowing us to onlude that GGS generalizes Greedoids.3.1 A Signature Morphism From GGS theory to GreedoidLanguagesThe signature morphism from GGS to GL is shown in two parts - �rst thetranslation of symbols in GGS inherited from P and then the translation ofsymbols introdued by GGS. Assume the target is a greedoid language 〈S, L〉with assoiated weight funtion w and objetive funtion c. The translation of



P symbols is1: (the [] notation denotes the type of words over an alphabet)
D 7→ {S : {Id}, L : {[Id]}, w : Id → C}
R 7→ [Id]
C 7→ Nat
i 7→ λx. finite(x.S) ∧ x.S 6= ∅ ∧ x.L ⊆ (x.S)∗s ∧ x.L 6= ∅ ∧ hered(x.L) ∧ exchg(x.L)

hered(L) = ∀XY ∈ L · X ∈ L
exchg(L) = ∀X, Y ∈ L · ‖X‖ < ‖Y ‖ ⇒ ∃a ∈ Y. Xa ∈ L

o 7→ λx, z. z ∈ x.L
c 7→ cThe domain D along with the restrition i aptures the type of greedoids, andthe range R the type of a result, namely some set of objets from the greedoid.The weight of a solution is alulated by c as the sum of the weights of theelements in the solution.The translation for the additional symbols introdued by GGS is as follows:

R̂ 7→ [Id]
ẑ0 7→ []
∈ 7→ λz, ẑ · ∃u ∈ (x.S − ẑ)∗ · z = ẑu
⋖ 7→ λx, ẑ, ŷ · ∃a ∈ x.S − ŷ · ẑ = ŷa
χ 7→ λz, ẑ · z = ẑ
γ 7→ ?To omplete the morphism, a translation for γ has to be found, whih we willdo as part of the proess of verifying this morphism is indeed a spei�ationmorphism.3.2 Verifying the morphism is a spei�ation morphismTo omplete the signature morphism and show it is a spei�ation morphism,the translation of the GGS axioms must be provable in GL theory. Axiom A1holds trivially beause the empty list pre�xes any list, and A2 an be proven byindution.A3 To demonstrate A3, we will reason bakwards from the onsequent. Therequired assumption will form the greedy dominane relation. We must showthe existene of some z∈ ẑ for whih ∀ẑ′ ∈ ssx(ŷ), ∀z′ ∈ ẑ′ · o(x, z′) ⇒ o(x, z) ∧

c(x, z) ≥ c(x, z′). We will �rst show ∀ẑ′ ∈ ssx(ŷ), ∀z′ ∈ ẑ′, ∃z ∈ ẑ · o(x, z′) ⇒
o(x, z) ∧ c(x, z) ≥ c(x, z′) and then show the existene of a z that does notdepend on ẑ′ and z′. Let ẑ =ŷa for some a ∈ x.S− ŷ, similarly ẑ′ =ŷu′

1 for some
u′

1 ∈ x.S − ŷ. Now let z′ = ẑ′U ′ for some U ′ ∈ S∗ be any solution ontained in
ẑ′ (See Fig 3.1). Reasoning forwards:1 This is greedoid theory from an optimization perspetive. Of ourse, other uses ofgreedoid theory exist
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Fig. 3.1. A solution z in bz ompared with a solution z
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o(x, z′)
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ŷaU ′
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∃z ∈ ẑ · o(x, z)Next we show that z is better than z′Under the assumption a ∈ ext(ŷ) ∧ ∀a′ ∈ ext(ŷ) · c(x, ŷa) ≥ c(x, ŷa′), thefollowing statements an all be shown: By Lemma 31, and property 2.2,
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n)ie. c(x, z) ≥ c(x, z′)⇐ a ∈ ext(ŷ) ∧ ∀a′ ∈ ext(ŷ) · c(x, ŷa) ≥ c(x, ŷa′).We an assert the existene of a single feasible z∗ that is better than anyfeasible z′ in ẑ′ by taking suh a z∗ to be the best of every z derived above.Finally, olleting together the assumptions, we get a greedy dominane relationsatisfying A3: ŷa δx {ŷa′} = a ∈ ext(ŷ) ∧ ∀a′ ∈ ext(ŷ) · c(ŷa) ≥ c(ŷa).Notation: In what follows, A−B, where A and B are words over L, denotesthe asymmetri set di�erene of the two sets As and Bs where Ws is the setof symbols ontained in the word W , and ∏k

i=j Xi, for any Xj , · · · , Xk ∈ S∗,denotes the onatenation Xj · · ·Xk.



Lemma 31. Given a greedoid 〈S, L〉, and Aa ∈ L, AB ∈ L for some A, B ∈
S∗, a ∈ S: B an be written ∏n

i=1 biBi for some B1, B2, · · · , Bn ∈ S∗, suh that
∀j ∈ [0..n) · A(

∏j
i=0 biBi)a(

∏n−1
i=j+1 Bibi)Bn ∈ L.Proof. See AppendixA4 To demonstrate A4 holds, note that if a given word ŷ an be feasibly ex-tended, then, from the greedy dominane relation derived above, there will bea subspae that greedily dominates all subspaes, satisfying the seond term ofthe disjuntion. If no suh extension exists, a feasible solution an be extratedat any time by taking χ(z, ẑ) = (z = ẑ) and at least one of those will be optimalin ẑ, satisfying the �rst term of the disjuntion.This ompletes the speialization of GGS by GL.To show a strit generalization, it is su�ient to demonstrate a problemwhih an be solved in GGS theory but not using greedoids. One suh problemis the Ativity Seletion Problem [CLRS01℄,[NSC10℄:Suppose we have a set S = {a1, a2, . . . , an} of n proposed ativitiesthat wish to use a resoure, suh as a leture hall, whih an be usedby only one ativity at a time. Eah ativity ai has a start time siand �nish time fi where 0 ≤ si < fi < ∞. If seleted, ativity aitakes plae in the half-open time interval [si, fi). Ativities ai and ajare ompatible if the intervals [si, fi) and [sj , fj) do not overlap. Theativity seletion problem is to selet a maximum-size subset of mutuallyompatible ativities.The input is a set of ativities and a solution is subset of that set. Every ativityis uniquely identi�ed by an id and a start time (s) and �nish time (f). Theoutput ondition requires that ativities must be hosen from the input set, andthat no two ativities overlap. The problem spei�ation is:

D 7→ {Activity}
Activity = {id : Nat, s : Nat, f : Nat}

R 7→ {Activity}
o 7→ λ(x, z) · noOvp(x, z) ∧ z ⊆ x

noOvp(x, z)
.
= ∀i, j ∈ z · i 6= j ⇒ i � j ∨ j � i

i � j = i.f ≤ j.s
c 7→ λ(x, z) · ‖z‖We will now show how the problem an be solved in GGS theory. Most ofthe types and operators of GGS theory are straightforward to instantiate. Wewill just set R̂ to be the same as R. The initial spae is just the empty set.The subspae relation ⋖ splits a spae by seleting an unhosen ativity if oneexists and adding it to the existing partial solution. The extrat prediate χ anextrat a solution at any time:



R̂ 7→ R
ẑ0 7→ λx · ∅
⋖ 7→ λ(x, ẑ, ẑ′) · ∃a ∈ x − ẑ · ẑ′ = ẑ ∪ {a}
χ 7→ λ(z, ẑ) · z = ẑ
γ 7→ λ(x, ẑ, Z) · ∃ŷ, a ∈ x · Z = ss(ŷ) ∧ ẑ ∈ Z ∧ ẑ = ŷ ∪ {a} ∧ ŷ � {a}

∧∀(ŷ ∪ a′) ∈ Z · ŷ � {a′} ⇒ a.f ≤ a′.fIt an be shown that this instantiation satis�es the axioms of GGS theory[NSC10℄. To see that the problem annot be solved with a greedoid representa-tion, onsider a set of three ativities {a1, a2, a3} in whih a1 overlaps with both
a2 and a3, neither of whih overlap eah other. Then two feasible solutions are
{a1} and {a2, a3}, but neither a2 nor a3 an be used to feasibly extend {a1},thus failing to satisfy the Exhange axiom.Finally, note that another way in whih GGS generalizes greedoids is thatwhile the Greedy Algorithm requires an admissible ost funtion over greedoids,GGS theory plaes no suh restritions a priori on the ost funtion.3.3 A Program Theory for GGSStarting from a statement of what is desired, namely to ompute an optimalfeasible solution, we will �rst formally derive a reurrene, whih is then orretby onstrution. The reurrene an then be transformed into an exeutableprogram.De�ne

Fgdy(z, x, ŷ) = z ∈ optc{z | z ∈ ŷ ∧ o(x, z)}This is a spei�ation of a funtion Fgdy to be derived.optc is a subset of itsargument that is the optimal (w.r.t. the ost funtion c and a w.f.o. ≥), de�nedas follows:
∀z · z ∈ optcS = z ∈ S ∧ (∀z′ ∈ S · c(x, z) ≥ c(x, z′))In the sequel we will assume that the order drop the subsript c when it is learfrom ontextTheorem 32. Let 〈D, R, R̂, C, i, o, c, ẑ0,∈, ⋖, χ, γ〉 be a GGS-Theory as de�nedabove. Then the following harateristi reurrene holds for all x and z:

Fgdy(z, x, ŷ) ⇐ z ∈ optc{z |

z ∈ optc{z | e(z, ŷ) ∧ o(x, z))} ∨ (∃ẑ ⋖ ŷ · ẑ γx ss(x, ŷ) ∧ Fgdy(z, x, ẑ))}



Proof.
Fgdy(z, x, ŷ)

= {unfold defn of Fgdy}
z ∈ optc{z | z ∈ ŷ ∧ o(x, z))}

= {provable from A2}
z ∈ optc{z | [χ(z, ŷ) ∨ (∃ẑ · s(x, ŷ, ẑ) ∧ z ∈ ẑ)] ∧ o(x, z)}

= {distributivity of set omprehension and opt}
z ∈ optc{z | z ∈ optc{z | χ(z, ŷ) ∧ o(x, z)} ∨ z ∈ optc{z | ∃ẑ ∈ ss(x, ŷ) · z ∈ ẑ ∧ o(x, z)}}

⇐ {Lemma 33}
z ∈ optc{z | z ∈ optc{z | χ(z, ŷ) ∧ o(x, z)} ∨ (∃ẑ ⋖ ŷ · ẑ γx ss(x, ŷ) ∧ Fgdy(z, x, ẑ))}Lemma 33.

optc{z | z ∈ optc{z | χ(z, ŷ) ∧ o(x, z)} ∨ z ∈ optc{z | ∃ẑ ∈ ss(x, ŷ) · z ∈ ẑ ∧ o(x, z)}}
⊇

optc{z | z ∈ optc{z | χ(z, ŷ) ∧ o(x, z)} ∨ (∃ẑ ⋖ ŷ · ẑ γx ss(x, ŷ) ∧ Fgdy(z, x, ẑ))}Proof. See AppendixLemma 34. If ∃ẑ ∈ ss(x, ŷ), ∃z ∈ ẑ · o(x, z) then for any z∗

(∃ẑ ∈ ss(x, ŷ) · z∗ ∈ ẑ ∧ o(x, z∗))
∧

(∀ẑ′ ∈ ss(x, ŷ), ∀z′ ∈ ẑ′ · o(x, z′) ⇒ o(x, z∗) ∧ c(x, z∗) ≥ c(x, z′)
⇐

∃ẑ ∈ ss(x, ŷ) · ẑ γx ss(x, ŷ) ∧ z∗ ∈ optc{z | z ∈ ẑ ∧ o(x, z))}Proof. See AppendixNon Triviality Finally, to demonstrate non-triviality2 of the reurrene weneed to show that if there exists an optimal solution, then one will be found.That is:
(i(x) ∧ ∃z · Fgdy(z, x, ŷ)) ⇒ ∃z ∈ optc{z |

z ∈ optc{z | (z, c, χ(z, ŷ) ∧ o(x, z))} ∨ (∃ẑ ⋖ ŷ · ẑ γx ss(x, ŷ) ∧ Fgdy(z, x, ẑ))}Proof. See Appendix.2 This is similar but not idential to ompleteness. Completeness requires that everyoptimal solution is found by the reurrene, whih we do not guarantee.



Algorithm 1 Program Shema for GGS Theory--given x:D satisfying i returns optimal (wrt. ost fn ) z:R satisfying o(x,z)funtion solve :: D -> {R}solve x =if Φ(br0(x)) then (gsolve x br0(x) {}) else {}funtion gsolve :: D -> bR -> {R} -> {R}gsolve x spae soln =let gsubs = {s | s∈subspaes x spae ∧ ∀ss ∈ subspaes x spae,s δx ss}soln' = opt  (soln ∪ {z | χ(z,spae) ∧ o(x,z)})in if gsubs = {} then soln'else let greedy = arbPik gsubs in gsolve x greedy soln'funtion opt :: ((D,R) -> C) -> {bR}-> {bR}opt  {s} = {s}opt  {s,t} = if (x,s)>(x,t) then {s} else {t}funtion subspaes :: D -> bR-> { bR}subspaes x br = {bs: bs ⋖x br∧Φ(x,bs)}3.4 Abstrat ProgramBy the appliation of orretness preserving transforms, the reurrene provedabove an be transformed into the abstrat program shown in Alg. 1, written ina pseudo-Haskell style. The program for GGS belongs in a lass of algorithmsthat operate by ontrolled searh. That is, given a spae of andidate solutions toa given problem (some of whih may not be optimal or even feasible solutions),a GGS algorithm partitions (splits) the spae into subspaes (also alled partialsolutions), eah of whih is reursively searhed in turn for optimal solutions.(Suh an approah is also the basis of branh-and-bound algorithms, ommonin AI). At any point, a solution an possibly be extrated from a spae, and iforret, ompared with the best solution found so far. The proess terminateswhen no spae an be further partitioned. The starting point is an initial spaeknown to ontain all possible solutions to the given problem. The result, if any,is an optimal solution to the problem. The key insight that makes for an e�ientalgorithm is the inorporation of spei� searh ontrol operators at the abstratlevel, that, suitably instantiated with problem spei� information an drasti-ally redue the amount of searh and thereby lead to very e�ient algorithmsfor a given problem. A summary of Global Searh theory is ontained in theAppendix. Further details are in Smith's papers, [Smi88,Smi90℄.In addition, optimizations suh as ontext-dependent simpli�ation, �nitedi�erening, and data struture seletion often have to be arried out beforearriving at a �nal e�ient program. One suh optimization is for problems (suhas those whih satisfy greedoid axioms) for whih only maximally sized solutionsneed be extrated. Speware [S℄, a tool from Kestrel Institute, provides supportfor arrying out suh orretness preserving program transformations.



4 Related WorkGreedoids arose when Korte and Lovasz notied that the hereditary propertyrequired by matroids was stronger than neessary for the Greedy Algorithm ofEdmonds to be optimal. However, the exat haraterization of the aessible setsystems for whih the greedy algorithm optimized all linear funtions remainedan open one until Helman et al. [HMS93℄ showed that a struture known asa matroid embedding was both neessary and su�ient. Matroid embeddingsrelax the Exhange axiom of greedoids but add two more axioms, so they aresimultaneously a generalization and a speialization of greedoids. We have shownthat GGS stritly generalizes greedoids.In earlier work, Helman [Hel89℄ devised a framework that uni�ed branh-and-bound and dynami programming. The framework also inorporated dominanerelations. However, Helman's goal was the uni�ation of the two paradigms, andnot the proess by whih algorithms an be alulated. In fat the uni�ation,though providing a very important insight that the two paradigms are relatedat a higher level, arguably makes the derivation of partiular algorithms harder.Our interest is ultimately in the systemati derivation of algorithms.Curtis [Cur03℄ has a lassi�ation sheme intended to over all greedy al-gorithms. There is a top-level ath-all lass and three sublasses. Eah lasshas a some onditions that must be met for a given problem to belong to thatlass. In general, verifying those onditions gets easier the lower the lass in thehierarhy. However, fewer problems qualify the lower in the hierarhy. One las-si�ed, however, the greedy algorithm is then automatially orret and optimalfor that problem. Unlike Curtis, we are not attempting a omplete lassi�ation(although our haraterization of greedy algorithms is omparable to Curtis's toplevel ategory of Best Global, and in that sense overs all greedy algorithms).Curtis also does not relate any of the greedy ategories to matroids or greedoids.Another di�erene between our work and that of Curtis is that while Curtis'swork is targeted spei�ally at greedy algorithms, for us greedy algorithms arejust a speial ase of a more general problem of deriving e�etive global searhalgorithms. The same work applies to both. In the ase that the dominane re-lation really does not lead to a singleton hoie at eah split, it an still proveto be highly e�etive. This was reently demonstrated on some Segment Sumproblems we looked at. Although the dominane relation we derived for thoseproblem did not redue to a greedy hoie, it was nonetheless key to reduing theomplexity of the searh (the width of the searh tree was kept onstant) and ledto a very e�ient breadth-�rst solution that was muh faster than omparablesolutions derived by program transformation, [NC09℄.Another approah has been taken by Bird and de Moor [BM93℄ who showthat under ertain onditions a dynami programming algorithm simpli�es intoa greedy algorithm. Our haraterization an be onsidered an analogous spe-ialization of (a form of) branh-and-bound. The di�erene is that we do notrequire alulation of the entire program, but spei� operators, whih is a lessonerous task. Also, as pointed out by Curtis [Cur03℄, the onditions required byBird and de Moor are not easy to meet.



Charlier [Cha95℄, also building on Smith's work, proposed a new algorithmlass for greedy algorithms that diretly embodied the matroid axioms. Using thislass, he was able to synthesize Kruskal's MST algorithm and a solution to the
1/1/

∑
Ti sheduling problem. However he reported di�ulty with the equivalentof the Augmentation (omparable to the Exhange) axiom. The di�ulty witha new algorithm lass is often the lak of a repeatable proess for synthesizingalgorithms in that lass, and this would appear to be what Charlier ran upagainst. In ontrast, by speializing an existing theory (GSO), we an apply allthe tehniques that are available suh as bounds tests, �lters, propagators, et.We are also able to handle a wider lass of problems than belong in matroids.Referenes[ANCK08℄ A Allahverdi, C T Ng, T C E Cheng, and M K Kovalyov. A survey ofsheduling problems with setup times or osts. European J. of OperationalRes., 187:985�1032, 2008.[BM93℄ R. S. Bird and O. De Moor. From dynami programming to greedy algo-rithms. In Formal Program Development, volume 755 of Leture Notes inComputer Siene, pages 43�61. Springer-Verlag, 1993.[BS74℄ K.R. Baker and Z-S. Su. Sequening with due-dates and early start timesto minimize maximum tardiness. Naval Researh Logistis, 21(1):171�176,1974.[BZ92℄ Anders Björner and Günter M. Ziegler. Introdution to greedoids. In NeilWhite, editor, Matroid Appliations. Cambridge University Press, 1992.[Cha95℄ B. Charlier. The greedy algorithms lass: formalization, synthesis and gen-eralization. Tehnial report, 1995.[CLRS01℄ T Cormen, C Leiserson, R Rivest, and C Stein. Introdution to Algorithms.MIT Press, 2nd edition, 2001.[Cur03℄ S. A. Curtis. The lassi�ation of greedy algorithms. Si. Comput. Program.,49(1-3):125�157, 2003.[Edm71℄ J. Edmonds. Matroids and the greedy algorithm. Math. Programming,1(1):127�136, 1971.[Hel89℄ P. Helman. A ommon shema for dynami programming and branh andbound algorithms. J. ACM, 36(1):97�128, 1989.[HMS93℄ P. Helman, B. M. E. Moret, and H. D. Shapiro. An exat haraterizationof greedy strutures. SIAM J. on Disrete Math., 6:274�283, 1993.[KLS91℄ B. Korte, L. Lovasz, and R. Shrader. Greedoids. Springer-Verlag, 1991.[NC09℄ S. Nedunuri and W.R. Cook. Synthesis of fast programs for maximumsegment sum problems. In Intl. Conf. on Generative Programming andComponent Engineering (GPCE), Ot. 2009.[NSC10℄ S. Nedunuri, D. R. Smith, and W. R. Cook. Synthesis of greedy algorithmsusing dominane relations. 2nd NASA Symp. on Formal Methods, 2010.[S℄ Speware. http://www.speware.org.[Smi88℄ D. R. Smith. Struture and design of global searh algorithms. Teh. Rep.Kes.U.87.12, Kestrel Institute, 1988.[Smi90℄ D. R. Smith. Kids: A semi-automati program development system. IEEETrans. on Soft. Eng., Spe. Issue on Formal Methods, 16(9):1024�1043,September 1990.[SPW95℄ D. R. Smith, E. A. Parra, and S. J. Westfold. Synthesis of high-performanetransportation shedulers. Tehnial report, Kestrel Institute, 1995.



Appendix: Proofs of LemmasLemma 31:Given a greedoid 〈S, L〉, and Aa ∈ L, AB ∈ L for some A, B ∈ S∗, a ∈ S:
B an be written ∏n

i=1 biBi for some B1, B2, · · · , Bn ∈ S∗, suh that ∀j ∈

[0..n) · A(
∏j

i=0 biBi)a(
∏n−1

i=j+1 Bibi)Bn ∈ L.Proof. By indution on the length m of B.Base ase: m = 1: B is just a single symbol b, written bε and result holds byassumption.Indutive ase: Assume the result for B of length m, and let Xj for any
j ∈ [0..n) denote A(

∏j

i=0 biBi)a(
∏n−1

i=j+1 Bibi)Bn ∈ L. If AB annot be ex-tended we are done. Otherwise, extend AB with a symbol b suh that ABb ∈ L.Then sine ABb − Xj = {b, bn} (for any j ∈ [0, n)), by the exhange axiom,a feasible extension of Xj is either b or bn. If the extension is b then re-haraterize Bb as (
∏n−1

i=1 biBi)bnB′
n where B′

n = Bnb and then sine Xjb ∈ L,
Xjb = A(

∏j

i=0 biBi)a(
∏n−1

i=j+1 Bibi)B
′
n ∈ L for any j ∈ [0, n) as required. Ifthe extension of Xj (for any j ∈ [0, n)) is bn, that is Xjbn ∈ L, then write Bbas b1B1b2B2 · · · bnBnbn+1Bn+1 where bn+1 = b and Bn+1 = ε and it is learthat Xjbn = A(

∏j
i=0 biBi)a(

∏n
i=j+1 Bibi)Bn+1 ∈ L as required. To ompletethe proof we need to show that the j = n ase also holds (beause the numberof separators Bi is now n + 1), that is A(

∏n

i=1 biBi)aBn+1 ∈ L:
A(

∏n

i=1 biBi)aBn+1 ∈ L
= {Bn+1 = ε}

A(
∏n

i=1 biBi)a ∈ L
⇐ {Exhange Axiom}

A(
∏n

i=1 biBi) ∈ L ∧ A(
∏n−1

i=0 biBi)aBn ∈ L
= {A(

∏n

i=1 biBi) = AB ∈ L, by assumption}
A(

∏n−1
i=0 biBi)aBn ∈ L

= {A(
∏n−1

i=0 biBi)aBn = Xn−1}
trueLemma 33

optc{z | z ∈ optc{z | χ(z, ŷ) ∧ o(x, z)} ∨ z ∈ optc{z | ∃ẑ ∈ ss(x, ŷ) · z ∈ ẑ ∧ o(x, z)}}
⊇

optc{z | z ∈ optc{z | χ(z, ŷ) ∧ o(x, z)} ∨ (∃ẑ ⋖ ŷ · ẑ γx ss(x, ŷ) ∧ Fgdy(z, x, ẑ))}Proof. Note that z ∈ optc{z | z ∈ optc{z | χ(z, ŷ) ∧ o(x, z)} ∨ z ∈ optc{z |
∃ẑ ∈ ss(x, ŷ) · z ∈ ẑ ∧ o(x, z)}} i� z ∈ optc{z | χ(z, ŷ)} ∧ c(x, z) = c∗(ŷ) or
z ∈ optc{z | ∃ẑ ∈ ss(x, ŷ) · z ∈ ẑ ∧ o(x, z)} ∧ c(x, z) = c∗(ŷ). Therefore if some z



satis�es χ(z, ŷ) ∧ o(x, z) ∧ c(x, z) = c∗(ŷ) then the result follows. Otherwise, byA4 we have ∃ẑ ⋖ ŷ · ẑ γx ss(x, ŷ), if i(x) ∧ ∃z ∈ ŷ · o(x, z). Then:
z ∈ optc{z | ∃ẑ ∈ ss(x, ŷ) · z ∈ ẑ ∧ o(x, z)}

= {defn of opt}
(∃ẑ ∈ ss(x, ŷ) · z ∈ ẑ ∧ o(x, z))

∧
(∀z′ · (∃ẑ′ ∈ ss(x, ŷ) · z′ ∈ ẑ′ ∧ o(x, z′)) ⇒ c(x, z) ≥ c(x, z′))

= {hange quanti�er}
(∃ẑ ∈ ss(x, ŷ) · z ∈ ẑ ∧ o(x, z))

∧
(∀ẑ′ ∈ ss(x, ŷ), ∀z′ ∈ ẑ′ · o(x, z′) ⇒ c(x, z) ≥ c(x, z′))

= {logi}
(∃ẑ ∈ ss(x, ŷ) · z ∈ ẑ ∧ o(x, z))

∧
(∀ẑ′ ∈ ss(x, ŷ), ∀z′ ∈ ẑ′ · o(x, z′) ⇒ o(x, z) ∧ c(x, z) ≥ c(x, z′))

⇐ {lemma 34}
∃ẑ ∈ ss(x, ŷ) · ẑ γx ss(x, ŷ) ∧ z ∈ optc{z | z ∈ ẑ ∧ o(x, z))}

= {defn of Fgdy}
∃ẑ ∈ ss(x, ŷ) · ẑ γx ss(x, ŷ) ∧ Fgdy(z, x, ẑ)

Lemma 34:If ∃ẑ ∈ ss(x, ŷ), ∃z ∈ ẑ · o(x, z) then for any z∗

(∃ẑ ∈ ss(x, ŷ) · z∗ ∈ ẑ ∧ o(x, z∗))
∧

(∀ẑ′ ∈ ss(x, ŷ), ∀z′ ∈ ẑ′ · o(x, z′) ⇒ o(x, z∗) ∧ c(x, z∗) ≥ c(x, z′)
⇐

∃ẑ ∈ ss(x, ŷ) · ẑ γx ss(x, ŷ) ∧ z∗ ∈ optc{z | z ∈ ẑ ∧ o(x, z))}Proof. From the haraterization of greedy dominane (A3), ∃ẑ ∈ ss(x, ŷ) ·
ẑ γx ss(x, ŷ) implies ∃z ∈ ẑ, ∀ẑ′ ∈ ss(x, ŷ), ∀z′ ∈ ẑ′ · o(x, z′) ⇒ o(x, z) ∧ c(x, z) ≥
c(x, z′). By assumption, some subspae of ŷ ontains a feasible solution, so theonsequent follows from z∗ ∈ optsc{z | z ∈ ẑ ∧ o(x, z)}.Non-triviality

(i(x) ∧ ∃z · Fgdy(z, x, ŷ)) ⇒ ∃z ∈ optc{z |

z ∈ optc{z | (z, c, χ(z, ŷ) ∧ o(x, z))} ∨ (∃ẑ ⋖ ŷ · ẑ γx ss(x, ŷ) ∧ Fgdy(z, x, ẑ))}



Proof.
i(x) ∧ ∃z · Fgdy(z, x, ŷ)

= {defn of Fgdy}
i(x) ∧ ∃z ∈ optc{z | z ∈ ŷ ∧ o(x, z)}

= {property of optc}
∃z · i(x) ∧ z ∈ ŷ ∧ o(x, z)

⇒ {Axioms A4, A2}
∃z · (χ(z, ŷ) ∨ (∃ẑ ⋖ ŷ · ẑ γx ss(x, ŷ) ∧ z ∈ ẑ)) ∧ o(x, z)

= {distributivity of ∧}
(∃z · χ(z, ŷ) ∧ o(x, z)) ∨ (∃z, ẑ ⋖ ŷ · ẑ γx ss(x, ŷ) ∧ z ∈ ẑ ∧ o(x, z))

= {property of optc}
(∃z · χ(z, ŷ) ∧ o(x, z)) ∨ (∃z, ẑ ⋖ ŷ · ẑ γx ss(x, ŷ) ∧ z ∈ optc{z | z ∈ ẑ ∧ o(x, z)})

= {defn of Fgdy}
(∃z · χ(z, ŷ) ∧ o(x, z)) ∨ (∃z, ẑ ⋖ ŷ · ẑ γx ss(x, ŷ) ∧ Fgdy(z, x, ẑ))

= {property of optc}
∃z ∈ optc{z | χ(z, ŷ) ∧ o(x, z)} ∨ (∃z, ẑ ⋖ ŷ · ẑ γx ss(x, ŷ) ∧ Fgdy(z, x, ẑ))

= {distributivity of ∃}
∃z · z ∈ optc{z | χ(z, ŷ) ∧ o(x, z)} ∨ (∃ẑ ⋖ ŷ · ẑ γx ss(x, ŷ) ∧ Fgdy(z, x, ẑ))

= {property of optc}
∃z ∈ optc{z | z ∈ optc{z | χ(z, ŷ) ∧ o(x, z)} ∨ (∃ẑ ⋖ ŷ · ẑ γx ss(x, ŷ) ∧ Fgdy(z, x, ẑ))}


