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Abstract

This report describes our research on transportation planning and scheduling
supported by the ARPA/Rome Lab Planning Initiative (ARPI). The main goal
of this project was to develop generic tools to support the construction of flex-
ible, high-performance planning and scheduling software. Our technical ap-
proach is based on program transformation technology which allows the system-
atic machine-supported development of software from requirement specifications.
The development process can produce highly efficient code along with a proof of
the code’s correctness.

We have used KIDS (Kestrel Interactive Development System) to derive ex-
tremely fast and accurate transportation schedulers from formal specifications.
As test data we use strategic transportation plans which are generated by U.S.
government planners. A typical problem, with 10,000 movement requirements,
takes the derived scheduler 1 – 3 minutes to solve, compared with 2.5 hours for
a deployed feasibility estimator (JFAST) and 36 hours for deployed schedulers
(FLOGEN, ADANS). The computed schedules use relatively few resources and
satisfy all specified constraints. The speed of this scheduler is due to the synthesis
of strong constraint checking and constraint propagation code.
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1 Introduction

This report describes our research on the transformational development of high-performance
transportation schedulers. Our approach to developing scheduling software involves several
stages. The first step is to develop a formal model of the transportation scheduling domain,
called a domain theory. Second, the constraints, objectives, and preferences of a particular
scheduling problem are stated within a domain theory as a problem specification. Finally,
an executable scheduler is produced semi-automatically by applying a sequence of transfor-
mations to the problem specification. The transformations embody programming knowledge
about algorithms, data structures, program optimization techniques, etc. The result of the
transformation process is executable code that is consistent with the given problem specifi-
cation. Furthermore, the resulting code can be extremely efficient.

Transportation scheduling tools currently used by the U.S. government are based on models
of the transportation domain that few people understand [11]. Consequently, users often do
not trust that the scheduling results reflect the characteristics of the current situation. Our
approach tries to address this issue by making the domain model and scheduling problem
explicit and clear. If a scheduling situation arises which is not treated by existing scheduling
tools, the user can specify the problem and generate a situation-specific scheduler.

One of the benefits of a transformational approach to scheduling is the synthesis of specialized
constraint management code. Previous systems for performing scheduling in AI (e.g. [13, 12,
48, 47]) and Operations Research [2, 24] use constraint representations and operations that
are geared for a broad class of problems, such as constraint satisfaction problems or linear
programs. In contrast, transformational techniques can derive specialized representations for
constraints and related data, and also derive efficient specialized code for constraint checking
and constraint propagation.

Figure 1 describes our vision of an advanced environment for producing planning/scheduling
software. Briefly, the idea is to rapidly develop a situation-specific domain model and
problem specification using a knowledge-elicitation system, and then to synthesize high-
performance planning and scheduling tools that are specialized to the current situation. The
majority of users’ interaction would be codifying the domain theory and specification of the
current situation, to aid in synthesizing a customized planning/scheduling tool.

We now step through the process in more detail. Several classes of users are involved in the
construction and use of a scheduling system.

One class of users, who include domain experts and specialists in model construction, interact
with a knowledge elicitation system to help classify the features of the situation and select,
compose, extend, and refine, (possibly abstract) models from a preexisting library of domain
models. The result is a model and problem specification tailored to the details of the current
situation (as closely as expertise and time permit).

Another class of users, who specialize in software design and formal modeling of programming
knowledge, interact with a planning/scheduling synthesis system to develop code from the
problem specification. The interaction involves composing components from a library of
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reusable parts, or selecting and applying representations of abstract programming knowledge
about algorithms, data structures, code optimization techniques, planning and scheduling-
specific design strategies, and so on. Most of the design process is automated, with only a
few high-level design decisions made by the developer. Another interactive task for this user
is the evolution of the programming knowledge-base itself.

The output of the synthesis system is executable planning/scheduling code which can then
be embedded in a planning/scheduling system and executed by an end-user.

There is a feedback loop implicit in the figure. The end user/domain expert using the
synthesized code may detect missing constraints, or have preferences or other information
not accounted for in the code. This information is fed back to the model-building stage
and the process iterates. The fact that each synthesis step preserves consistency between
problem specification and generated code means that maintenance and evolution back up to
the specification/domain model level, not the code-level as in current practice.

We developed an approximation to this vision in the current project, based on the KIDS
system, and demonstrated its feasibility.

In Sections 3 through 5 we present KIDS and the process of developing domain theories,
specifications, and code for scheduling problems. Section 7 describes fundamental work
underlying our technical approach.

2 Overview of Results

• TPFDD Scheduling – The U.S. Transportation Command and the component service
commands use a relational database scheme called a TPFDD (Time-Phased Force and
Deployment Data) for specifying the transportation requirements of an operation, such
as Desert Storm or the Somalia relief effort. We developed a domain theory of TPFDD
scheduling defining the concepts of this problem and developed laws for reasoning about
them. KIDS (Kestrel Interactive Development System) was used to derive and optimize
a variety of global search scheduling algorithms that perform constraint propagation
[37]. The resulting code, generically called KTS (Kestrel Transportation Scheduler),
has been run on a variety of TPFDDs generated by planners at USTRANSCOM and
other sites.

We compared the performance of KTS with several other TPFDD scheduling systems,
such as JFAST, FLOGEN, DITOPS, and PFE. We do not have access to JFAST
and FLOGEN, but these are (or were) operational tools at AMC (Airlift Mobility
Command, Scott AFB). According to [11] and David Brown (retired military planner
consulting with the Planning Initiative), on a typical TPFDD of about 10,000 move-
ment records, JFAST takes several hours and FLOGEN about 36 hours. KTS on a
TPFDD of this size will produce a detailed schedule in one to three minutes. So KTS
seems to be a factor of about 25 times faster than JFAST and over 250 times faster
than FLOGEN. The currently operational ADANS system reportedly runs at about
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the same speed as FLOGEN. KTS is orders of magnitude faster than any other TPFDD
scheduler known to us.

• Theater Scheduling

In 1994 we began to develop a scheduler to support PACAF (Pacific Air Force) at
Hickham AFB, Honolulu which is tasked with in-theater scheduling of a fleet of 26
C-130 cargo aircraft in the Pacific region. We developed (and are continuing to evolve)
a theory of theater transportation scheduling. Several variants of a theater scheduler
(called ITAS for In-Theater Airlift Scheduler) have been developed to date, and more
are planned. The interface to ITAS and integration with a commercial database pack-
age have been developed by BBN. ITAS runs on an Apple Powerbook laptop computer.
The laptop platform makes it attractive both for field and command center operations.
ITAS can currently produce ATOs (Air Tasking Orders) based on the schedules that
it generates.

The ITAS schedulers have emphasized flexibility and rich constraint modeling. Versions
of ITAS were installed at PACAF in August 1994, September 1994, and February 1995.
The most recent version simultaneously schedules the following classes of resources: (1)
aircraft, (2) aircrews and their duty day cycles, (3) ground crews for unloading, and
(4) ramp space at ports.

One of the reasons for the interest of PACAF in this project, is to capture some of the
knowledge and experience of skilled personnel before they retire or are rotated.

• Synthesis of constraint propagation code

A key technical achievement of this project was discovering and implementing tech-
nology for generating efficient constraint propagation code. The speed of the KTS
schedulers derives from the extremely fast checking and propagation of constraint in-
formation at every node of the runtime search tree. Whereas some knowledge-based
approaches to scheduling will search a tree at the rate of several nodes per second, our
synthesized schedulers search several hundred thousand nodes per second.

Briefly, the idea is to derive necessary conditions on feasibility of a candidate sched-
ule. These conditions are called cutting constraints. The derived cutting constraints
for a particular scheduling problem are analyzed to produce code that iteratively fixes
violated constraints until the cutting constraints are satisfied. This iterative process
subsumes the well-known processes of constraint propagation in the AI literature and
the notion of cutting planes from the Operations Research literature [40, 46]. Con-
straint propagation is discussed in more detail in Section 5.2.3.

• Classification approach to design

We developed a new approach to the problem of how to construct refinements of spec-
ifications formally and incrementally. The idea is to use a taxonomy of abstract design
concepts, each represented by a design theory. An abstract design concept is applied by
constructing a specification morphism from its design theory to a requirement specifica-
tion. Procedures for computing colimits and for constructing specification morphisms
provide computational support for this approach. Although the classification approach
applies to the incremental application of any kind of knowledge formally represented
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in a hierarchy of theories, our work mainly focused on a hierarchy of algorithm design
theories and its applications to logistical applications [39, 38]. This technique enable us
to integrate at a deep semantic level problem-solving methods from Computer Science
(e.g. divide-and-conquer, global search), Artificial Intelligence (e.g. heuristic search,
constraint propagation, neural nets), and Operations Research (e.g. Simplex, integer
programming, network algorithms). Classification is discussed in more detail in Section
6.

3 KIDS model of program development

KIDS is a program transformation system – one applies a sequence of consistency-preserving
transformations to an initial specification and achieves a correct and hopefully efficient pro-
gram [42]. The system emphasizes the application of complex high-level transformations that
perform significant and meaningful actions. From the user’s point of view the system allows
the user to make high-level design decisions like, “design a divide-and-conquer algorithm for
that specification” or “simplify that expression in context”. We hope that decisions at this
level will be both intuitive to the user and be high-level enough that useful programs can be
derived within a reasonable number of steps.

The user typically goes through the following steps in using KIDS for program development.

1. Develop a domain theory – An application domain is modeled by a domain theory (a
collection of types, operations, laws, and inference rules). The domain theory specifies
the concepts, operations, and relationships that characterize the application and sup-
ports reasoning about the domain via a deductive inference system. Our experience
has been that distributive and monotonicity laws provide most of the laws that are
needed to support design and optimization of code. KIDS has a theory development
component that supports the automated derivation of various kinds of laws.

2. Create a specification – The user enters a problem specification stated in terms of the
underlying domain theory.

3. Apply a design tactic – The user selects an algorithm design tactic from a menu and
applies it to a specification. Currently KIDS has tactics for simple problem reduc-
tion (reducing a specification to a library routine) [33], divide-and-conquer [33], global
search (binary search, backtrack, branch-and-bound) [34], problem reduction gener-
ators (dynamic programming, general branch-and-bound, and game-tree search algo-
rithms) [36], and local search (hillclimbing algorithms) [23].

4. Apply optimizations – The KIDS system allows the application of optimization tech-
niques such as expression simplification, partial evaluation, finite differencing, case
analysis, and other transformations [42]. The user selects an optimization method
from a menu and applies it by pointing at a program expression. Each of the opti-
mization methods are fully automatic and, with the exception of simplification (which
is arbitrarily hard), take only a few seconds.
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5. Apply data type refinements – The user can select implementations for the high-level
data types in the program. Data type refinement rules carry out the details of con-
structing the implementation [5].

6. Compile – The resulting code is compiled to executable form. In a sense, KIDS can be
regarded as a front-end to a conventional compiler.

Actually, the user is free to apply any subset of the KIDS operations in any order – the above
sequence is typical of our experiments in algorithm design. A new system, called Specware,
is currently under construction at Kestrel as a successor to KIDS. Specware is based on
concepts of higher-order algebraic specifications, morphisms, and categorical constructions
[20, 38, 39, 50].

4 Specifying a Scheduler

4.1 What is Scheduling?

The essential notion of scheduling is that certain activities are assigned to resources over
certain time intervals. Various constraints on the assignments must be satisfied and certain
measures of the cost or “goodness” of the assignment are to be optimized.

A domain theory for scheduling defines the basic concepts of scheduling and the laws for
reasoning about the concepts. After a review of the relevant literature (e.g. [12]) we have
identified the following general components of a scheduling domain theory.

1. Activities – A model of the activities can include their internal structure and charac-
teristics, hierarchies of activity abstractions, and various operations on activities.

2. Resources – A model of the resources can include their internal structure and charac-
teristics, hierarchies of resource abstractions, and various operations on resources.

3. Time – A time model can include a calculus of time-points or time-intervals [1, 21].

4. Constraints – A constraint model includes the language for stating constraints and a
calculus for reasoning about them. Several classes of constraints commonly arise in
practice. The most common are precedence constraints (which state that one activity
must precede another) and capacity constraints (which state bounds on the capacities
of resources). A constraint calculus is used to analyze constraints and to propagate
the effects of new constraints through a given constraint set. Fox et al. also identify
physical constraints, organizational constraints, preferences, enablement constraints,
and availability constraints.

5. Objectives – Typically we seek to minimize the cost of a schedule. Cost can be measured
in terms of time to completion, work-in-progress, total cost of consumed resources, and
so on.

9



6. Scheduling problem – Using the above concepts we can formulate a variety of scheduling
problems. A reservation is a triple consisting of an activity, a resource, and a time
interval. Generally, a schedule is a set of reservations that satisfy a collection of
constraints and optimize (or produce a reasonably good value of) the objective.

{ 〈activity, resource, time interval〉 | constraints }.

Many scheduling problem intancess are overconstrained – there are too few resources to
schedule the activities and satisfy all constraints. Usually overconstrained problems are
dealt with by relaxing the constraints and trying to satisfy as many of the constraints as
possible. The usual method is to move constraints into the objective function. This entails
reformulating the constraint so that it yields a quantitative measure of how well it has been
satisfied. See further discussion in Section 5.2.4.

4.2 Strategic Transportation Scheduling

Transportation scheduling specializes the above general notion of scheduling: activities cor-
respond to movement requirements and resources correspond to transportation assets such
as planes, ships, and trucks.

A typical movement requirement has the following information

move−type : movement−type 7→ BULK−MOV EMENT

quantity : integer 7→ 2 (STONS - Short TONS)
release−date : time 7→ 0 (seconds from C-date)
due−date : time 7→ 86400 (seconds from C-date)
poe : port 7→ UHHZ

pod : port 7→ V RJT

distance : integer 7→ 5340 (nautical miles)
mode : symbol 7→ AIR

Here quantity for AIR movements is in short tons (STONs); the release and due dates are
in seconds starting from C-DATE; poe (port of embarkation) and pod (port of debarkation)
are given by code names; distance is in nautical miles, and the transportation mode is either
AIR or SEA. A collection of movement requirements is called a TPFDD (Time-Phased Force
Deployment Data).

Resources are characterized by their capacities (both passenger (PAX) and cargo capacities),
and travel rate in knots.

As an example, we used a small dataset extracted from a TUNISIA TPFDD created at
AFSC. This problem instance involves 480 movement requirements from 20 airports and 3
seaports to 8 airports and 2 seaports. Available air resources include KC10s, C-141s, C-5s

10



and sea resources include tankers (small, medium, and large), RO-ROs, LASHs, sea barges,
containerships, and breakbulks.

Eleven constraints characterize a feasible schedule for a simple TPFDD problem:

1. Consistent POE and POD – The POE and POD of each movement requirement on a
given trip of a resource must be the same.

2. Consistent Resource Class – Each resource can handle only some movement types. For
example, a C-141 can handle bulk and oversize movements, but not outsize movements.

3. Consistent PAX and Cargo Capacity – The capacity of each resource cannot be ex-
ceeded.

4. Consistent Release Time – The start time of a movement (its Available to Load Date
(ALD)) must not precede its release time.

5. Consistent Arrival time – The finish time of a trip must not precede the Earliest Arrival
Date (EAD) of any of the transported movement requirements.

6. Consistent Due time – The finish time of a movement (its Latest Arrival Date (LAD))
must not be later than its due time.

7. Consistent Trip Separation – Movements scheduled on the same resource must start
either simultaneously or with enough separation to allow for return trips. The inher-
ently disjunctive and relative nature of this constraint makes it more difficult to satisfy
than the others.

8. Consistent Resource Use – Only the given resources are used.

9. Completeness – All movement requirements must be scheduled.

In the next section we discuss the formalization of the above concepts. This problem does
not consider certain aspects of transportation scheduling, such as aircrew scheduling, ground
crew scheduling, maintenance, resource utilization rates, load/unload rates, port character-
istics, etc. Each of these problem features have been handled in various more elaborate
specifications.

4.3 (Re-)FormulatingDomain Theories for Transportation Schedul-

ing

In the most general view, scheduling is the construction of a set of reservations that satisfy
given feasibility constraints and achieve “good” values of an objective function. Formally,
the schedule is a relation, or even a simple relational database. A formal domain theory
based on this view is given in Appendix A. The theory provides precise definitions for the
concepts, constraints, objectives, and laws used to model this application domain.

11



This relational view however is not always the most efficient for particular problems. We
may be able to reformulate the problem, incorporating constraints and objectives, yielding
a problem statement that is more amenable to efficient problem-solving. In the following we
present a series of transformations that reformulate the domain theory.

In most transportation problems, each movement requirement corresponds to a unique reser-
vation – it is scheduled exactly once with a unique resource and start time. We can make this
functional dependence explicit by treating a schedule as a map from movement requirements
to resource/time tuples. In Figure 2 we show the effect of this reformulation on the schedule
datatype.

Next the trip separation constraint suggests that this map is many-to-one, since several move-
ments can take place simultaneously on the same resource. Inverting the map will induxe a
partition on movement requirements. In terms of the transportation domain, inverting the
map will make simultaneous movements explicit and thereby introducing the concept of a
trip and the manifest of a trip.

Next we notice that the domain of a schedule map is a product of two types and these types
have quite different properties (algebras): resources are a discrete set and time is (effectively)
continuous and linear. The linear nature of time can be exploited by currying (to separate
the two domain datatypes) and transforming the submap (from time to manifest) to a
sequence, thereby making the linear structure of time explicit and introducing the concept
of an itinerary.

This series of reformulations has dramatic effect on the trip separation constraint. In the
initial formulation (in terms of reservations) this constraint involvesO(n2) binary constraints
between the n movements scheduled on a given resource. In the final formulation (in terms
of a linearized inverse map) this constraint is reduced to O(n) binary constraints between
the start times of consecutive trips.

For example, on a transportation problem involving over 15,000 movement requirements ob-
tained from the U.S. Transportation Command, the scheduler produces a complete feasible
schedule in about five minutes. A straightforward constraint network formulation based on
this problem data would have over 31,000 variables and 120,125,000 constraints. Incorporat-
ing some of the structure of the problem, such as the linearity of time, allows reformulating
this to a system of about 108,700 constraints. However, this is still a such large formulation
that it seems an implicit representation is necessary to find feasible schedules efficiently.

The final reformulation is given in Appendix B and is the theory actually used to derive a
scheduler.

4.4 Formal Specification of a Scheduler

The informal specification above can be expressed as follows:

function TS
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{ 〈movement-record,   resource,   start-time 〉  } a schedule represented as
a set of reservations

{ movement-record 〈 resource,   start-time 〉  }

{ 〈  resource,  start-time  〉 { movement-record  } }

{ resource { start-time { movement-record  } } }

{ resource [ 〈 start-time,  { movement-record  } 〉 ] }

reify the functional dependence

invert the map

Curry

exploit linear order of time

the notion of "trip" and
"manifest" introduced

Figure 2: Reformulating a Scheduling Specification
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(mvrs : seq(movement-record),
assets : seq(resource-name))

returns (sched : map(resource-name, seq(trip)) |
Consistent-POE (sched)
∧ Consistent-POD (sched)
∧ Consistent-Release-Times (sched)
∧ Consistent-Arrival-Times(sched)
∧ Consistent-Due-Times (sched)
∧ Consistent-Trip-Separation(sched)
∧ Consistent-Pax-Resource-Capacity(sched)
∧ Consistent-Cargo-Resource-Capacity(sched)
∧ Consistent-Movement-Type-and-Resource(sched)
∧ Available-Resources-Used (assets, sched)
∧ Scheduled-mvrs(sched) = seq-to-set (mvrs))

This specifies a function called TS that takes two inputs, a sequence of movement records
calledmvrs and a sequence of resources called assets. The function returns a schedule, which
has type map(resource−name, seq(trip)) and must satisfy the 11 conjoined constraints. Each
constraint is defined in the domain theory; for example:

function CONSISTENT-DUE-TIMES
(sched : schedule) : boolean
= ∀(rsrc : resource-name, trp : integer, mvr : movement-record)

(rsrc ∈ domain(sched)
∧ trp ∈ [1..size(sched(rsrc))]
∧ mvr ∈ sched(rsrc)(trp).manifest

=⇒
sched(rsrc)(trp).start-time
≤ (mvr.due-date − sched(rsrc)(trp).trip-duration)

This predicate expresses the constraint that every scheduled movement-record arrives before
its due date.

5 Synthesizing a Scheduler

5.1 Approach

5.1.1 Problem Theories

We briefly review some basic concepts from algebra and logic. A theory is a structure
〈S,Σ, A〉 consisting of a set of sort symbols S, operations over those sorts Σ, and axioms A
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to constrain the meaning of the operations. A theory morphism (theory interpretation) maps
from the sorts and operations of one theory to the sorts and expressions over the operations
of another theory such that the image of each source theory axiom is valid in the target
theory. A parameterized theory has formal parameters that are themselves theories [15].
The binding of actual values to formal parameters is accomplished by a theory morphism.
Theory T2 = 〈S2,Σ2, A2〉 extends (or is an extension of) theory T1 = 〈S1,Σ1, A1〉 if S1 ⊆ S2,
Σ1 ⊆ Σ2, and A1 ⊆ A2.

Problem theories define a problem by specifying a domain of problem instances or inputs and
the notion of what constitutes a solution to a given problem instance. Formally, a problem
theory B has the following structure.

Sorts D ,R
Operations I : D → Boolean

O : D × R → Boolean

The input condition I (x) constrains the input domain D . The output condition O(x , z )
describes the conditions under which output domain value z ∈ R is a feasible solution with
respect to input x ∈ D . Theories of booleans and sets are implicitly imported. Problems of
finding optimal feasible solutions can be treated as extensions of problem theory by adding
a cost domain, cost function, and ordering on the cost domain.

For example, the problem of finding feasible schedules can be presented as a problem theory
via a theory interpretation into the domain theory of transportation scheduling:1

D 7→ seq(movement−record)× seq(resource)
I 7→ λ(Mvrs, resources) true
R 7→ map(resource, seq(trip))
O 7→ λ(Mvrs, resources, sched)

Consistent−POE(sched)
∧ Consistent−POD(sched)
∧ Consistent−Release−T imes(sched)
∧ Consistent−Arrival−T imes(sched)
∧ Consistent−Due−T imes(sched)
∧ Consistent−Trip−Separation(sched)
∧ Consistent−Pax−Resource−Capacity(sched)
∧ Consistent−Cargo−Resource−Capacity(sched)
∧ Consistent−Movement−Type−and−Resource(sched)
∧ Available−Resources−Used(resources, sched)
∧ Scheduled−mvrs(sched) = seq−to−set(mvrs)

1The domain theory includes definitions for the types of movement-record, resource, trip (a record com-
prised of start-time and manifest), and schedule (a map from resource to sequence of trip).
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5.1.2 Algorithm Theories

An algorithm theory represents the essential structure of a certain class of algorithms A

[43]. Algorithm theory A extends problem theory B with any additional sorts, operators,
and axioms needed to support the correct construction of an A algorithm for B. A theory
morphism from the algorithm theory into some problem domain theory provides the problem-
specific concepts needed to construct an instance of an A algorithm.

For example, global search theory (presented below in Section 6.2.1) extends problem theory
with the basic concepts of backtracking: subspace descriptors, initial space, the splitting and
extraction operations, filters, and so on. A divide-and-conquer theory would extend problem
theory with concepts such as decomposition operators and composition operators [33, 36].

5.2 Synthesizing a Scheduler

There are two basic approaches to computing a schedule: local and global. Local methods
focus on individual schedules and similarity relationships between them. Once an initial
schedule is obtained, it is iteratively improved by moving to neighboring structurally similar
schedules. Repair strategies [53, 25, 4, 31], and fixpoint iteration [8], and linear programming
algorithms are examples of local methods.

Global methods focus on sets of schedules. A feasible or optimal schedule is found by
repeatedly splitting an initial set of schedules into subsets until a feasible or optimal schedule
can be easily extracted. Backtrack, heuristic search, and branch-and-bound methods are
all examples of global methods. We explore the application of global methods. In the
following subsections we formalize the notion of global search method and show how it can
be applied to synthesize a scheduler. Other projects taking a global approach include ISIS
[13], OPIS/DITOPS [47], and MicroBoss [28] (all at CMU).

5.2.1 Global Search Theory

The basic idea of global search is to represent and manipulate sets of candidate solutions.
The principal operations are to extract candidate solutions from a set and to split a set into
subsets. Derived operations include various filters which are used to eliminate sets containing
no feasible or optimal solutions. Global search algorithms work as follows: starting from an
initial set that contains all solutions to the given problem instance, the algorithm repeatedly
extracts solutions, splits sets, and eliminates sets via filters until no sets remain to be split.
The process is often described as a tree (or DAG) search in which a node represents a set of
candidates and an arc represents the split relationship between set and subset. The filters
serve to prune off branches of the tree that cannot lead to solutions.

The sets of candidate solutions are often infinite and even when finite they are rarely rep-
resented extensionally. Thus global search algorithms are based on an abstract data type
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of intensional representations called space descriptors (denoted by hatted symbols). In ad-
dition to the extraction and splitting operations mentioned above, the type also includes
a predicate satisfies that determines when a candidate solution is in the set denoted by a
descriptor. Further, there is a refinement relation on spaces that corresponds to the subset
relation on the sets denoted by a pair of descriptors.

The various operations in the abstract data type of space descriptors together with problem
specification can be packaged together as a theory. Formally, abstract global search theory

(or simply gs−theory) G is presented in Figure 3, where D is the input domain, R is the
output domain, I is the input condition, O is the output condition, R̂ is the type of space
descriptors, Î defines legal space descriptors, r̂ and ŝ vary over descriptors, top(x) is the
descriptor of the initial set of candidate solutions, Satisfies (z , r̂) means that z is in the set
denoted by descriptor r̂ or that z satisfies the constraints that r̂ represents, and Extract(z , r̂)
means that z is directly extractable from r̂ .

The relations Split−Arg and Split−Constraint are used to determine and perform splitting.
In particular, if Split−Arg(x , r̂ , c) then c is information that characterizes (or informs) one
branch of the split. Split−Constraint(x , r̂ , c, ŝ) means that ŝ results from incorporating
information c into the descriptor r̂ (with respect to input x). Split−Arg is used to control
the generation of children of a node in the search tree and Split−Constraint is used to
specify one child. Split−Constraint can be thought of as a parameterized constraint whose
alternative arguments are supplied by Split−Arg .

The refinement relation r̂ ⊒ ŝ holds when ŝ denotes a subset of the set denoted by r̂ . Further,
R̂ together with ⊒ forms a bounded semilattice. This structure will play a crucial role in
constraint propagation algorithms.

Note that all variables in the axioms are assumed to be universally quantified unless explicitly
specified otherwise. Axiom GS0 asserts that the initial descriptor r̂0 (x) is a legal descriptor.
Axiom GS1 asserts that legal descriptors split into legal descriptors and that Split induces
a well-founded ordering on spaces. Axiom GS2 constrains the denotation of the initial
descriptor — all feasible solutions are contained in the initial space. Axiom GS3 gives the
denotation of an arbitrary descriptor r̂ — an output object z is in the set denoted by r̂ if
and only if z can be extracted after finitely many applications of Split to r̂ where

Split ∗(x , r̂ , ŝ) ⇐⇒ ∃(k : Nat) Split k(x , r̂ , ŝ)

and
Split0(x , r̂ , t̂) ⇐⇒ r̂ = t̂

and for all natural numbers k
Split k+1(x , r̂ , t̂)

⇐⇒ ∃(ŝ : R̂, i : Ĉ ) ( Split−Arg(x , r̂ , i) ∧ Split−Constraint(x , r̂ , i, ŝ) ∧ Splitk(x , ŝ , t̂)).

AxiomGS4 asserts that if r̂ splits to ŝ then r̂ also refines to ŝ ; thus the refinement relation on
R̂ is weaker than the split relation. We also need the axioms that 〈R̂,⊒,⊓〉 is a semilattice.
For simplicity, we write r̂ ⊒ ŝ rather than the correct ⊒ (x , r̂ , ŝ); and similarly r̂ ⊓ ŝ .
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Spec Global-Search

Sorts D input domain
R output domain

R̂ subspace descriptors

Ĉ splitting information

Operations

I : D → boolean input condition
O : D × R → boolean input/output condition

Î : D × R̂ → boolean subspace descriptors condition

Satisfies : R × R̂ → boolean denotation of descriptors

Split−Arg : D × Ĉ × R̂ → boolean specifies arguments to split constraint

Split−Constraint : D × R̂ × Ĉ × R̂ → boolean parameterized splitting constraint

Extract : R × R̂ → boolean extractor of solutions from spaces

Ψ : D ×R × R̂ → boolean cutting constraint

ξ : D × R̂ → boolean cutting constraint

⊒ : D × R̂ × R̂ → boolean refinement relation

top : D → R̂ initial space

bot : R̂ inconsistent space

Axioms

GS0. All feasible solutions are in the top space
I (x) ∧ O(x , z ) =⇒ Satisfies (z , top(x))

GS1. All solutions in a space are finitely extractable

I (x) ∧ Î (x , r̂)
=⇒ (Satisfies(z , r̂) ⇐⇒ ∃(ŝ) ( Split ∗(x , r̂ , ŝ) ∧ Extract(z , ŝ)))

GS2. Specification of Cutting Constraint
Satisfies(z , r̂) ∧ O(x , z ) =⇒ Ψ(x , z , r̂)

GS3. Definition of Cutting Constraint on Spaces
ξ(x , r̂) ⇐⇒ ∀(z : R)( Sat(z , r̂) =⇒ Ψ(x , z , r̂))

GS4. Definition of Refinement
r̂ ⊒ ŝ ⇐⇒ ∀(z : R)(Satisfies (z , ŝ) =⇒ Satisfies (z , r̂))

GS5. 〈R̂,⊒,⊓, top, bot〉 is a bounded meet-semilattice with bot as universal lower bound.

end spec

Figure 3: Global Search Theory

18



For example, a simple global search theory of scheduling has the following form. Schedules
are represented as maps from resources to sequences of trips, where each trip includes earliest-
start-time, latest-start-time, port of embarkation, port of debarkation, and manifest (set of
movement records or ULNs + CINs + PINs from the TPFDD). The type of schedules has the
invariant (or subtype characteristic) that for each trip, the earliest-start-time is no later than
the latest-start-time. A partial schedule is a schedule over a subset of the given movement
records.

The initial (partial) schedule is just the empty schedule – a map from the available resources
to the empty sequence of trips. A partial schedule is extended by first selecting a movement
record mvr to schedule, then selecting a resource r, and then a trip t on r (either an existing
trip or a newly created one) – the triple 〈mvr, r, t〉 constitutes the information c of Split−Arg .
Split−Constraint given 〈mvr, r, t〉 creates an extended schedule that has mvr added to the
manifest of trip t on resource r. The alternative ways that a partial schedule can be extended
naturally gives rise to the branching structure underlying global search algorithms.

The formal version of this global search theory of scheduling can be inspected in the domain
theory in Appendix C.

5.2.2 Pruning Mechanisms

When a partial schedule is extended it is possible that some problem constraints are violated
in such a way that further extension to a complete feasible schedule is impossible. In tree
search algorithms it is crucial to detect such violations as early as possible.

Pruning tests are derived in the following way. The test

∃(z ) (Satisfies(z , r̂) ∧ O(x , z )) (1)

decides whether there exist any feasible solutions that are in the space denoted by r̂ . If
we could decide this at each node of our branching structure then we would have perfect
search – no deadend branches would ever be explored. In practice it would be impossible
or horribly complex to compute (1), so we rely instead on an inexpensive approximation to
it. In fact, if we approximate (1) by weakening it (deriving a necessary condition of it) we
obtain a sound pruning test. That is, suppose we can derive a test Φ(x , r̂) such that

∃(sched) (Satisfies(z , r̂) ∧ O(x , z )) =⇒ Φ(x , r̂). (2)

By the contrapositive of (2), if ¬Φ(x , r̂ ) then there are no feasible solutions in r̂ , so we can
eliminate it from further processing. A global search algorithm will test Φ at each node it
explores, pruning those nodes where the test fails.

More generally, necessary conditions on the existence of feasible (or optimal) solutions below
a node in a branching structure underlie pruning in backtracking and the bounding and
dominance tests of branch-and-bound algorithms [34].

It appears that the bottleneck analysis advocated in the constraint-directed search projects at
CMU [12, 28] leads to a semantic approximation to (1), but neither a necessary nor sufficient
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Figure 4: Global Search Subspace and Cutting Constraints

condition. Such a heuristic evaluation of a node is inherently fallible, but if the approximation
is close enough it can provide good search control with relatively little backtracking.

To derive pruning tests for the strategic transportation scheduling problem, we instanti-
ate (1) with our definition of Satisfies and O and use an inference system to derive nec-
essary conditions. The resulting tests are fairly straightforward; of the 11 original fea-
sibility constraints, 7 yield pruning tests on partial schedules. For example, the partial
schedule must satisfy Consistent-POE, Consistent-POD, Consistent-Pax-Resource-Capacity,
Consistent-Cargo-Resource-Capacity, Consistent-Movement-Type-and-Resource, and Available-
Resources-Used. The reader may note that computing these tests on partial schedules is
rather expensive and mostly unnecessary – later program optimization steps will however
reduce these tests to fast and irredundant form. For example, the first test will reduce to
checking that when we place a movement record mvr on trip t, we check that the POE of
mvr and t are consistent.

For details of deriving pruning mechanisms for other problems see [34, 42, 43, 35].

5.2.3 Cutting Constraints and Constraint Propagation

Constraint propagation is a more general technique that is crucial for early detection of
infeasibility. We developed a general mechanism for deriving constraint propagation code
and applied it to scheduling.

Each node in a backtrack tree can be viewed as a data structure that denotes a set of
candidate solutions – in particular the solutions that occur in the subtree rooted at the node
(see Figure 4). Thus the root denotes the set of all candidate solutions found in the tree.

Pruning has the effect of removing a node (set of solutions) from further consideration. In
contrast, constraint propagation has the effect of changing the space descriptor so that it
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Figure 5: Pruning and Constraint Propagation

denotes a smaller set of candidate solutions. The effect of constraint propagation is to spread
information through the subspace descriptor resulting in a tighter descriptor and possibly
exposing infeasibility. Pruning can be treated as a special case of propagation in which a
space is refined to descriptor that denotes the empty set of solutions.

Constraint propagation is based on the notion of cutting constraints which are necessary
conditions Ψ(x, z, r̂) that a candidate solution z satisfying r̂ is feasible:

∀(x : D, r̂ : R̂, z : R)(Satisfies(z, r̂) ∧ O(x, z) =⇒ Ψ(x, z, r̂)) (3)

See Figures 4 and 5. In order to get a test on spaces that decides whether Ψ has been
incorporated, we make one further definition:

ξ(x, r̂) ⇐⇒ ∀(z : R)(Satisfies(z, r̂) =⇒ Ψ(x, z, r̂)) (4)

The test ξ(x, r̂) holds exactly when all candidate solutions in r̂ satisfy Ψ, and we say that r̂
satisfies ξ.

The key question at this point is: Given a descriptor r̂ that doesn’t satisfy ξ, how can we
incorporate ξ into r̂? The answer is to find the greatest refinement of r̂ that satisfies ξ; we
say t̂ incorporates ξ into r̂ if
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t̂ = max⊒{ŝ | r̂ ⊒ ŝ ∧ ξ(x , ŝ)}. (5)

which asserts that t̂ is maximal over the set of descriptors that refine ŝ and satisfy ξ, with
respect to ordering ⊒. We want t̂ to be a refinement of r̂ so that all of the information in
r̂ is preserved and we want t̂ to be maximal so that no other information than r̂ and ξ is
incorporated into t̂ .

The next question concerns the conditions under which Formula (5) is satisfiable. Assuming
that R̂ is a semilattice, we can use variants of Tarski’s fixpoint theorem (c.f. [8]):

Theorem If there is a function f such that

1. f is monotonic on R̂ (i.e. ŝ ⊒ t̂ =⇒ f(x , ŝ) ⊒ f(x , t̂))

2. f is deflationary (i.e. r̂ ⊒ f(x , r̂))

3. f has fixed-points satisfying ξ (i.e. f(x , r̂ ) = r̂ ⇐⇒ ξ(x , r̂))

then (1) t̂ = max⊒{ŝ | r̂ ⊒ ŝ ∧ ξ(x , ŝ)} exists
and (2) t̂ is the greatest fixpoint of f ; i.e. t̂ can be computed by iteratively applying f to r̂
until a fixpoint is reached.

The challenge is to construct a monotonic, deflationary function whose fixed-points satisfy
ξ. A general construction in terms of global search theory can be sketched as follows. Let

f(x , r̂) =

{

r̂ if ξ(x , r̂)
... if ¬ξ(x , r̂ )

The intent is to define f so that it has fixpoints exactly when ξ(x , r̂ ) holds. When ξ(x , r̂ )
doesn’t hold, then we know (by the definition of ξ and the contrapositive of formula (3))
that

∃(z : R)(Satisfies (z, r̂) ∧ ¬O(x, z))

i.e. there are some infeasible solutions in the space described by r̂ . Ideally ¬ξ(x , r̂ ) is a
constructive assertion, so it provides information on which solutions are infeasible and how
to eliminate them. In place of the ellipsis above we require a new descriptor that refines
r̂ (so f is decreasing on all inputs), allows f to be monotone, and eliminates some of the
infeasible solutions indicated by ¬ξ(x , r̂ ). In general it is difficult to see how to achieve this
end without assuming special structure to R̂ and ξ.

We have identified some special cases for which an analytic procedure can produce the nec-
essary iteration function f from ξ. These special cases subsume our scheduling applications
and many related Constraint Satisfaction Problems (CSP) problems. Suppose that the con-
straint ξ has the form

B(x , r̂) ⊒ r̂ (6)
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where B(x , r̂) is monotonic in r̂ . We say that ξ is a Horn-like constraint by generalization of
Horn clauses in logic. Notice that the occurrence of r̂ on the right-hand side of the inequality
has positive polarity (i.e. it is monotonic in r̂), whereas the occurrence(s) of r̂ on the left-
hand side have negative polarity (i.e. are antimonotonic). If the constraint were boolean
(with B and r̂ being boolean values and ⊒ being implication), then this would be called a
definite Horn clause. When our constraints are Horn-like, then there is a simple definition
for the desired function f :

f(x , r̂) =

{

r̂ if B(x , r̂) ⊒ r̂
B(x , r̂) ⊓ r̂ if ¬B(x , r̂) ⊒ r̂

or equivalently
f(x , r̂ ) = B(x , r̂) ⊓ r̂ .

It is easy to check that f is monotone in r̂ , deflationary, and has fixed-points exactly when
ξ holds. Therefore, simple iteration of f will converge to the descriptor that incorporates
ξ into r̂ . However, if r̂ is an aggregate structure such as a tuple or map, then the changes
made at each iteration may be relatively sparse, so the simple iteration approach may be
grossly inefficient. We found this feature to be characteristic of scheduling and other CSPs.
Our approach to solving this problem is to focus on single point changes and to exploit
dependence analysis. For each component of r̂ we define a separate change propagation
procedure. The arguments to a propagation procedure specify a change to the component.
This change is performed and then the change procedures for all other components that
could be affected by the change are invoked. Static dependence analysis at design-time is
used to determine which constraints could be affected by a change to a given component.

A program scheme for global search with constraint propagation is presented in Figure 6.
The global search design tactic in KIDS first instantiates this scheme, then invokes a tactic
for synthesizing propagation code to satisfy the specification F−split−and−propagate.

CSPs with Horn-like constraints

We now elaborate the previous exposition of propagation of Horn-like constraints arising in
CSPs. To keep matters simple, yet general, suppose that the output datatype R ismap(VAR,
VALSET), where V AR is a type of variables, and V ALSET is a type that denotes a set of
values (this implies that all the variables have the same type and refinement ordering), and
the ⊒ relation has the form:

r̂ ⊒ ŝ iff
∧

v

r̂(v) ⊒ ŝ(v).

Suppose further that ξ is a conjunction of constraints giving bounds on the variables:

ξ(x , r̂ ) ⇐⇒
∧

v

Bv(x , r̂) ⊒ r̂(v)
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Spec Global-Search-Program (T :: Global-Search)

Operations

F-initial-propagate (x : D | I(x))

returns (̂t : R̂ | t̂ = max⊒ {ŝ | top(x) ⊒ ŝ ∧ Î (x , ŝ) ∧ ξ(x , ŝ)})

F-split-and-propagate

(x : D, r̂ : R̂, c : Ĉ

| I(x) ∧ Î (x , r̂ ) ∧ Split−Arg(x , r̂ , c) ∧ ξ(x , r̂) ∧ r̂ 6= bot)

returns (̂t : R̂ | t̂ = max⊒ {ŝ | r̂ ⊒ ŝ ∧ Î (x , ŝ)

∧ Split (x , r̂ , c, ŝ) ∧ ξ(x , ŝ)})

F-gs (x : D, r̂ : R̂ | I(x) ∧ Î (x , r̂) ∧ Φ(x , r̂ ))

returns (z : R | O(x , z ) ∧ Satisfies(z , r̂))

= if ∃(z ) (Extract(z , r̂) ∧ O(x , z ))

then some(z ) (Extract(z , r̂) ∧ O(x , z ))

else some(z ) ∃(c : Ĉ , t̂ : R̂)

(Split−Arg(x , r̂ , c)

∧ t̂ = F-split-and-propagate(x , r̂ , c) ∧ t̂ 6= bot

∧ z = F-gs(x , t̂))

F (x : D | I(x))

returns (z : R | O(x , z ))

= some(z ) ∃(̂t) (̂t = F-initial-propagate(x)

∧ t̂ 6= bot

∧ z = F-gs(x , t̂))

end spec

Figure 6: Global Search Program Theory
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where Bv(x , r̂) is monotonic in r̂ . Under these assumptions, ¬ξ(x , r̂ ) implies that the bound-
ing constraint on some variable v is violated; i.e.

¬Bv(x , r̂) ⊒ r̂(v).

To “fix” such a violation we can change the current valset of v to

Bv(x , r̂) ⊓ r̂(v),

which simultaneously refines r̂(v), since

r̂(v) ⊒ Bv(x , r̂) ⊓ r̂(v)

and reestablishes the constraint on v, since

Bv(x , r̂) ⊒ Bv(x , r̂) ⊓ r̂(v).

Let
B(x , r̂) = {| u→ Bu(x , r̂) ⊓ r̂(u) | u ∈ domain(r̂) |}

then, define f as:
f(x , r̂) = r̂ ⊓B(x , r̂)

Constraint propagation is treated here as iteration of f until a fixed-point is reached. Ef-
ficiency requires that we go farther, since only a sparse subset of the variables in r̂ will
be updated at each iteration. If we implemented the iteration on a vector processor or
SIMD machine, the overall computation could be fast, but wasteful of processors. On a
sequential machine, it is advantageous to analyze the constraints in ξ to infer dependence of
constraints on variables. That is, if (the valset of) variable v changes, which constraints in
ξ could become violated? This dependence analysis can be used to generate special-purpose
propagation code as follows.

For each variable v, let affects(v) be the set of variables whose constraints could be violated
by a change in v; more formally, let

affects(v) = {u | v occurs in Bu }.

We can then generate a set of procedures that carry out the propagation/iteration of f : For
each variable v, generate the following propagation procedure:

Propagatev (x : D, r̂ : R̂, new−valset : V ALSET

| I (x) ∧ Î (x , r̂ )
∧ r̂(v) ❂ new−valset
∧ Bv(x , r̂) ⊒ new−valset)

= let (ŝ : R̂ = map−shadow(r̂ , v, new−valset))

if ¬Î (x, ŝ) then bot

else

. . . for each variable u in affects(v) . . .
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. . . generate the following code block . . .

if ŝ = bot then bot

else (if ¬(Bu(x , ŝ) ⊒ ŝ(u))
then ŝ ← Propagateu(x, ŝ , Bu(x , ŝ) ⊓ ŝ(u)));

. . .

ŝ
end

where map−shadow(r̂ , v, new−valset) returns the map r̂ modified so that r̂(v) = new−valset.

To finish up, if Split(x , r̂ , i, ŝ) has the form

ŝ(u) = C(x , r̂ , i)

for some function C that yields a refined valset for variable u, then we can satisfy F−split−
and−propagate as follows:

F−split−and−propagate(x , r̂ , i) = propagateu(r̂ , C(x , r̂ , i)).

The change to u induced in the call to propagateu will in turn trigger changes to other
variables, and so on.

We have described the generation of constraint propagation in a relatively simple setting.
One of the authors (Westfold) was largely responsible for the development and implemen-
tation of this work. The implementation treats a much broader range of problem features
than has been described above. Further elaborations include

1. Heterogeneous variables (and semilattice/refinement structure)

2. Multiple constraints on each variable

3. Indexed variables

4. Conditional constraints

5. Dynamic set of variables

6. Ordering of constraints in propagation procedures
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There are many ways to implement constraint propagation, this being just one. Our ap-
proach is useful when the affects relation is relatively sparse, so special control code to follow
dependences and fixing violations is efficient. An alternative approach is to reify affects via
explicit links between variables, forming a constraint network. The synthesis of the propa-
gation control strategy is relatively simple, since we only need to follow dependence links.
Disadvantages of this approach include the size of the constraint network and the cost of
maintaining it. This is a common approach in the CSP literature.

Our model of constraint propagation generalizes the concepts of cutting planes in the Op-
erations Research literature [26] and the forms of propagation studied in the constraint
satisfaction literature (e.g. [18]). Our use of fixed-point iteration for constraint propagation
is similar to Paige’s work on fixed-point iteration in RAPTS [8]. The main differences are
(1) RAPTS expects the user to supply the monotone function as part of the initial speci-
fication whereas we derive it from a more abstract statement of the problem; (2) RAPTS
instantiates a straightforward iteration scheme and then performs optimizations. Such an
approach would be too inefficient for scheduling applications, so we use dependence analysis
to generate code that is specific to the constraint system at hand.

Constraint Propagation for Transportation Scheduling

For transportation scheduling, each iteration of the Propagate operation has the following
form, where esti denotes the earliest-start-time for trip i and est′

i
denotes the next value of

the earliest-start-time for trip i (analogously, lsti denotes latest-start-time), and roundtripi
is the roundtrip time for trip i on resource r. For each resource r and the ith trip on r,

est′
i
= max











esti
esti−1 + roundtripi
max−release−time(manifest

i
)

lst′
i
= min











lsti
lsti+1 − roundtripi
min−finish−time(manifest

i
)

Here max−release−time(manifest
i
) computes the max over all of the release times of move-

ment requirements in the manifest of trip i and min−finish−time(manifest
i
) computes the

minimum of the finish times of movement requirements in the same manifest. Boundary
cases must be handled appropriately.

After adding a new movement record to some trip, the effect of Propagate will be to shrink
the

〈earliest−start−time, latest−start−time〉

window of each trip on the same resource. If the window becomes negative for any trip, then
the partial schedule is necessarily infeasible and it can be pruned.

The constraint propagation code generated for TS in Appendix D is nearly as fast as hand-
written propagation code for the same problem (cf. Appendix C in [37]).
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5.2.4 Constraint Relaxation

Many scheduling problems are overconstrained. Overconstrained problems are typically han-
dled by relaxing the constraints. The usual method, known as Lagrangian Relaxation [26],
is to move constraints into the objective function. This entails reformulating the constraint
so that it yields a quantitative measure of how well it has been satisfied.

Another approach is to relax the input data just enough that a feasible solution exists. To
test this approach, we hand-modified one version of KTS so it relaxes the LAD (Latest
Arrival Date) constraint. The relaxation takes place only when there is no feasible solution
to the problem data. KTS keeps track of a quantitative measure of each LAD violation (e.g.
the difference between the arrival date of a trip and the LAD of a movement requirement in
that trip). If there is no feasible reservation for the movement requirement being scheduled,
then KTS uses the recorded information to relax its the LAD. The relaxation is such as to
minimally delay the arrival of the requirement to its POD.

This technique, which we call data relaxation, can be described more generally. Suppose
that we specify a certain constraint to be relaxable. Whenver we detect that the input data
has no feasible solution, we attempt to relax the input data just enough to allow a feasible
solution. Of course, the problem-solving process and data relaxation are interleaved.

At each global search iteration we evaluate this objective function for all candidate solutions.
Using these values the algorithm takes a greedy decision of which branch of the global search
tree should be split next. The result is a heuristically-guided algorithm that finds good but
not necessarily optimal schedules.

It remains an open task to formalize the notion of data relaxation and to develop a tactic
for synthesizing relaxation code in the context of global search with constraint propagation.

5.2.5 Using KIDS

In developing a new scheduling application, most of the user’s time is spent building a
theory of the domain. Our scheduling theories have evolved over months of effort into
50-70 pages of text. It currently takes about 90 minutes to transform our most complex
scheduling specification (for ITAS) into optimized and compiled CommonLisp code for Sun
workstations. Evolution of the scheduler is performed by evolving the domain theory and
specification, followed by regeneration of code.

Currently, the global search deisgn tactic in KIDS is used to design an algorithm for F

and F−gs in Figuregs-scheme. A specialized tactic for generating constraint propagation
code for Horn-like constraints is used to generate code for F-split-and-propagate. Once the
algorithm is designed, then a series of simplification and common-subexpression-elimination
transformations are applied. A trace of the KIDS derivation is given in Appendix D. See
[42] for a detailed description of a session with KIDS.
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Data # of input # of # of scheduled Solution Msec per
Sets TPFDD individual items after time scheduled

(Air only) records (ULNs) movements splitting item

CDART 296 330 0.5 sec 1.5

CSRT01 1,600 1,261 3,557 44 sec 12

096-KS 20,400 4,644 6,183 86 sec 14

9002T Borneo 28,900 10,623 15,119 290 sec 20

Figure 7: KTS Scheduling Statistics

5.3 KTS – Strategic Transportation Scheduling

The KTS schedulers synthesized using the KIDS program transformation system are ex-
tremely fast and accurate [44, 45]. The chart in Figure 7 lists 4 TPFDD problems, and
for each problem (1) the number of TPFDD lines (each requirement line contains up to
several hundred fields), (2) the number of individual movement requirements obtained from
the TPFDD line (each line can specify several individual movements requirements), (3) the
number of movement requirements obtained after splitting (some requirements are too large
to fit on a single aircraft or ship so they must be split), (4) the cpu time to generate a com-
plete schedule, and (5) time spent per scheduled movement. Similar results were obtained
for sea movements. The largest problem, Borneo NEO, is harder to solve, because of the
presence of 29 movement requirements that are inherently unschedulable: their due date
comes before their availability date. Such inconsistencies must be expected and handled by
a realistic system. KTS simply relaxes the due date the minimal amount necessary to obtain
a feasible schedule.

We compared the performance of KTS with several other TPFDD scheduling systems:
JFAST, FLOGEN, DITOPS, and PFE. We do not have access to JFAST and FLOGEN,
but these are (or were) operational tools at AMC (Airlift Mobility Command, Scott AFB).
According to [11] and David Brown (retired military planner consulting with the Planning
Initiative), on a typical TPFDD of about 10,000 movement records, JFAST takes several
hours and FLOGEN about 36 hours. KTS on a TPFDD of this size will produce a detailed
schedule in one to three minutes. So KTS seems to be a factor of about 25 times faster
than JFAST and over 250 times faster than FLOGEN. The currently operational ADANS
system reportedly runs at about the same speed as FLOGEN. When comparing schedulers
it is also important to compare the transportation models that they support. KTS has a
richer model than JFAST (i.e. handles more constraints and problem features), but less rich
than ADANS. The ITAS effort described in the next section reflects our efforts to synthesize
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schedulers that have at least the richness of the ADANS model.

The DITOPS project at CMU also models scheduling as a constraint satisfaction problem.
However, DITOPS effectively interprets its problem constraints, whereas the transforma-
tional approach can produce highly optimized “compiled” constraint operations. DITOPS
emphasizes complex heuristics for guiding the search away from potential bottlenecks. In
contrast KTS uses simple depth-first search but emphasizes the use of strong and extremely
fast pruning and constraint propagation code. DITOPS requires minutes to solve the CDART
data. KTS finds a complete feasible solution in 0.5 seconds.

Comparison with PFE (Prototype Feasibility Estimator, built by BBN based on the Trans-
portation Feasibility Estimator system): On the MEDCOM-SITUATION from the CPE
(Common Prototype Environment), KTS is about 5 times faster than PFE and produces a
SEA schedule with only 14% of the delay of the PFE schedule. KTS also produces a far
more accurate estimate of the planes needed to handle the AIR movements, since PFE is
only estimating feasibility whereas KTS produces a detailed schedule.

In our Strategic TPFDD scheduler KTS, we explored issues of speed and embedding KTS
into an easy-to-use GUI, complete with ability to edit the data model (TPFDD, resource
classes and instances, and port models), to schedule, apply various analysis tools, and to
dynamically reschedule. KTS is available from Kestrel via ftp to participants in the PI.

5.4 ITAS – In-Theater Airlift Scheduler

In 1994 we began to develop a scheduler to support PACAF (Pacific Air Force) at Hickham
AFB, Honolulu which is tasked with in-theater scheduling of a fleet of 26 C-130 cargo aircraft
in the Pacific region. Several variants of a theater scheduler, called ITAS for In-Theater
Airlift Scheduler, have been developed to date, and more are planned. The system runs
on laptop computers (Apple Powerbook). The interface to ITAS and integration with a
commercial database package have been developed by BBN. Users enter information about
movement requirements, available resources, port features, etc. and ITAS automatically
generates a schedule, displayed in a gantt-like “rainbow” chart. The schedule can also be
printed in the form of ATO’s (Air Tasking Orders).

The ITAS schedulers have emphasized flexibility and rich constraint modeling. The version
of ITAS installed at PACAF in February 1995 simultaneously schedules the following types
of resources:

1. aircraft

2. aircrews and their duty day cycles

3. ground crews for unloading

4. parking space at ports

each of which may have a variety of attendant constraints and problem features.
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6 Classification Approach to Algorithm Design

In this section we introduce a new knowledge-based approach to algorithm design. We have
been developing it in order to support the incremental application of problem-solving meth-
ods to scheduling problems. Our techniques enable us to integrate at a deep semantic level
problem-solving methods from Computer Science (e.g. divide-and-conquer, global search),
Artificial Intelligence (e.g. heuristic search, constraint propagation, neural nets), and Op-
erations Research (e.g. Simplex, integer programming, network algorithms). Furthermore
these techniques have applications far wider than algorithm design, since they apply to the
incremental application of any kind of knowledge formally represented in a hierarchy.

6.1 Technical Foundations – Theories

A theory (i.e. first-order theory presentation) defines a language and constrains the possible
meanings of its symbols by axioms and inference rules. Theories can be used to express
many kinds of software-related artifacts, including domain models [49], formal requirements
[3, 10, 27, 29], programming languages [6, 15, 19], abstract data types and modules [10, 14,
17], and abstract algorithms [43]. There has been much work on operations for constructing
larger theories from smaller theories [3, 7, 30].

A theory morphism translates the language of one theory into the language of another theory
in a way that preserves theorems. Theory morphisms underlie several aspects of software
development, including specification refinement and datatype implementation [5, 27, 30, 51],
the binding of parameters in parameterized theories [9, 15], algorithm design [22, 43, 52],
and data structure design [32]. There has been work on techniques for composing implemen-
tations in a way that reflects the structure of the source specification [3, 30]; however these
composition techniques leave open the problem of constructing primitive morphisms.

Theories together with their morphisms define a category.

6.2 Refinement Hierarchy and the Ladder Construction

Abstract programming knowledge can be represented by theories. For example, we showed
how to represent divide-and-conquer [33], global search (binary search, backtrack, branch-
and-bound) [34], and local search (hillclimbing) [22] as theories. The same approach can be
applied to data structures [5], architectures [16], and graphical displays (e.g. Gantt charts).

A collection of problem-solving methods can be organized into a refinement hierarchy using
theory morphisms as the refinement arrow [43]. See Figure 6.2. The question emerges of how
to access and apply knowledge in such a hierarchy. The answer is illustrated in the “ladder
construction” diagram in Figure 9.

The left-hand side of the ladder is a path in the refinement hierarchy of algorithm theories
starting at the root (Problem Theory). Spec0 is a given specification theory of a problem.
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Figure 8: Refinement Hierarchy of Algorithms
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The ladder is constructed a rung at a time from the top down. The initial arrow (theory mor-
phism) from problem theory to Spec0 is trivial. Subsequent rungs are constructed abstractly
as follows:

Pi

mi

> Si

Ii

∨ ∨
Pi+1

m′
i+1

> Pi+1 ⊕ Si

❍❍❍❍❍❍
mi+1

❍❍❍❍❍❍❥

❅
❅
❅ m′′

i+1

❅
❅
❅❘
Si+1

where Pi+1 ⊕ Si is the pushout theory (shared union) and Si+1 is an extension of Si deter-
mined by constructing the theory morphism m ′′

i+1. The morphism mi+1 is determined by
composition.

6.3 Constructing Theory Morphisms

Constructing the pushout theory is straightforward. The main issue arising from this ladder
construction is how to construct the theory morphismm′′

i+1 from the pushout theory to Si+1

(an extension of Si). We formalized four basic methods for constructing theory morphisms
last year, by analyzing the algorithm design tactics in KIDS [39]. Two of the techniques are
well-known or obvious. However we identified two new general techniques for constructing
theory morphisms: unskolemization and connections between theories. Roughly put, un-
skolemization works in the following way. A theory morphism from theory A to theory B is
based on a signature morphism which is a map from the symbols of A to the symbols of B.
A theory morphism is signature morphism in which the axioms of A translate to theorems of
B. Suppose that during a design process we have somehow managed to construct a partial
signature morphism – only some of the symbols of A have a translation as symbols of B. The
question is how to derive a translation of the remaining symbols of A. The unskolemization
technique uses the axioms of A and deductive inference to solve for appropriate translations
of these symbols. As a simple example, suppose that function symbol f is untranslated and
that it is the only untranslated symbol in an axiom ∀(x)G[f(x)] of A. We unskolemize f

by replacing its occurrence(s) with a fresh existentially quantified variable: ∀(x)∃(z)G[z].
This unskolemized axiom can now be translated and we can attempt to prove it in theory
B. A proof yields a witness for the existential that is a term that depends on x. This term
can serve as the translation of f knowing that such a translation preserves the theoremhood
of the considered axiom. We may need to verify other axioms involving f to assure the
appropriateness of the derived translation.
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This technique underlies the problem reduction family of algorithms and tactics in KIDS.
For example, in constructing a divide-and-conquer algorithm we need to find translations
of decompose, solve, and compose operators. The tactic works by letting the user select
a standard decomposition operator from a library (or dually, selecting a standard compose
operator) and then using unskolemization on a “soundness axiom” that relates decompose
and compose. The unskolemized soundness axiom can then be proved in the given problem
theory to yield a specification of the compose (resp. decompose) operator. To be more
specific, if we are deriving a divide-and-conquer algorithm for the sorting problem, then we
want to construct a theory morphism from divide-and-conquer theory into sorting theory.
We might choose a standard decompose operator for input sequences, say split-a-sequence-
in-half, and the unskolemization technique leads to a derivation of a specification for the
usual merge operation as the translation of compose. The result is a mergesort algorithm.
Other choices leads to quicksort, selection sorts, and insertion sorts [33].

Sometimes the axioms of a theory are too complex to allow direct application of unskolem-
ization. This situation arises in the theory of global and local search algorithms. We have
discovered and developed recently the concept of connection between theories which underlies
and generalizes our correct but somewhat ad-hoc solution to this problem in the global and
local search design tactics. The general result regarding connections between theories is this:
Suppose that there is a theory T from which we want to construct a theory morphism into
a given application domain theory B. If there is a (preexisting) theory morphism from T to
a library theory A and we can construct a connection from A to B, then we immediately
have a theory morphism from T to B. So connections between theories are a way to adapt
a library T -theory to a new, but related problem.

The concept of connection between theories relies on several ideas. The sorts of a theory
are all interpreted as posets (including booleans) and furthermore the set of sorts itself is a
poset (under the subsort partial order). A collection of “polarity rules” are used to express
(anti-)monotonicity properties of the functions and predicates of a theory. For example,
size({x | ¬P}) is monotonic in {x | ¬P} but antimonotonic in P ; so if Q =⇒ P then
size({x | ¬P}) ≤ size({x | ¬Q}). These polarity rules are used to analyze the axioms of a
theory and then to set up various connection conditions between the corresponding operators
of theories A and B – these conditions directly generalize the conditions of a homomorphism.
Furthermore the polarity analysis is used to direct conversion maps between corresponding
sorts of A and B. Given these conditions and conversion maps it can in general be shown
that the axioms of A imply the corresponding axioms of B, thus establishing the theory
morphism.

We have prototyped this classification approach and have tested it on some simple problems.
Steve Westfold built a graphical interface to the refinement hierarchy that allows graphical
navigation of it and incremental application. Jim McDonald developed a simple Theory
Interpretation Construction Interface that supports the development of views (theory inter-
pretations or morphisms). It shows source and target theory presentations and the current
(possibly partial) view between them. Users have several tools to support the completion
of a view, including typing in translations for various source theory symbols and using “un-
skolemization” (one of the four basic methods mentioned above). We demonstrated the
use of this system to develop a view from divide-and-conquer theory into a simple problem
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theory. A more complete implementation of these techniques is underway in the Specware
system at Kestrel [50].

7 Concluding Remarks

Our original conception of the scheduling effort has evolved in significant ways. Our 1991
demonstration system was based on use of a general-purpose object base manager and the
compilation of declarative constraints into object base demons. We also used a Simplex
code to check feasibility of start-times in a generated schedule. The results were somewhat
disappointing in that for the CDART problem we obtained from CMU, our first code couldn’t
solve it running overnight, and our second code could only solve most of it using several
minutes time. The derived scheduler described in this paper finds a complete feasible solution
to the same problem in less than one second.

Since speed is of the essence during the scheduling process and the object base and Simplex
algorithm are problem-independent, it seemed wise to exploit our transformational tech-
niques to try to derive codes that are problem-specific and highly efficient. Rather than
compile constraints onto an active database, we now derive pruning mechanisms and con-
straint propagation code operating on problem-specific data structures. Rather than use a
Simplex algorithm for finding feasible start-times, the constraint propagation code maintains
feasible start-times throughout the scheduling process. The advantage of our approach is
the ability to expose problem structure and exploit it by transformationally deriving efficient
problem-specific code.
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A Relation-based Domain Theory for Transportation

Scheduling

The following text is the theory of transportation scheduling within which we derived our
scheduler. It is expressed in a slight extension of the Refine language. Since Refine uses
fairly standard notations for set-theoretic datatypes and first-order logic, most of this text
should be generally comprehensible. For more details on domain theories and notation see
[42].

This problem theory is based on a schedule as a simple set of reservations:

schedule : set(movement−record× resource× time)

THEORY TRANSPORTATION-SCHEDULING

THEORY-IMPORTS {}

THEORY-TYPES

type movement-type = symbol

type time = integer

type port = symbol

type movement-record =

tuple(move-type : movement-type,

quantity : integer,

release-date : time,

due-date : time,

poe : port,

pod : port,

mode : symbol,

stons : integer,

mtons : integer)

type reservation =

tuple(move-rec : movement-record,

asset : resource,

start-time : time)

type resource =

tuple(pax-capacity : integer,

cargo-capacity : integer,

class : symbol,
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travel-rate : integer)

%---------------------------------------------------------------------------

THEORY-OPERATIONS

function DURATION ( res : reservation | true )

= distance(POE(res), POD(res)) / travel-rate(asset(res))

function TRIP-MOVE-RECS ( sched : set(reservation), res : reservation

| res in sched )

= { move-rec(r) | (r : reservation)

r in sched

& asset(r) = asset(res)

& start-time(r) = start-time(res) }

function PAX-MOVE-RECS ( sched : set(reservation), res : reservation

| res in sched )

= filter( lambda(mvr) move-type(mvr) = ’PAX,

trip-move-recs(sched, res))

function CARGO-MOVE-RECS ( sched : set(reservation), res : reservation

| res in sched )

= filter( lambda(mvr) move-type(mvr) ~= ’PAX,

trip-move-recs(sched, res))

constant cargo-mode-table : map(tuple(movement-type, mode-type), set(resource-class))

= {|

<’pax, ’air> -> {’C5, ’C141, ’KC10},

<’bulk-movement, ’air> -> {’C5, ’C141, ’KC10},

<’ovr-movement, ’air> -> {’C5, ’C141},

<’out-movement, ’air> -> {’C5},

<’pol, ’air> -> {},

<’pax, ’sea> -> {’Breakbulk, ’Containership, ’Lash, ’Ro-ro, ’Sea-barge},

<’bulk-movement, ’sea> -> {’Breakbulk, ’Containership, ’Lash, ’Ro-ro, ’Sea-barge},

<’ovr-movement, ’sea> -> {’Breakbulk, ’Containership, ’Lash, ’Ro-ro, ’Sea-barge},

<’out-movement, ’sea> -> {’Breakbulk, ’Containership, ’Lash, ’Ro-ro, ’Sea-barge},

<’pol, ’sea> -> {’Large-tanker, ’Medium-tanker, ’Small-tanker}

|}

function Consistent-POE

( sched : set(reservation) )

= fa (res1 : reservation, res2 : reservation)

( res1 in sched & res2 in sched

& asset(res1) = asset(res2)

42



& start-time(res1) = start-time(res2)

=>

POE(move-rec(res1)) = POE(move-rec(res2)) )

function Consistent-POD

( sched : set(reservation) )

= fa (res1 : reservation, res2 : reservation)

( res1 in sched & res2 in sched

& asset(res1) = asset(res2)

& start-time(res1) = start-time(res2)

=>

POD(move-rec(res1)) = POD(move-rec(res2)) )

function Consistent-Release-Times

(sched : set(reservation) )

= fa (res : reservation)

( res in sched

=>

release-date(move-rec(res)) <= start-time(res) )

function Consistent-Due-Times

(sched : set(reservation) )

= fa (res : reservation, mvr : movement-record)

( res in sched

=>

start-time(res) + duration(res) <= due-date(move-rec(res)) )

function Consistent-Movement-Type-and-Resource

(sched : set(reservation) )

= fa (res : reservation, mvr : movement-record)

( res in sched & mvr = move-rec(res)

=>

class(asset(res)) in cargo-mode-table(movetype(mvr),mode(mvr)) )

function Consistent-Trip-Separation

(sched : set(reservation) )

= fa (res1 : reservation, res2 : reservation)

( res1 in sched & res2 in sched

& res1 ~= res2

& asset(res1) = asset(res2)

=>

start-time(res1) = start-time(res2)

or start-time(res1) + 2 * duration(res1) <= start-time(res2)

or start-time(res2) + 2 * duration(res2) <= start-time(res1) )

function Consistent-Pax-Resource-Capacity
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(sched : set(reservation) )

= fa (res : reservation)

( res in sched

=>

reduce(+, image(quantity, pax-move-recs(sched, res)))

<= pax-capacity(asset(res)) )

function Consistent-Cargo-Resource-Capacity

(sched : set(reservation) )

= fa (res : reservation)

( res in sched

=>

reduce(+, image(quantity, cargo-move-recs(sched, res)))

<= cargo-capacity(asset(res)) )

function Available-Resources-Used

(assets : set(resource), sched : set(reservation) )

= fa (res : reservation)

( res in sched

=>

resource(res) in assets )

function All-mvrs-Scheduled

(mvrs : set(movement-record), sched : set(reservation))

= fa (mvr : movement-record)

( mvr in mvrs

=>

ex!(res : reservation)

(res in sched & mvr = move-rec(res)) )

function SCHEDULE-MOVEMENT-RECORDS

(mvrs : seq(movement-record),

assets : set(resource)

| true)

returns ( sched : set(reservation)) |

Consistent-POE(sched)

& Consistent-POD(sched)

& Consistent-Release-Times(sched)

& Consistent-Due-Times(sched)

& Consistent-Movement-Type-and-Resource(sched)

& Consistent-Trip-Separation(sched)

& Consistent-Pax-Resource-Capacity(sched)

& Consistent-Cargo-Resource-Capacity(sched)

& Available-Resources-Used(assets, sched)
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& All-mvrs-Scheduled(mvrs, sched)

)

%---------------------------------------------------------------------------

THEORY-LAWS

assert extension-of-movement-type

fa(mt : movement-type)

mt in {’pax, ’bulk-movement, ’ovr-movement, ’out-movement, ’pol}

...

end-theory
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B Map-based Domain Theory for Transportation Schedul-

ing

The following text is the theory of transportation scheduling within which we derived our
scheduler. It is expressed in a slight extension of the Refine language. Since Refine uses
fairly standard notations for set-theoretic datatypes and first-order logic, most of this text
should be generally comprehensible. For more details on domain theories and notation see
[42].

This theory represents the bulk of the work needed to derive the scheduler. Subsequent
variations and elaborations should be much easier due to reuse of the concepts and laws
stated here.

THEORY TRANSPORTATION-SCHEDULING-CP

THEORY-IMPORTS {SEQUENCES-AS-MAPS, TS-RESOURCES}

THEORY-TYPES

type RESOURCE =

tuple(res-name : symbol,

pax-capacity : integer,

cargo-capacity : integer,

res-class : resource-class,

travel-rate : integer)

type MOVEMENT-RECORD =

tuple(move-type : movement-type,

quantity : integer,

release-date : time,

due-date : time,

poe : port,

pod : port,

distance : integer,

mode : symbol)

type resource-name = symbol

type TRIP =

tuple(poe : port,

pod : port,

start-time : time,

trip-duration : integer,

manifest : seq(movement-record)
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)

type P-TRIP =

tuple(poe : port,

pod : port,

earliest-start-time : time,

latest-start-time : time,

p-trip-duration : integer,

manifest : seq(movement-record)

)

type SCHEDULE = map( resource-name, seq(trip) )

type P-SCHEDULE = map( resource-name, seq(p-trip) )

THEORY-OPERATIONS

function EMPTY-INVERSE-MAP

(dom : seq(resource-name))

: p-schedule

= {| x -> [] | (x : resource-name) x in dom |}

function INVERSE-MAP-APPEND

(ps : p-schedule,

r : resource-name,

trp : p-trip)

: p-schedule

= {| x -> ps(x) ++ [trp | () x = r] | (x : resource-name) x in domain(ps) |}

function INVERSE-MAP-WITH!

(ps : p-schedule,

r : resource-name,

trp : p-trip,

mvr : movement-record

| trp in ps(r))

: p-schedule

= {| r-var -> [<emb, deb,

(if r = r-var & trp = trp-var

then max(est, mvr.release-date) else est),

(if r = r-var & trp = trp-var

then min(lst,

mvr.due-date - duration(mvr.distance, *resource-map*(r-var))

else lst),

dur,

(if r = r-var & trp = trp-var then prepend(mani, mvr)

else mani)>

| (emb : port, deb : port,
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est : time, lst : time,

trp-var : p-trip, dur : integer,

mani : seq(movement-record))

trp-var in ps(r-var)

& emb = trp-var.poe

& deb = trp-var.pod

& est = trp-var.earliest-start-time

& lst = trp-var.latest-start-time

& dur = trp-var.p-trip-duration

& mani = trp-var.manifest ]

| (r-var : resource-name) r-var in domain(ps) |}

% other input conditions needed (e.g. matching poe, pod, est, lst per trip)

% also, need to combine the est and lst intervals

function INVERSE-MAP-UNION!

(ps : p-schedule,

qs : p-schedule

| domain(ps) = domain(qs))

: p-schedule

= {| x -> [<emb, deb, est, lst, dur,

( ps(x)(trp-var).manifest ++ qs(x)(trp-var).manifest)>

| (emb : port, deb : port,

est : time, lst : time, dur : integer,

trp-var : integer)

trp-var in [1 .. size(ps(x))]

& emb = ps(x)(trp-var).poe

& deb = ps(x)(trp-var).pod

& est = ps(x)(trp-var).earliest-start-time

& lst = ps(x)(trp-var).latest-start-time

& dur = ps(x)(trp-var).p-trip-duration]

| (x:resource-name) x in domain(ps) |}

% the extracted schedule uses the earliest-start-time as the start-time

% for each trip. This of course is arbitrary.

function EXTRACT-A-SCHEDULE

(p-sched : p-schedule) : schedule

= {| r -> [ <p-trp.poe,

p-trp.pod,

p-trp.earliest-start-time,

p-trp.p-trip-duration,

p-trp.manifest>

| (p-trp : p-trip) p-trp in p-sched(r) ]

| (r : resource-name) r in domain(p-sched)

|}
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function INVERSE-MAP?

(assets : seq(resource-name),

ps : p-schedule

| domain(ps) = assets): boolean

= fa(r1 : resource-name, r2 : resource-name, trp1 : p-trip, trp2 : p-trip)

(r1 in assets & r2 in assets & r1 ~= r2

& trp1 in ps(r1) & trp2 in ps(r2)

=> disjoint(seq-to-set(trp1.manifest), seq-to-set(trp2.manifest)))

&

fa(r : resource-name, trp1 : p-trip, trp2 : p-trip)

(r in assets

& trp1 in ps(r) & trp2 in ps(r) & trp1 ~= trp2

=> disjoint(seq-to-set(trp1.manifest), seq-to-set(trp2.manifest)))

function INVERSE-MAP-SATISFIES

(sched : schedule,

p-sched : p-schedule) : boolean

= ( domain(p-sched) = domain(sched)

& fa(r : resource-name, trp : integer)

( r in domain(p-sched)

& trp in [1 .. size(p-sched(r))]

=>

( p-sched(r)(trp).manifest subset sched(r)(trp).manifest

& p-sched(r)(trp).poe = sched(r)(trp).poe

& p-sched(r)(trp).pod = sched(r)(trp).pod

& p-sched(r)(trp).p-trip-duration = sched(r)(trp).trip-duration

& p-sched(r)(trp).earliest-start-time <= sched(r)(trp).start-time

& sched(r)(trp).start-time <= p-sched(r)(trp).latest-start-time

)))

function seq-extends?(s1: seq(-alpha), s2: seq(-alpha)): boolean =

[.., $s2] = s1

% test if q-sched is a refinement of p-sched

function LESS-CONSTRAINED-THAN

(p-sched : p-schedule,

q-sched : p-schedule) : boolean

= ( domain(p-sched) subset domain(q-sched)

& fa(r : resource-name)

( r in domain(p-sched)

=> size(p-sched(r)) <= size(q-sched(r))

& fa(trp : integer)

(trp in [1 .. size(p-sched(r))]

=>

( seq-extends?(q-sched(r)(trp).manifest,

p-sched(r)(trp).manifest)
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& p-sched(r)(trp).earliest-start-time

<= q-sched(r)(trp).earliest-start-time

& q-sched(r)(trp).latest-start-time

<= p-sched(r)(trp).latest-start-time

)))

)

%%%%%%%%%%%%% Properties of Schedules %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function CONSISTENT-POE

( sched : schedule) : boolean

= fa (rsrc : resource-name, trp : integer, mvr : movement-record)

( rsrc in domain(sched) & trp in [1 .. size(sched(rsrc))]

& mvr in sched(rsrc)(trp).manifest

=>

mvr.poe = sched(rsrc)(trp).poe )

function CONSISTENT-POD

( sched : schedule) : boolean

= fa (rsrc : resource-name, trp : integer, mvr : movement-record)

( rsrc in domain(sched) & trp in [1 .. size(sched(rsrc))]

& mvr in sched(rsrc)(trp).manifest

=>

mvr.pod = sched(rsrc)(trp).pod )

function CONSISTENT-RELEASE-TIMES

(sched : schedule) : boolean

= fa (rsrc : resource-name, trp : integer, mvr : movement-record)

( rsrc in domain(sched)

& trp in [1 .. size(sched(rsrc))]

& mvr in sched(rsrc)(trp).manifest

=>

mvr.release-date <= sched(rsrc)(trp).start-time )

function CONSISTENT-DUE-TIMES

(sched : schedule) : boolean

= fa (rsrc : resource-name, trp : integer, mvr : movement-record)

( rsrc in domain(sched)

& trp in [1 .. size(sched(rsrc))]

& mvr in sched(rsrc)(trp).manifest

=>

sched(rsrc)(trp).start-time

<= (mvr.due-date - sched(rsrc)(trp).trip-duration) )

50



function CONSISTENT-TRIP-SEPARATION

(sched : schedule) : boolean

= fa (rsrc : resource-name, trp : integer)

( rsrc in domain(sched)

& trp in [1 .. size(sched(rsrc)) - 1]

=>

sched(rsrc)(trp).start-time + 2 * sched(rsrc)(trp).trip-duration

<= sched(rsrc)(trp + 1).start-time )

function pax-resource-used-in-mvrs

(mvrs : seq(movement-record)) : integer

= reduce(+, image(lambda(mvr: movement-record) mvr.quantity,

filter( lambda(mvr) mvr.move-type = ’pax, mvrs)))

function CONSISTENT-PAX-RESOURCE-CAPACITY

(sched : schedule) : boolean

= fa (rsrc : resource-name, trp : integer)

( rsrc in domain(sched) & trp in [1 .. size(sched(rsrc))]

=>

pax-resource-used-in-mvrs(sched(rsrc)(trp).manifest)

<= *resource-map*(rsrc).pax-capacity )

function cargo-resource-used-in-mvrs

(mvrs : seq(movement-record)) : integer

= reduce(+, image(lambda(mvr: movement-record) mvr.quantity,

filter( lambda(mvr) mvr.move-type ~= ’pax, mvrs)))

function CONSISTENT-CARGO-RESOURCE-CAPACITY

(sched : schedule) : boolean

= fa (rsrc : resource-name, trp : integer)

( rsrc in domain(sched) & trp in [1 .. size(sched(rsrc))]

=>

cargo-resource-used-in-mvrs(sched(rsrc)(trp).manifest)

<= *resource-map*(rsrc).cargo-capacity )

function CONSISTENT-MOVEMENT-TYPE-AND-RESOURCE

(sched : schedule) : boolean

= fa (rsrc : resource-name, trp : integer, mvr : movement-record)

( rsrc in domain(sched) & trp in [1 .. size(sched(rsrc))]

& mvr in sched(rsrc)(trp).manifest

=>

*resource-map*(rsrc).res-class

in cargo-mode-table(mvr.move-type, mvr.mode) )
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function AVAILABLE-RESOURCES-USED

(assets : seq(resource-name), sched : schedule) : boolean

= domain(sched) subset seq-to-set(assets)

% need inverse map operations to help express

% that the domain of the inverse map is exactly mvrs

function SCHEDULED-MVRS

(sched : schedule) : set(movement-record)

= seq-to-set(reduce(concat,

image(lambda(x: trip) x.manifest,

reduce(concat, range(sched)))))

function TS

(mvrs : seq(movement-record),

assets : seq(resource-name)

| true)

returns ( sched : map( resource-name, seq(trip) ) |

Consistent-POE(sched)

& Consistent-POD(sched)

& Consistent-Release-Times(sched)

& Consistent-Due-Times(sched)

& Consistent-Trip-Separation(sched)

& Consistent-Pax-Resource-Capacity(sched)

& Consistent-Cargo-Resource-Capacity(sched)

& Consistent-Movement-Type-and-Resource(sched)

& Available-Resources-Used(assets, sched)

& Scheduled-mvrs(sched) = seq-to-set(mvrs)

)

%%%%%%%%%%%%%%% Properties of P-Schedules %%%%%%%%%%%%%%%%%%%%%%%%%%

function P-CONSISTENT-POE ( p-sched : p-schedule) : boolean

= fa (rsrc : resource-name, trp : integer, mvr : movement-record)

( rsrc in domain(p-sched) & trp in [1 .. size(p-sched(rsrc))]

& mvr in p-sched(rsrc)(trp).manifest

=>

mvr.poe = p-sched(rsrc)(trp).poe )

function P-CONSISTENT-POD
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( p-sched : p-schedule) : boolean

= fa (rsrc : resource-name, trp : integer, mvr : movement-record)

( rsrc in domain(p-sched) & trp in [1 .. size(p-sched(rsrc))]

& mvr in p-sched(rsrc)(trp).manifest

=>

mvr.pod = p-sched(rsrc)(trp).pod )

function P-CONSISTENT-RELEASE-TIMES

(p-sched : p-schedule) : boolean

= fa (rsrc : resource-name, p-trp : integer, mvr : movement-record)

( rsrc in domain(p-sched)

& p-trp in [1 .. size(p-sched(rsrc))]

& mvr in p-sched(rsrc)(p-trp).manifest

=>

mvr.release-date <= p-sched(rsrc)(p-trp).earliest-start-time )

function P-CONSISTENT-DUE-TIMES

(p-sched : p-schedule) : boolean

= fa (rsrc : resource-name, p-trp : integer, mvr : movement-record)

( rsrc in domain(p-sched)

& p-trp in [1 .. size(p-sched(rsrc))]

& mvr in p-sched(rsrc)(p-trp).manifest

=>

p-sched(rsrc)(p-trp).latest-start-time

<= (mvr.due-date - p-sched(rsrc)(p-trp).p-trip-duration))

% the trick is to derive and enforce this invariant

function P-CONSISTENT-TRIP-SEPARATION-EST

(ps :p-schedule) : boolean

= fa (rsrc : resource-name, trp : integer)

( rsrc in domain(ps) & trp in [1 .. size(ps(rsrc)) - 1]

=> ps(rsrc)(trp).earliest-start-time

+ 2 * ps(rsrc)(trp).p-trip-duration

<= ps(rsrc)(trp + 1).earliest-start-time )

function P-CONSISTENT-TRIP-SEPARATION-LST

(ps :p-schedule) : boolean

= fa (rsrc : resource-name, trp : integer)

( rsrc in domain(ps) & trp in [1 .. size(ps(rsrc)) - 1]

=> ps(rsrc)(trp).latest-start-time

<= ps(rsrc)(trp + 1).latest-start-time

- 2 * ps(rsrc)(trp).p-trip-duration)

function PAX-RESOURCE-USED-IN-MVRS
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(mvrs : seq(movement-record)) : integer

= reduce(+, image(lambda(mvr: movement-record) mvr.quantity,

filter( lambda(mvr) mvr.move-type = ’Pax, mvrs)))

function P-CONSISTENT-PAX-RESOURCE-CAPACITY

(p-sched : p-schedule) : boolean

= fa (rsrc : resource-name, trp : integer)

( rsrc in domain(p-sched) & trp in [1 .. size(p-sched(rsrc))]

=> %p-sched(rsrc)(trp).pax-used

pax-resource-used-in-mvrs(p-sched(rsrc)(trp).manifest)

<= *resource-map*(rsrc).pax-capacity )

function P-CONSISTENT-CARGO-RESOURCE-CAPACITY

(p-sched : p-schedule) : boolean

= fa (rsrc : resource-name, trp : integer)

( rsrc in domain(p-sched) & trp in [1 .. size(p-sched(rsrc))]

=>

% p-sched(rsrc)(trp).cargo-used

cargo-resource-used-in-mvrs(p-sched(rsrc)(trp).manifest)

<= *resource-map*(rsrc).Cargo-capacity )

function P-CONSISTENT-MOVEMENT-TYPE-AND-RESOURCE

(p-sched : p-schedule) : boolean

= fa (rsrc : resource-name, trp : integer, mvr : movement-record)

( rsrc in domain(p-sched) & trp in [1 .. size(p-sched(rsrc))]

& mvr in p-sched(rsrc)(trp).manifest

=>

*resource-map*(rsrc).res-class

in cargo-mode-table(mvr.move-type, mvr.mode) )

function P-AVAILABLE-RESOURCES-USED

(assets : seq(resource-name), p-sched : p-schedule) : boolean

= fa (rsrc : resource-name) ( rsrc in domain(p-sched) => rsrc in assets)

function P-SCHEDULED-MVRS

(p-sched : p-schedule) : set(movement-record)

= seq-to-set(reduce(concat, image(lambda(x: p-trip) x.manifest,

reduce(concat, range(p-sched)))))

function ALL-MVRS-P-SCHEDULED

(mvrs : set(movement-record),

p-sched : p-schedule) : boolean

= p-scheduled-mvrs(p-sched) = mvrs

function P-CONSISTENT-TIME-INTERVALS

(p-sched : p-schedule) : boolean
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= fa(r : resource-name, trp : p-trip)

(r in domain(p-sched)

& trp in p-sched(r)

=> trp.earliest-start-time <= trp.latest-start-time)

THEORY-LAWS

assert definedness-of-empty-inverse-map

fa(assets)( defined?(empty-inverse-map(assets)) = defined?(assets))

assert universal-lower-bound-of-less-constrained-than

fa(a,b)( less-constrained-than(empty-inverse-map(a), b) = true )

assert EXTRACT-A-SCHEDULE-PRODUCES-AN-INSTANCE-OF-INVERSE-MAP

fa(ps)( inverse-map-satisfies(extract-a-schedule(ps),ps) = true )

assert INVERSE-MAP-SATISFIES-IMPLIES-P-CONSISTENT-TIME-INTERVALS

fa(sched, ps)( inverse-map-satisfies(sched, ps)

=> p-consistent-time-intervals(ps))

assert CONSISTENT-POE-to-P-CONSISTENT-POE

fa(S,PS)( inverse-map-satisfies(S,PS)

=> (Consistent-POE(S) => P-Consistent-POE(PS)) )

assert CONSISTENT-POD-to-P-CONSISTENT-POD

fa(S,PS)( inverse-map-satisfies(S,PS)

=> (Consistent-POD(S) => P-Consistent-POD(PS)) )

assert CONSISTENT-PAX-RESOURCE-CAPACITY-to-P-CONSISTENT-PAX-RESOURCE-CAPACITY

fa(S,PS)( inverse-map-satisfies(S,PS)

=> (CONSISTENT-PAX-RESOURCE-CAPACITY(S)

=> P-CONSISTENT-PAX-RESOURCE-CAPACITY(PS)) )

assert CONSISTENT-CARGO-RESOURCE-CAPACITY-to-P-CONSISTENT-CARGO-RESOURCE-CAPACITY

fa(S,PS)( inverse-map-satisfies(S,PS)

=> (CONSISTENT-CARGO-RESOURCE-CAPACITY(S)

=> P-CONSISTENT-CARGO-RESOURCE-CAPACITY(PS)) )

assert CONSISTENT-MOVEMENT-TYPE-AND-RESOURCE-to-P-CONSISTENT-MOVEMENT-TYPE-AND-RESOURCE

fa(S,PS)( inverse-map-satisfies(S,PS)

=> (CONSISTENT-MOVEMENT-TYPE-AND-RESOURCE(S)

=> P-CONSISTENT-MOVEMENT-TYPE-AND-RESOURCE(PS)) )
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assert AVAILABLE-RESOURCES-USED-to-P-AVAILABLE-RESOURCES-USED

fa(assets,S,PS)

( inverse-map-satisfies(S,PS)

=> ( AVAILABLE-RESOURCES-USED(assets,S)

=> P-AVAILABLE-RESOURCES-USED(assets,PS)) )

assert SCHEDULED-MVRS-to-P-SCHEDULED-MVRS

fa(S,PS)( inverse-map-satisfies(S,PS)

=> (SCHEDULED-MVRS(S) => P-SCHEDULED-MVRS(PS)) )

assert CONSISTENT-RELEASE-TIMES-to-P-CONSISTENT-RELEASE-TIMES

fa(PS)( fa(S)(inverse-map-satisfies(S,PS) => CONSISTENT-RELEASE-TIMES(S))

=> P-CONSISTENT-RELEASE-TIMES(PS))

assert CONSISTENT-DUE-TIMES-to-P-CONSISTENT-DUE-TIMES

fa(PS)( fa(S)(inverse-map-satisfies(S,PS) => CONSISTENT-DUE-TIMES(S))

=> P-CONSISTENT-DUE-TIMES(PS))

assert CONSISTENT-TRIP-EST-AND-LST-SEPARATION-to-P-CONSISTENT-TRIP-SEPARATION

fa(PS)( fa(S)(INVERSE-MAP-SATISFIES(S, PS) => CONSISTENT-TRIP-SEPARATION(S))

=>

(P-CONSISTENT-TRIP-SEPARATION-EST(PS) & P-CONSISTENT-TRIP-SEPARATION-LST(PS)))

assert CONSISTENT-POE-over-extract

fa(S,PS)( Consistent-POE(extract-a-schedule(ps)) = P-Consistent-POE(PS) )

assert CONSISTENT-POD-over-extract

fa(S,PS)(Consistent-POD(Extract-a-schedule(Ps)) = P-Consistent-POD(PS))

assert CONSISTENT-RELEASE-TIMES-over-extract

fa(S,PS)(P-CONSISTENT-RELEASE-TIMES(PS)

=> CONSISTENT-RELEASE-TIMES(Extract-a-schedule(Ps)))

assert CONSISTENT-DUE-TIMES-over-extract

fa(S,PS)(P-CONSISTENT-DUE-TIMES(PS) => CONSISTENT-DUE-TIMES(Extract-a-schedule(Ps)) )

assert CONSISTENT-TRIP-SEPARATION-over-extract

fa(s,ps)(p-consistent-trip-separation-est(ps) & p-consistent-trip-separation-lst(ps)

=> consistent-trip-separation(extract-a-schedule(ps)) )

assert CONSISTENT-PAX-RESOURCE-CAPACITY-over-extract

fa(S,PS)(CONSISTENT-PAX-RESOURCE-CAPACITY(Extract-a-schedule(Ps))
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= P-CONSISTENT-PAX-RESOURCE-CAPACITY(PS))

assert CONSISTENT-CARGO-RESOURCE-CAPACITY-over-extract

fa(S,PS)(CONSISTENT-CARGO-RESOURCE-CAPACITY(Extract-a-schedule(Ps))

= P-CONSISTENT-CARGO-RESOURCE-CAPACITY(PS))

assert CONSISTENT-MOVEMENT-TYPE-AND-RESOURCE-over-extract

fa(S,PS)(CONSISTENT-MOVEMENT-TYPE-AND-RESOURCE(Extract-a-schedule(Ps))

= P-CONSISTENT-MOVEMENT-TYPE-AND-RESOURCE(PS))

assert AVAILABLE-RESOURCES-USED-over-extract

fa(assets,S,PS)

( AVAILABLE-RESOURCES-USED(assets,Extract-a-schedule(ps))

= P-AVAILABLE-RESOURCES-USED(assets,PS) )

assert SCHEDULED-MVRS-over-extract

fa(S,PS)(SCHEDULED-MVRS(Extract-a-schedule(ps)) = P-SCHEDULED-MVRS(PS))

%%%%%%%%%%%%%%%%%%%%%%%%% Distributive Laws %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

assert DISTRIBUTE-P-CONSISTENT-POE-OVER-EMPTY-INVERSE-MAP

fa(dom)( p-consistent-poe(EMPTY-INVERSE-MAP(dom)) = true )

assert DISTRIBUTE-P-CONSISTENT-POE-OVER-INVERSE-MAP-with!

fa(ps,r,trp,mvr)( p-consistent-poe(inverse-map-with!(ps,r,trp,mvr))

= (p-consistent-poe(ps) & trp.poe = mvr.poe))

assert DISTRIBUTE-P-CONSISTENT-POE-OVER-INVERSE-MAP-append

fa(ps,r,trp)( p-consistent-poe(inverse-map-append(ps,r,trp))

= p-consistent-poe(ps))

assert DISTRIBUTE-P-CONSISTENT-POE-OVER-INVERSE-MAP-UNION!

fa(ps,qs)( p-consistent-poe(inverse-map-union!(ps,qs))

= (p-consistent-poe(ps) & p-consistent-poe(qs)) )

assert DISTRIBUTE-P-CONSISTENT-POD-OVER-EMPTY-INVERSE-MAP

fa(dom)( P-consistent-pod(EMPTY-INVERSE-MAP(dom)) = true )

assert DISTRIBUTE-P-CONSISTENT-POD-OVER-INVERSE-MAP-with!

fa(ps,r,trp,mvr)( P-consistent-pod(inverse-map-with!(ps,r,trp,mvr))

= (P-consistent-pod(ps) & trp.pod = mvr.pod))

assert DISTRIBUTE-P-CONSISTENT-POD-OVER-INVERSE-MAP-append

57



fa(ps,r,trp)( P-consistent-pod(inverse-map-append(ps,r,trp))

= P-consistent-pod(ps))

assert DISTRIBUTE-P-CONSISTENT-POD-OVER-INVERSE-MAP-UNION!

fa(ps,qs)( P-consistent-pod(inverse-map-union!(ps,qs))

= (P-consistent-pod(ps) & p-consistent-POD(qs)) )

assert DISTRIBUTE-P-CONSISTENT-PAX-RESOURCE-CAPACITY-OVER-EMPTY-INVERSE-MAP

fa(dom)( P-CONSISTENT-PAX-RESOURCE-CAPACITY(EMPTY-INVERSE-MAP(dom))

= true )

assert DISTRIBUTE-P-CONSISTENT-PAX-RESOURCE-CAPACITY-OVER-INVERSE-MAP-with!

fa(ps,r,trp: p-trip,mvr)

( P-CONSISTENT-PAX-RESOURCE-CAPACITY(inverse-map-with!(ps,r,trp,mvr))

= (P-CONSISTENT-PAX-RESOURCE-CAPACITY(ps)

& (mvr.move-type ~= ’PAX

or-else pax-resource-used-in-mvrs(trp.manifest) + mvr.quantity

<= *resource-map*(r).pax-capacity)))

assert DISTRIBUTE-P-CONSISTENT-PAX-RESOURCE-CAPACITY-OVER-INVERSE-MAP-append

fa(ps,r,trp: p-trip)

( P-CONSISTENT-PAX-RESOURCE-CAPACITY(inverse-map-append(ps,r,trp))

= (P-CONSISTENT-PAX-RESOURCE-CAPACITY(ps)

& (arb(trp.manifest).move-type ~= ’PAX

or-else pax-resource-used-in-mvrs(trp.manifest)

<= *resource-map*(r).pax-capacity)))

assert DISTRIBUTE-P-CONSISTENT-PAX-RESOURCE-CAPACITY-OVER-INVERSE-MAP-UNION!

fa(ps,qs)( P-CONSISTENT-PAX-RESOURCE-CAPACITY(inverse-map-union!(ps,qs))

=> P-CONSISTENT-PAX-RESOURCE-CAPACITY(ps) )

assert DISTRIBUTE-P-CONSISTENT-CARGO-RESOURCE-CAPACITY-OVER-EMPTY-INVERSE-MAP

fa(dom)( P-CONSISTENT-CARGO-RESOURCE-CAPACITY(EMPTY-INVERSE-MAP(dom))

= true )

assert DISTRIBUTE-P-CONSISTENT-CARGO-RESOURCE-CAPACITY-OVER-INVERSE-MAP-with!

fa(ps,r,trp: p-trip, mvr)

( P-CONSISTENT-CARGO-RESOURCE-CAPACITY(inverse-map-with!(ps,r,trp,mvr))

= (P-CONSISTENT-CARGO-RESOURCE-CAPACITY(ps)

& (mvr.move-type = ’PAX

or-else cargo-resource-used-in-mvrs(trp.manifest) + mvr.quantit
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<= *resource-map*(r).cargo-capacity)))

assert DISTRIBUTE-P-CONSISTENT-CARGO-RESOURCE-CAPACITY-OVER-INVERSE-MAP-append

fa(ps,r,trp: p-trip)

( P-CONSISTENT-CARGO-RESOURCE-CAPACITY(inverse-map-append(ps,r,trp))

= (P-CONSISTENT-CARGO-RESOURCE-CAPACITY(ps)

& (arb(trp.manifest).move-type = ’PAX

or-else cargo-resource-used-in-mvrs(trp.manifest)

<= *resource-map*(r).cargo-capacity)) )

assert DISTRIBUTE-P-CONSISTENT-CARGO-RESOURCE-CAPACITY-OVER-INVERSE-MAP-UNION!

fa(ps,qs)( P-CONSISTENT-CARGO-RESOURCE-CAPACITY(inverse-map-union!(ps,qs))

=> P-CONSISTENT-CARGO-RESOURCE-CAPACITY(ps) )

assert DISTRIBUTE-P-CONSISTENT-MOVEMENT-TYPE-AND-RESOURCE-OVER-EMPTY-INVERSE-MAP

fa(dom)( p-consistent-movement-type-and-resource(EMPTY-INVERSE-MAP(dom))

= true )

assert DISTRIBUTE-P-CONSISTENT-MOVEMENT-TYPE-AND-RESOURCE-OVER-INVERSE-MAP-with!

fa(ps,r,trp,mvr)

( p-consistent-movement-type-and-resource(inverse-map-with!(ps,r,trp,mvr))

= (p-consistent-movement-type-and-resource(ps)

& *resource-map*(r).res-class in cargo-mode-table(mvr.move-type, mvr.mode)) )

assert DISTRIBUTE-P-CONSISTENT-MOVEMENT-TYPE-AND-RESOURCE-OVER-INVERSE-MAP-append

fa(ps,r,trp)

( p-consistent-movement-type-and-resource(inverse-map-append(ps,r,trp))

= (p-consistent-movement-type-and-resource(ps)

& *resource-map*(r).res-class in cargo-mode-table(arb(trp.manifest).move-type,

arb(trp.manifest).mode)) )

assert DISTRIBUTE-P-CONSISTENT-MOVEMENT-TYPE-AND-RESOURCE-OVER-INVERSE-MAP-UNION!

fa(ps,qs)( p-consistent-movement-type-and-resource(inverse-map-union!(ps,qs))

= (p-consistent-movement-type-and-resource(ps)

& p-consistent-movement-type-and-resource(qs)) )

assert DISTRIBUTE-P-AVAILABLE-RESOURCES-USED-OVER-EMPTY-INVERSE-MAP

fa(assets)( P-AVAILABLE-RESOURCES-USED(assets, EMPTY-INVERSE-MAP(assets))

= true )

assert DISTRIBUTE-P-AVAILABLE-RESOURCES-USED-OVER-INVERSE-MAP-with!

fa(assets,ps,r,trp,mvr)
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( P-AVAILABLE-RESOURCES-USED(assets, inverse-map-with!(ps,r,trp,mvr))

= (P-AVAILABLE-RESOURCES-USED(assets,ps) & r in assets) )

assert DISTRIBUTE-P-AVAILABLE-RESOURCES-USED-OVER-INVERSE-MAP-append

fa(assets,ps,r,trp)

( P-AVAILABLE-RESOURCES-USED(assets, inverse-map-append(ps,r,trp))

= (P-AVAILABLE-RESOURCES-USED(assets,ps) & r in assets) )

assert DISTRIBUTE-P-AVAILABLE-RESOURCES-USED-OVER-INVERSE-MAP-UNION!

fa(assets,ps,qs)( P-AVAILABLE-RESOURCES-USED(assets, inverse-map-union!(ps,qs))

= (P-AVAILABLE-RESOURCES-USED(assets,ps)

& P-AVAILABLE-RESOURCES-USED(assets,qs)) )

assert DISTRIBUTE-ALL-MVRS-P-SCHEDULED-OVER-EMPTY-INVERSE-MAP

fa(assets)( ALL-MVRS-P-SCHEDULED({}, EMPTY-INVERSE-MAP(assets)) = true )

assert DISTRIBUTE-P-CONSISTENT-TIME-INTERVALS-OVER-EMPTY-INVERSE-MAP

fa(dom)( p-consistent-time-intervals(empty-inverse-map(dom)) = true )

assert DISTRIBUTE-P-CONSISTENT-TIME-INTERVALS-OVER-INVERSE-MAP-WITH!

fa (ps,r,p-trp,mvr)

( p-consistent-time-intervals(inverse-map-with!(ps,r,p-trp,mvr))

= (p-consistent-time-intervals(ps)

& p-trp.earliest-start-time <= mvr.due-date - p-trp.p-trip-duration

& mvr.release-date <= p-trp.latest-start-time))

assert DISTRIBUTE-P-CONSISTENT-TIME-INTERVALS-OVER-INVERSE-MAP-APPEND

fa(ps,r,trp)

( p-consistent-time-intervals(inverse-map-append(ps,r,trp))

= p-consistent-time-intervals(ps))

assert PAX-RESOURCE-USED-IN-MVRS-OVER-SINGLETON-MANIFEST

fa(e,d,est,lst,dur,mvr)

( pax-resource-used-in-mvrs({mvr}) = mvr.quantity)

assert CARGO-RESOURCE-USED-IN-MVRS-OVER-SINGLETON-MANIFEST

fa(e,d,est,lst,dur,mvr)

( cargo-resource-used-in-mvrs({mvr}) = mvr.quantity)
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assert SELECT-MANIFEST-FROM-LITERAL-TRIP

fa(e,d,s,dur,m)( <e,d,s,dur,m>.manifest = m )

assert SELECT-MANIFEST-FROM-LITERAL-P-TRIP

fa(e,d,est,lst,dur,m)( <e,d,est,dur,lst,m>.manifest = m )

assert member-seq-range-true

fa(x) ((x in [1 .. x]) = (x >= 1))

assert member-seq-range-minus-1

fa(x) ((x in [1 .. x + -1]) = false)

assert member-plus-1-seq-range

fa(x) ((x + 1 in [1 .. x]) = false)

THEORY-RULES

function ts-rule-member-seq-range-true ()

rb-compile-simplification-equality

member-seq-range-true

function ts-rule-member-seq-range-minus-1 ()

rb-compile-simplification-equality

member-seq-range-minus-1

function ts-rule-member-plus-1-seq-range ()

rb-compile-simplification-equality

member-plus-1-seq-range

function ts-rule-definedness-of-empty-inverse-map ()

rb-compile-simplification-equality

definedness-of-empty-inverse-map

function ts-rule-universal-lower-bound-of-less-constrained-than ()

rb-compile-simplification-equality

universal-lower-bound-of-less-constrained-than

function TS-RULE-EXTRACT-A-SCHEDULE-PRODUCES-AN-INSTANCE-OF-INVERSE-MAP ()

rb-compile-simplification-equality

EXTRACT-A-SCHEDULE-PRODUCES-AN-INSTANCE-OF-INVERSE-MAP

function TS-RULE-INVERSE-MAP-SATISFIES-IMPLIES-P-CONSISTENT-TIME-INTERVALS ()

rb-compile-implication-forward
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INVERSE-MAP-SATISFIES-IMPLIES-P-CONSISTENT-TIME-INTERVALS

function TS-RULE-CONSISTENT-POE-to-P-CONSISTENT-POE ()

rb-compile-implication-forward

CONSISTENT-POE-to-P-CONSISTENT-POE

function TS-RULE-CONSISTENT-POD-to-P-CONSISTENT-POD ()

rb-compile-implication-forward

CONSISTENT-POD-to-P-CONSISTENT-POD

function

TS-RULE-CONSISTENT-MOVEMENT-TYPE-AND-RESOURCE-to-P-CONSISTENT-MOVEMENT-TYPE-AND-RESOURCE

() rb-compile-implication-forward

CONSISTENT-MOVEMENT-TYPE-AND-RESOURCE-to-P-CONSISTENT-MOVEMENT-TYPE-AND-RESOURCE

function TS-RULE-CONSISTENT-PAX-RESOURCE-CAPACITY-to-P-CONSISTENT-PAX-RESOURCE-CAPACITY

rb-compile-implication-forward

CONSISTENT-PAX-RESOURCE-CAPACITY-to-P-CONSISTENT-PAX-RESOURCE-CAPACITY

function

TS-RULE-CONSISTENT-CARGO-RESOURCE-CAPACITY-to-P-CONSISTENT-CARGO-RESOURCE-CAPACITY ()

rb-compile-implication-forward

CONSISTENT-CARGO-RESOURCE-CAPACITY-to-P-CONSISTENT-CARGO-RESOURCE-CAPACITY

function TS-RULE-AVAILABLE-RESOURCES-USED-to-P-AVAILABLE-RESOURCES-USED ()

rb-compile-implication-forward

AVAILABLE-RESOURCES-USED-to-P-AVAILABLE-RESOURCES-USED

function TS-RULE-SCHEDULED-MVRS-to-P-SCHEDULED-MVRS ()

rb-compile-implication-forward

SCHEDULED-MVRS-to-P-SCHEDULED-MVRS

function TS-RULE-CONSISTENT-POE-over-extract ()

rb-compile-simplification-equality

CONSISTENT-POE-over-extract

function TS-RULE-CONSISTENT-POD-over-extract ()

rb-compile-simplification-equality

CONSISTENT-POD-over-extract

function TS-RULE-CONSISTENT-RELEASE-TIMES-over-extract ()
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rb-compile-implication-backward

CONSISTENT-RELEASE-TIMES-over-extract

function TS-RULE-CONSISTENT-DUE-TIMES-over-extract ()

rb-compile-implication-backward

CONSISTENT-DUE-TIMES-over-extract

function TS-RULE-CONSISTENT-TRIP-SEPARATION-over-extract ()

rb-compile-implication-backward

CONSISTENT-TRIP-SEPARATION-over-extract

function TS-RULE-CONSISTENT-MOVEMENT-TYPE-AND-RESOURCE-over-extract ()

rb-compile-simplification-equality

CONSISTENT-MOVEMENT-TYPE-AND-RESOURCE-over-extract

function TS-RULE-CONSISTENT-PAX-RESOURCE-CAPACITY-over-extract ()

rb-compile-simplification-equality

CONSISTENT-PAX-RESOURCE-CAPACITY-over-extract

function

TS-RULE-CONSISTENT-CARGO-RESOURCE-CAPACITY-over-extract ()

rb-compile-simplification-equality

CONSISTENT-CARGO-RESOURCE-CAPACITY-over-extract

function TS-RULE-AVAILABLE-RESOURCES-USED-over-extract ()

rb-compile-simplification-equality

AVAILABLE-RESOURCES-USED-over-extract

function TS-RULE-SCHEDULED-MVRS-over-extract ()

rb-compile-simplification-equality

SCHEDULED-MVRS-over-extract

function TS-RULE-DISTRIBUTE-P-CONSISTENT-POE-OVER-EMPTY-INVERSE-MAP ()

rb-compile-simplification-equality

DISTRIBUTE-P-CONSISTENT-POE-OVER-EMPTY-INVERSE-MAP

function TS-RULE-DISTRIBUTE-P-CONSISTENT-POE-OVER-INVERSE-MAP-WITH! ()

rb-compile-simplification-equality

DISTRIBUTE-P-CONSISTENT-POE-OVER-INVERSE-MAP-WITH!

function TS-RULE-DISTRIBUTE-P-CONSISTENT-POE-OVER-INVERSE-MAP-APPEND ()

rb-compile-simplification-equality

DISTRIBUTE-P-CONSISTENT-POE-OVER-INVERSE-MAP-APPEND

63



function TS-RULE-DISTRIBUTE-P-CONSISTENT-POE-OVER-INVERSE-MAP-UNION! ()

rb-compile-simplification-equality

DISTRIBUTE-P-CONSISTENT-POE-OVER-INVERSE-MAP-UNION!

function TS-RULE-DISTRIBUTE-P-CONSISTENT-POD-OVER-EMPTY-INVERSE-MAP ()

rb-compile-simplification-equality

DISTRIBUTE-P-CONSISTENT-POD-OVER-EMPTY-INVERSE-MAP

function TS-RULE-DISTRIBUTE-P-CONSISTENT-POD-OVER-INVERSE-MAP-WITH! ()

rb-compile-simplification-equality

DISTRIBUTE-P-CONSISTENT-POD-OVER-INVERSE-MAP-WITH!

function TS-RULE-DISTRIBUTE-P-CONSISTENT-POD-OVER-INVERSE-MAP-APPEND ()

rb-compile-simplification-equality

DISTRIBUTE-P-CONSISTENT-POD-OVER-INVERSE-MAP-APPEND

function TS-RULE-DISTRIBUTE-P-CONSISTENT-POD-OVER-INVERSE-MAP-UNION! ()

rb-compile-simplification-equality

DISTRIBUTE-P-CONSISTENT-POD-OVER-INVERSE-MAP-UNION!

function TS-RULE-DISTRIBUTE-P-CONSISTENT-PAX-RESOURCE-CAPACITY-OVER-EMPTY-INVERSE-MAP ()

rb-compile-simplification-equality

DISTRIBUTE-P-CONSISTENT-PAX-RESOURCE-CAPACITY-OVER-EMPTY-INVERSE-MAP

function

TS-RULE-DISTRIBUTE-P-CONSISTENT-PAX-RESOURCE-CAPACITY-OVER-INVERSE-MAP-WITH! ()

rb-compile-simplification-equality

DISTRIBUTE-P-CONSISTENT-PAX-RESOURCE-CAPACITY-OVER-INVERSE-MAP-WITH!

function

TS-RULE-DISTRIBUTE-P-CONSISTENT-PAX-RESOURCE-CAPACITY-OVER-INVERSE-MAP-APPEND ()

rb-compile-simplification-equality

DISTRIBUTE-P-CONSISTENT-PAX-RESOURCE-CAPACITY-OVER-INVERSE-MAP-APPEND

function TS-RULE-DISTRIBUTE-P-CONSISTENT-PAX-RESOURCE-CAPACITY-OVER-INVERSE-MAP-UNION! ()

rb-compile-implication-forward

DISTRIBUTE-P-CONSISTENT-PAX-RESOURCE-CAPACITY-OVER-INVERSE-MAP-UNION!

function TS-RULE-DISTRIBUTE-P-CONSISTENT-CARGO-RESOURCE-CAPACITY-OVER-EMPTY-INVERSE-MAP

rb-compile-simplification-equality

DISTRIBUTE-P-CONSISTENT-CARGO-RESOURCE-CAPACITY-OVER-EMPTY-INVERSE-MAP
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function

TS-RULE-DISTRIBUTE-P-CONSISTENT-CARGO-RESOURCE-CAPACITY-OVER-INVERSE-MAP-WITH! ()

rb-compile-simplification-equality

DISTRIBUTE-P-CONSISTENT-CARGO-RESOURCE-CAPACITY-OVER-INVERSE-MAP-WITH!

function

TS-RULE-DISTRIBUTE-P-CONSISTENT-CARGO-RESOURCE-CAPACITY-OVER-INVERSE-MAP-APPEND ()

rb-compile-simplification-equality

DISTRIBUTE-P-CONSISTENT-CARGO-RESOURCE-CAPACITY-OVER-INVERSE-MAP-APPEND

function TS-RULE-DISTRIBUTE-P-CONSISTENT-CARGO-RESOURCE-CAPACITY-OVER-INVERSE-MAP-UNION!

rb-compile-implication-forward

DISTRIBUTE-P-CONSISTENT-CARGO-RESOURCE-CAPACITY-OVER-INVERSE-MAP-UNION!

function

TS-RULE-DISTRIBUTE-P-CONSISTENT-MOVEMENT-TYPE-AND-RESOURCE-OVER-EMPTY-INVERSE-MAP ()

rb-compile-simplification-equality

DISTRIBUTE-P-CONSISTENT-MOVEMENT-TYPE-AND-RESOURCE-OVER-EMPTY-INVERSE-MAP

function

TS-RULE-DISTRIBUTE-P-CONSISTENT-MOVEMENT-TYPE-AND-RESOURCE-OVER-INVERSE-MAP-WITH! ()

rb-compile-simplification-equality

DISTRIBUTE-p-consistent-movement-type-and-resource-OVER-INVERSE-MAP-WITH!

function

TS-RULE-DISTRIBUTE-P-CONSISTENT-MOVEMENT-TYPE-AND-RESOURCE-OVER-INVERSE-MAP-APPEND ()

rb-compile-simplification-equality

DISTRIBUTE-p-consistent-movement-type-and-resource-OVER-INVERSE-MAP-APPEND

function TS-RULE-DISTRIBUTE-P-CONSISTENT-MOVEMENT-TYPE-AND-RESOURCE-OVER-INVERSE-MAP-UNIO

rb-compile-simplification-equality

DISTRIBUTE-p-consistent-movement-type-and-resource-OVER-INVERSE-MAP-UNION!

function TS-RULE-DISTRIBUTE-P-AVAILABLE-RESOURCES-USED-OVER-EMPTY-INVERSE-MAP ()

rb-compile-simplification-equality

DISTRIBUTE-P-AVAILABLE-RESOURCES-USED-OVER-EMPTY-INVERSE-MAP

function TS-RULE-DISTRIBUTE-P-AVAILABLE-RESOURCES-USED-OVER-INVERSE-MAP-WITH! ()

rb-compile-simplification-equality

DISTRIBUTE-P-AVAILABLE-RESOURCES-USED-OVER-INVERSE-MAP-WITH!

function TS-RULE-DISTRIBUTE-P-AVAILABLE-RESOURCES-USED-OVER-INVERSE-MAP-APPEND ()
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rb-compile-simplification-equality

DISTRIBUTE-P-AVAILABLE-RESOURCES-USED-OVER-INVERSE-MAP-APPEND

function TS-RULE-DISTRIBUTE-P-AVAILABLE-RESOURCES-USED-OVER-INVERSE-MAP-UNION! ()

rb-compile-simplification-equality

DISTRIBUTE-P-AVAILABLE-RESOURCES-USED-OVER-INVERSE-MAP-UNION!

function TS-RULE-DISTRIBUTE-ALL-MVRS-P-SCHEDULED-OVER-EMPTY-INVERSE-MAP ()

rb-compile-simplification-equality

DISTRIBUTE-ALL-MVRS-P-SCHEDULED-OVER-EMPTY-INVERSE-MAP

function TS-RULE-PAX-RESOURCE-USED-IN-MVRS-OVER-SINGLETON-MANIFEST ()

rb-compile-simplification-equality

PAX-RESOURCE-USED-IN-MVRS-OVER-SINGLETON-MANIFEST

function TS-RULE-CARGO-RESOURCE-USED-IN-MVRS-OVER-SINGLETON-MANIFEST ()

rb-compile-simplification-equality

CARGO-RESOURCE-USED-IN-MVRS-OVER-SINGLETON-MANIFEST

function TS-RULE-DISTRIBUTE-P-CONSISTENT-TIME-INTERVALS-OVER-EMPTY-INVERSE-MAP ()

rb-compile-simplification-equality

DISTRIBUTE-P-CONSISTENT-TIME-INTERVALS-OVER-EMPTY-INVERSE-MAP

function TS-RULE-DISTRIBUTE-P-CONSISTENT-TIME-INTERVALS-OVER-INVERSE-MAP-WITH! ()

rb-compile-simplification-equality

DISTRIBUTE-P-CONSISTENT-TIME-INTERVALS-OVER-INVERSE-MAP-WITH!

function TS-RULE-DISTRIBUTE-P-CONSISTENT-TIME-INTERVALS-OVER-INVERSE-MAP-APPEND ()

rb-compile-simplification-equality

DISTRIBUTE-P-CONSISTENT-TIME-INTERVALS-OVER-INVERSE-MAP-APPEND

function TS-RULE-SELECT-MANIFEST-FROM-LITERAL-TRIP ()

rb-compile-simplification-equality

SELECT-MANIFEST-FROM-LITERAL-TRIP

function TS-RULE-SELECT-MANIFEST-FROM-LITERAL-P-TRIP ()

rb-compile-simplification-equality

SELECT-MANIFEST-FROM-LITERAL-P-TRIP

66



THEORY-MISC-DEFS

function TS-RULE-CONSISTENT-RELEASE-TIMES-TO-P-CONSISTENT-RELEASE-TIMES (a)

computed-using

a = ‘fa(S0)(inverse-map-satisfies(S0,@PS0) => CONSISTENT-RELEASE-TIMES(S0))’

& new-a = make-structure(

‘##r RB-GRAMMAR

(rule-instance-make UNDEFINED,

P-CONSISTENT-RELEASE-TIMES(@(c-t(PS0))),

${}, ${},

1, TS-RULE-CONSISTENT-RELEASE-TIMES-TO-P-CONSISTENT-RELEASE-TIMES)’)

=> TS-RULE-CONSISTENT-RELEASE-TIMES-TO-P-CONSISTENT-RELEASE-TIMES(a) = new-a

function TS-RULE-CONSISTENT-DUE-TIMES-TO-P-CONSISTENT-DUE-TIMES (a)

computed-using

a = ‘fa(S0)(inverse-map-satisfies(S0,@PS0) => CONSISTENT-DUE-TIMES(S0))’

& new-a = make-structure(

‘##r RB-GRAMMAR

(rule-instance-make UNDEFINED,

P-CONSISTENT-DUE-TIMES(@(c-t(PS0))),

${}, ${},

1, TS-RULE-CONSISTENT-DUE-TIMES-TO-P-CONSISTENT-DUE-TIMES)’)

=> TS-RULE-CONSISTENT-DUE-TIMES-TO-P-CONSISTENT-DUE-TIMES(a) = new-a

function TS-RULE-CONSISTENT-TRIP-SEPARATION-TO-P-CONSISTENT-TRIP-SEPARATION (a)

computed-using

a = ‘fa(S0)(inverse-map-satisfies(S0,@PS0) => CONSISTENT-TRIP-SEPARATION(S0))’

& new-a = make-structure(

‘##r RB-GRAMMAR

(rule-instance-make UNDEFINED,

P-CONSISTENT-TRIP-SEPARATION-EST(@(c-t(PS0)))

& P-CONSISTENT-TRIP-SEPARATION-LST(@(c-t(PS0))),

${}, ${},

1, TS-RULE-CONSISTENT-TRIP-SEPARATION-TO-P-CONSISTENT-TRIP-SEPARATION)’)

=> TS-RULE-CONSISTENT-TRIP-SEPARATION-TO-P-CONSISTENT-TRIP-SEPARATION(a) = new-a

end-theory
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C Global Search Theory for Transportation Schedul-

ing

(Global-Search-Theory GS-CP-TRANSPORTATION-SCHEDULING

input-types seq(movement-record),

seq(resource-name)

input-vars gs-mvrs,

gs-assets

input-condition true

output-types schedule

output-vars sched

output-condition

Available-Resources-Used(gs-assets, sched)

& Scheduled-Mvrs(sched) = seq-to-set(gs-mvrs)

subspace-types

p-schedule,

seq(movement-record),

seq(movement-record)

subspace-vars

p-sched,

sched-mvrs,

unsched-mvrs

subspace-split-vars

p-sched-new,

sched-mvrs-new,

unsched-mvrs-new

subspace-vars-constraint

inverse-map?(gs-assets, p-sched)

& seq-to-set(sched-mvrs) = p-scheduled-mvrs(p-sched)

& seq-to-set(gs-mvrs)

= seq-to-set(sched-mvrs) union seq-to-set(unsched-mvrs)

& disjoint(seq-to-set(sched-mvrs), seq-to-set(unsched-mvrs))

& defined?(p-sched)

Constraint-Info-types

resource-name, integer, movement-record

Constraint-Info-vars

gs-resource, gs-trp, gs-mvr

Constraint-Info-condition
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(((gs-resource in gs-assets

& gs-trp in [1 .. size(p-sched(gs-resource))])

or* (gs-resource in gs-assets

& gs-trp = size(p-sched(gs-resource)) + 1))

& gs-mvr = first(unsched-mvrs))

Splitting-constraint

sched-mvrs-new = prepend(sched-mvrs, gs-mvr)

& unsched-mvrs-new = rest(unsched-mvrs)

&

(if gs-trp in [1 .. size(p-sched(gs-resource))]

then p-sched-new(gs-resource)(gs-trp).manifest

= prepend(p-sched(gs-resource)(gs-trp).manifest, gs-mvr)

else

p-sched-new(gs-resource)

= append(p-sched(gs-resource),

<gs-mvr.poe, gs-mvr.pod, gs-mvr.release-date,

gs-mvr.due-date

- duration(gs-mvr.distance,

*resource-map*(gs-resource)),

duration(gs-mvr.distance,

*resource-map*(gs-resource)),

[gs-mvr]>) )

satisfies

inverse-map-satisfies(sched, p-sched)

refines

less-constrained-than(p-sched, p-sched-new)

initial-space

(<empty-inverse-map(gs-assets), [], gs-mvrs>)

extract

sched = extract-a-schedule(p-sched)

)
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D Derived Transportation Scheduler

Derivation Summary

0. Focus Initialize TS

1. Tactic Global Search with Constraint Propagation on TS

2. Remove foci TS-PROPAGATE, TS-CUT

3. Simplify, context-independent-fast:

if ## then ## else some (SCHED-2: #...

4. Simplify, context-dependent, forward-0, backward-4: if ## else und...

5. Simplify, context-dependent, forward-1, backward-5: ## & ## & ## &...

6. Simplify, context-dependent, forward-0, backward-4: seq-to-set(##)...

7. Simplify, context-independent-fast: true & UNSCHED-MVRS = []

8. Abstract into LET:

let (var Z-109 = some (SCHED-2: map(RESOURCE-NAME, seq(T...

9. Simplify, context-dependent, forward-0, backward-4: ## & ## & ## &...

10. Abstract TS-PROPAGATE-WITH!(P-SCHED, R, P-TRP, MVR)

into PROPAGATED-P-SCHED in ex (P-TRP: ##, R: ##) (## &...

11. Simplify, context-dependent, forward-0, backward-4: ## & ## & ## &...

12. Abstract TS-PROPAGATE-APPEND(P-SCHED, R, <##, ##, #...

into PROPAGATED-P-SCHED in ex (R: ##) (## & ## & ## & ...

13. Simplify, context-independent-fast: if ## & ## ...

14. Refine compile into Lisp: TS-AUX

15. Refine compile into Lisp: TS

Initial Specification

function TS

(mvrs : seq(movement-record),

assets : seq(resource-name) | true)

returns ( sched : map( resource-name, seq(trip) )

| Consistent-POE(sched)

& Consistent-POD(sched)

& Consistent-Release-Times(sched)

& Consistent-Arrival-Times(sched)

& Consistent-Due-Times(sched)

& Consistent-Trip-Separation(sched)

& Consistent-Pax-Resource-Capacity(sched)

& Consistent-Cargo-Resource-Capacity(sched)

& Consistent-Movement-Type-and-Resource(sched)

& Available-Resources-Used(assets, sched)

& Scheduled-mvrs(sched) = seq-to-set(mvrs)

)
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Derived Code

The following is the derived Refine code of the scheduler. The first two functions, TS-
AUX and TS, are the backtrack scheduler and these are machine generated in KIDS. The
remaining functions perform constraint propagation when a movement-record is added to an
existing trip or a newly created trip respectively.

TS-SPLIT-AND-PROPAGATE encasulates the subspace splitting operation and resulting
propagation (and pruning). TS-SPLIT-AND-PROPAGATE-1 adds a movement-record to an
existing trip and propagates the effect. TS-SPLIT-AND-PROPAGATE-2 adds a movement-
record to a newly created trip and propagates the effect. PROPAGATE-LATEST-START-
TIME propagates the effect of a change to the latest start time of a trip. Similarly,
PROPAGATE-EARLIEST-START-TIME propagates the effect of a change to the earliest
start time of a trip.

function TS

(MVRS: seq(MOVEMENT-RECORD), ASSETS: seq(RESOURCE-NAME))

returns

(SCHED: map(RESOURCE-NAME, seq(TRIP))

| CONSISTENT-POE(SCHED) & CONSISTENT-POD(SCHED)

& CONSISTENT-RELEASE-TIMES(SCHED)

& CONSISTENT-DUE-TIMES(SCHED)

& CONSISTENT-TRIP-SEPARATION(SCHED)

& CONSISTENT-PAX-RESOURCE-CAPACITY(SCHED)

& CONSISTENT-CARGO-RESOURCE-CAPACITY(SCHED)

& CONSISTENT-MOVEMENT-TYPE-AND-RESOURCE(SCHED)

& AVAILABLE-RESOURCES-USED(ASSETS, SCHED)

& SCHEDULED-MVRS(SCHED) = seq-to-set(MVRS))

= let (NEW-R0HAT-1

: tuple

(P-SCHEDULE, seq(MOVEMENT-RECORD), seq(MOVEMENT-RECORD))

= TS-INITIAL-PROPAGATE(MVRS, ASSETS))

if DEFINED?(NEW-R0HAT-1)

then TS-AUX

(MVRS, ASSETS, NEW-R0HAT-1.1, NEW-R0HAT-1.2, NEW-R0HAT-1.3)

function TS-AUX

(MVRS: seq(MOVEMENT-RECORD), ASSETS: seq(RESOURCE-NAME),

P-SCHED: P-SCHEDULE, SCHED-MVRS: seq(MOVEMENT-RECORD),

UNSCHED-MVRS: seq(MOVEMENT-RECORD)

| INVERSE-MAP?(ASSETS, P-SCHED)

& seq-to-set(SCHED-MVRS) = P-SCHEDULED-MVRS(P-SCHED)

& seq-to-set(MVRS)

= seq-to-set(UNSCHED-MVRS) union seq-to-set(SCHED-MVRS)

& DISJOINT(seq-to-set(SCHED-MVRS), seq-to-set(UNSCHED-MVRS))
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& DEFINED?(P-SCHED) & P-CONSISTENT-RELEASE-TIMES(P-SCHED)

& P-CONSISTENT-DUE-TIMES(P-SCHED)

& P-CONSISTENT-TRIP-SEPARATION-EST(P-SCHED)

& P-CONSISTENT-TRIP-SEPARATION-LST(P-SCHED)

& P-CONSISTENT-POE(P-SCHED) & P-CONSISTENT-POD(P-SCHED)

& P-CONSISTENT-PAX-RESOURCE-CAPACITY(P-SCHED)

& P-CONSISTENT-CARGO-RESOURCE-CAPACITY(P-SCHED)

& P-CONSISTENT-MOVEMENT-TYPE-AND-RESOURCE(P-SCHED)

& P-AVAILABLE-RESOURCES-USED(ASSETS, P-SCHED))

: map(RESOURCE-NAME, seq(TRIP))

= if UNSCHED-MVRS = [] then EXTRACT-A-SCHEDULE(P-SCHED)

else OTHERWISE

(some (SCHED-2: map(RESOURCE-NAME, seq(TRIP)))

ex (C-26:

tuple

(P-SCHEDULE, seq(MOVEMENT-RECORD), seq(MOVEMENT-RECORD)),

GS-RESOURCE: RESOURCE-NAME, GS-TRP: integer)

(GS-TRP in [1 .. size(P-SCHED(GS-RESOURCE))]

& GS-RESOURCE in ASSETS & DEFINED?(SCHED-2)

& SCHED-2

= TS-AUX

(MVRS, ASSETS, C-26.1, C-26.2, C-26.3)

& DEFINED?(C-26)

& C-26

= TS-SPLIT-AND-PROPAGATE

(MVRS, ASSETS, P-SCHED, SCHED-MVRS, UNSCHED-MVRS,

GS-RESOURCE, GS-TRP, first(UNSCHED-MVRS))),

some (SCHED-2: map(RESOURCE-NAME, seq(TRIP)))

ex (C-27:

tuple

(P-SCHEDULE, seq(MOVEMENT-RECORD), seq(MOVEMENT-RECORD)),

GS-RESOURCE: RESOURCE-NAME)

(GS-RESOURCE in ASSETS & DEFINED?(SCHED-2)

& SCHED-2

= TS-AUX

(MVRS, ASSETS, C-27.1, C-27.2, C-27.3)

& DEFINED?(C-27)

& C-27

= TS-SPLIT-AND-PROPAGATE

(MVRS, ASSETS, P-SCHED, SCHED-MVRS, UNSCHED-MVRS,

GS-RESOURCE, 1 + size(P-SCHED(GS-RESOURCE)),

first(UNSCHED-MVRS))))

function TS-INITIAL-PROPAGATE

(MVRS: seq(MOVEMENT-RECORD), ASSETS: seq(RESOURCE-NAME))
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returns

(S-HAT-2:

tuple

(P-SCHEDULE, seq(MOVEMENT-RECORD), seq(MOVEMENT-RECORD))

| EXTREMAL

(S-HAT-2,

lambda (var T1, var T2) LESS-CONSTRAINED-THAN(T1.1, T2.1),

{T-HAT-2

| (T-HAT-2:

tuple

(P-SCHEDULE, seq(MOVEMENT-RECORD), seq(MOVEMENT-RECORD)))

LESS-CONSTRAINED-THAN(EMPTY-INVERSE-MAP(ASSETS), T-HAT-2.1)

& P-CONSISTENT-RELEASE-TIMES(T-HAT-2.1)

& P-CONSISTENT-DUE-TIMES(T-HAT-2.1)

& P-CONSISTENT-TRIP-SEPARATION-EST(T-HAT-2.1)

& P-CONSISTENT-TRIP-SEPARATION-LST(T-HAT-2.1)

& P-CONSISTENT-POE(T-HAT-2.1) & P-CONSISTENT-POD(T-HAT-2.1)

& P-CONSISTENT-PAX-RESOURCE-CAPACITY(T-HAT-2.1)

& P-CONSISTENT-CARGO-RESOURCE-CAPACITY(T-HAT-2.1)

& P-CONSISTENT-MOVEMENT-TYPE-AND-RESOURCE(T-HAT-2.1)

& P-AVAILABLE-RESOURCES-USED(ASSETS, T-HAT-2.1)}))

= <empty-inverse-map(assets), [], MVRS>

function TS-SPLIT-AND-PROPAGATE

(MVRS: seq(MOVEMENT-RECORD), ASSETS: seq(RESOURCE-NAME),

P-SCHED: P-SCHEDULE, SCHED-MVRS: seq(MOVEMENT-RECORD),

UNSCHED-MVRS: seq(MOVEMENT-RECORD),

GS-RESOURCE: RESOURCE-NAME, GS-TRP: integer,

GS-MVR: MOVEMENT-RECORD

| INVERSE-MAP?(ASSETS, P-SCHED)

& seq-to-set(SCHED-MVRS) = P-SCHEDULED-MVRS(P-SCHED)

& seq-to-set(MVRS)

= seq-to-set(UNSCHED-MVRS) union seq-to-set(SCHED-MVRS)

& DISJOINT(seq-to-set(SCHED-MVRS), seq-to-set(UNSCHED-MVRS))

& DEFINED?(P-SCHED)

& (GS-TRP in [1 .. size(P-SCHED(GS-RESOURCE))]

& GS-RESOURCE in ASSETS

or* GS-TRP = 1 + size(P-SCHED(GS-RESOURCE))

& GS-RESOURCE in ASSETS)

& GS-MVR = first(UNSCHED-MVRS)

& P-CONSISTENT-RELEASE-TIMES(P-SCHED)

& P-CONSISTENT-DUE-TIMES(P-SCHED)

& P-CONSISTENT-TRIP-SEPARATION-EST(P-SCHED)

& P-CONSISTENT-TRIP-SEPARATION-LST(P-SCHED)

& P-CONSISTENT-POE(P-SCHED) & P-CONSISTENT-POD(P-SCHED)

& P-CONSISTENT-PAX-RESOURCE-CAPACITY(P-SCHED)
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& P-CONSISTENT-CARGO-RESOURCE-CAPACITY(P-SCHED)

& P-CONSISTENT-MOVEMENT-TYPE-AND-RESOURCE(P-SCHED)

& P-AVAILABLE-RESOURCES-USED(ASSETS, P-SCHED))

returns

(S-HAT-1:

tuple

(P-SCHEDULE, seq(MOVEMENT-RECORD), seq(MOVEMENT-RECORD))

| EXTREMAL

(S-HAT-1,

lambda (var T1, var T2) LESS-CONSTRAINED-THAN(T1.1, T2.1),

{T-HAT-1

| (T-HAT-1:

tuple

(P-SCHEDULE, seq(MOVEMENT-RECORD), seq(MOVEMENT-RECORD)))

LESS-CONSTRAINED-THAN(P-SCHED, T-HAT-1.1)

& T-HAT-1.2 = prepend(SCHED-MVRS, GS-MVR)

& T-HAT-1.3 = rest(UNSCHED-MVRS)

& (if GS-TRP in [1 .. size(P-SCHED(GS-RESOURCE))]

then T-HAT-1.1(GS-RESOURCE)(GS-TRP).MANIFEST

= prepend(P-SCHED(GS-RESOURCE)(GS-TRP).MANIFEST, GS-MVR)

else T-HAT-1.1(GS-RESOURCE)

= append

(P-SCHED(GS-RESOURCE),

<GS-MVR.POE, GS-MVR.POD, GS-MVR.RELEASE-DATE,

GS-MVR.DUE-DATE

- DURATION(GS-MVR.DISTANCE, *RESOURCE-MAP*(GS-RESOURC

DURATION(GS-MVR.DISTANCE, *RESOURCE-MAP*(GS-RESOURCE)),

[GS-MVR]>))

& P-CONSISTENT-RELEASE-TIMES(T-HAT-1.1)

& P-CONSISTENT-DUE-TIMES(T-HAT-1.1)

& P-CONSISTENT-TRIP-SEPARATION-EST(T-HAT-1.1)

& P-CONSISTENT-TRIP-SEPARATION-LST(T-HAT-1.1)

& P-CONSISTENT-POE(T-HAT-1.1) & P-CONSISTENT-POD(T-HAT-1.1)

& P-CONSISTENT-PAX-RESOURCE-CAPACITY(T-HAT-1.1)

& P-CONSISTENT-CARGO-RESOURCE-CAPACITY(T-HAT-1.1)

& P-CONSISTENT-MOVEMENT-TYPE-AND-RESOURCE(T-HAT-1.1)

& P-AVAILABLE-RESOURCES-USED(ASSETS, T-HAT-1.1)}))

= if GS-TRP in [1 .. size(P-SCHED(GS-RESOURCE))]

then TS-SPLIT-AND-PROPAGATE-1

(MVRS, ASSETS, P-SCHED, SCHED-MVRS, UNSCHED-MVRS,

GS-RESOURCE, GS-TRP, GS-MVR)

else TS-SPLIT-AND-PROPAGATE-2

(MVRS, ASSETS, P-SCHED, SCHED-MVRS, UNSCHED-MVRS,

GS-RESOURCE, GS-TRP, GS-MVR)

function PROPAGATE-LATEST-START-TIME-1
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(CHANGE-TUPLE-3:

tuple(RESOURCE-NAME, integer, integer),

STATE: tuple(P-SCHEDULE, seq(RESOURCE-NAME))

| ex (ASSETS: seq(RESOURCE-NAME), P-SCHED-N: P-SCHEDULE,

Y-1: integer, P-TRP: integer, RSRC: RESOURCE-NAME)

(CHANGE-TUPLE-3 = <RSRC, P-TRP, Y-1>

& STATE = <P-SCHED-N, ASSETS>))

: tuple(P-SCHEDULE, seq(RESOURCE-NAME))

= letp (ASSETS: seq(RESOURCE-NAME), P-SCHED-N: P-SCHEDULE,

Y-1-P: integer, P-TRP-P: integer,

RSRC-P: RESOURCE-NAME

| CHANGE-TUPLE-3 = <RSRC-P, P-TRP-P, Y-1-P>

& STATE = <P-SCHED-N, ASSETS>)

let (C-3: seq(P-TRIP) = P-SCHED-N(RSRC-P))

let (C-1: P-TRIP = C-3(P-TRP-P))

if C-1.LATEST-START-TIME <= Y-1-P

then <P-SCHED-N, ASSETS>

else

if Y-1-P < C-1.EARLIEST-START-TIME

then undefined

else

let (STATE: tuple(P-SCHEDULE, seq(RESOURCE-NAME))

= <(P-SCHED-N

+* {| RSRC-P

-> SEQ-SHADOW1

(C-3, P-TRP-P,

TUPLE-SHADOW(C-1.LATEST-START-TIME, Y-1-P))

|}),

ASSETS>)

let (NEW-STATE-SEQ

: seq(tuple(P-SCHEDULE, seq(RESOURCE-NAME)))

= [PROPAGATE-LATEST-START-TIME-1

(<RSRC-P, C-4, C-0>, STATE)

| (C-4: integer, C-2: P-TRIP,

C-0: integer)

C-4 in [1 .. -1 + size(C-3)]

& C-0 < C-2.LATEST-START-TIME

& C-0 = Y-1-P - 2 * C-2.P-TRIP-DURATION

& C-2 = C-3(C-4)

& C-4 = -1 + P-TRP-P])

if NEW-STATE-SEQ = [] then STATE else first(NEW-STATE-SEQ)

function PROPAGATE-EARLIEST-START-TIME-1

(CHANGE-TUPLE-4:

tuple(RESOURCE-NAME, integer, integer),

STATE: tuple(P-SCHEDULE, seq(RESOURCE-NAME))
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| ex (ASSETS: seq(RESOURCE-NAME), P-SCHED-N: P-SCHEDULE,

Y-0: TIME, P-TRP: integer, RSRC: RESOURCE-NAME)

(CHANGE-TUPLE-4 = <RSRC, P-TRP, Y-0>

& STATE = <P-SCHED-N, ASSETS>))

: tuple(P-SCHEDULE, seq(RESOURCE-NAME))

= letp (ASSETS: seq(RESOURCE-NAME), P-SCHED-N: P-SCHEDULE,

Y-0-P: TIME, P-TRP-P: integer, RSRC-P: RESOURCE-NAME

| CHANGE-TUPLE-4 = <RSRC-P, P-TRP-P, Y-0-P>

& STATE = <P-SCHED-N, ASSETS>)

let (C-7: seq(P-TRIP) = P-SCHED-N(RSRC-P))

let (C-6: P-TRIP = C-7(P-TRP-P))

if Y-0-P <= C-6.EARLIEST-START-TIME

then <P-SCHED-N, ASSETS>

else

if C-6.LATEST-START-TIME < Y-0-P

then undefined

else

let (STATE: tuple(P-SCHEDULE, seq(RESOURCE-NAME))

= <(P-SCHED-N

+* {| RSRC-P

-> SEQ-SHADOW1

(C-7, P-TRP-P,

TUPLE-SHADOW(C-6.EARLIEST-START-TIME, Y-0-P))

|}),

ASSETS>)

let (NEW-STATE-SEQ

: seq(tuple(P-SCHEDULE, seq(RESOURCE-NAME)))

= [PROPAGATE-EARLIEST-START-TIME-1

(<RSRC-P, C-8, C-5>, STATE)

| (C-8: integer, C-5: integer)

P-TRP-P in [1 .. -1 + size(C-7)]

& C-7(C-8).EARLIEST-START-TIME < C-5

& C-5 = Y-0-P + 2 * C-6.P-TRIP-DURATION

& C-8 = P-TRP-P + 1])

if NEW-STATE-SEQ = [] then STATE else first(NEW-STATE-SEQ)

function TS-SPLIT-AND-PROPAGATE-1

(MVRS: seq(MOVEMENT-RECORD), ASSETS: seq(RESOURCE-NAME),

P-SCHED: P-SCHEDULE, SCHED-MVRS: seq(MOVEMENT-RECORD),

UNSCHED-MVRS: seq(MOVEMENT-RECORD),

GS-RESOURCE: RESOURCE-NAME, GS-TRP: integer,

GS-MVR: MOVEMENT-RECORD

| GS-TRP in [1 .. size(P-SCHED(GS-RESOURCE))]

& (true or* GS-TRP = 1 + size(P-SCHED(GS-RESOURCE)))

& INVERSE-MAP?(ASSETS, P-SCHED)

& seq-to-set(SCHED-MVRS) = P-SCHEDULED-MVRS(P-SCHED)
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& seq-to-set(MVRS)

= seq-to-set(UNSCHED-MVRS) union seq-to-set(SCHED-MVRS)

& DISJOINT(seq-to-set(SCHED-MVRS), seq-to-set(UNSCHED-MVRS))

& DEFINED?(P-SCHED) & GS-MVR = first(UNSCHED-MVRS)

& P-CONSISTENT-RELEASE-TIMES(P-SCHED)

& P-CONSISTENT-DUE-TIMES(P-SCHED)

& P-CONSISTENT-TRIP-SEPARATION-EST(P-SCHED)

& P-CONSISTENT-TRIP-SEPARATION-LST(P-SCHED)

& P-CONSISTENT-POE(P-SCHED) & P-CONSISTENT-POD(P-SCHED)

& P-CONSISTENT-PAX-RESOURCE-CAPACITY(P-SCHED)

& P-CONSISTENT-CARGO-RESOURCE-CAPACITY(P-SCHED)

& P-CONSISTENT-MOVEMENT-TYPE-AND-RESOURCE(P-SCHED)

& P-AVAILABLE-RESOURCES-USED(ASSETS, P-SCHED)

& GS-RESOURCE in ASSETS)

returns

(S-HAT-1:

tuple

(P-SCHEDULE, seq(MOVEMENT-RECORD), seq(MOVEMENT-RECORD))

| EXTREMAL

(S-HAT-1,

lambda (var T1, var T2) LESS-CONSTRAINED-THAN(T1.1, T2.1),

{T-HAT-1

| (T-HAT-1:

tuple

(P-SCHEDULE, seq(MOVEMENT-RECORD), seq(MOVEMENT-RECORD)))

T-HAT-1.1(GS-RESOURCE)(GS-TRP).MANIFEST

= prepend(P-SCHED(GS-RESOURCE)(GS-TRP).MANIFEST, GS-MVR)

& P-AVAILABLE-RESOURCES-USED(ASSETS, T-HAT-1.1)

& P-CONSISTENT-MOVEMENT-TYPE-AND-RESOURCE(T-HAT-1.1)

& P-CONSISTENT-CARGO-RESOURCE-CAPACITY(T-HAT-1.1)

& P-CONSISTENT-PAX-RESOURCE-CAPACITY(T-HAT-1.1)

& P-CONSISTENT-POD(T-HAT-1.1) & P-CONSISTENT-POE(T-HAT-1.1)

& P-CONSISTENT-TRIP-SEPARATION-LST(T-HAT-1.1)

& P-CONSISTENT-TRIP-SEPARATION-EST(T-HAT-1.1)

& P-CONSISTENT-DUE-TIMES(T-HAT-1.1)

& P-CONSISTENT-RELEASE-TIMES(T-HAT-1.1)

& T-HAT-1.3 = rest(UNSCHED-MVRS)

& T-HAT-1.2 = prepend(SCHED-MVRS, GS-MVR)

& LESS-CONSTRAINED-THAN(P-SCHED, T-HAT-1.1)}))

= let (C-12: seq(P-TRIP) = P-SCHED(GS-RESOURCE))

let (C-10: P-TRIP = C-12(GS-TRP))

let (NEW-STATE: tuple(P-SCHEDULE, seq(RESOURCE-NAME))

= if GS-TRP in [1 .. size(C-12)]

& GS-MVR.POE ~= C-10.POE

then undefined

else
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if GS-TRP in [1 .. size(C-12)]

& GS-MVR.POD ~= C-10.POD

then undefined

else

let (C-11: RESOURCE = *RESOURCE-MAP*(GS-RESOURCE))

if GS-TRP in [1 .. size(C-12)]

& C-11.RES-CLASS ~in

CARGO-MODE-TABLE(GS-MVR.MOVE-TYPE, GS-MVR.MODE)

then undefined

else

if GS-TRP in [1 .. size(C-12)]

& C-11.PAX-CAPACITY

< PAX-RESOURCE-USED-IN-MVRS

(prepend(C-10.MANIFEST, GS-MVR))

then undefined

else

if GS-TRP in [1 .. size(C-12)]

& C-11.CARGO-CAPACITY

< CARGO-RESOURCE-USED-IN-MVRS

(prepend(C-10.MANIFEST, GS-MVR))

then undefined

else

let (STATE: tuple(P-SCHEDULE, seq(RESOURCE-NAME))

= <(P-SCHED

+* {| GS-RESOURCE

-> SEQ-SHADOW1

(C-12, GS-TRP,

TUPLE-SHADOW

(C-10.MANIFEST, prepend(C-10.MANIFEST, GS-MVR)))

|}),

ASSETS>)

let (STATE: tuple(P-SCHEDULE, seq(RESOURCE-NAME))

= let (NEW-STATE-SEQ

: seq(tuple(P-SCHEDULE, seq(RESOURCE-NAME)))

= [PROPAGATE-EARLIEST-START-TIME-1

(<GS-RESOURCE, GS-TRP, C-13>, STATE)

| (C-13: TIME)

GS-TRP in [1 .. size(C-12)]

& C-10.EARLIEST-START-TIME < C-13

& C-13 = GS-MVR.RELEASE-DATE])

if NEW-STATE-SEQ = [] then STATE else first(NEW-STATE-SEQ))

if ~DEFINED?(STATE) then undefined

else

let (NEW-STATE-SEQ

: seq(tuple(P-SCHEDULE, seq(RESOURCE-NAME)))

= [PROPAGATE-LATEST-START-TIME-1
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(<GS-RESOURCE, GS-TRP, C-9>, STATE)

| (C-9: integer)

GS-TRP in [1 .. size(C-12)]

& C-9 < C-10.LATEST-START-TIME

& C-9 = GS-MVR.DUE-DATE - C-10.P-TRIP-DURATION])

if NEW-STATE-SEQ = [] then STATE else first(NEW-STATE-SEQ))

if DEFINED?(NEW-STATE)

then <NEW-STATE.1, prepend(SCHED-MVRS, GS-MVR),

rest(UNSCHED-MVRS)>

else undefined

function TS-SPLIT-AND-PROPAGATE-2

(MVRS: seq(MOVEMENT-RECORD), ASSETS: seq(RESOURCE-NAME),

P-SCHED: P-SCHEDULE, SCHED-MVRS: seq(MOVEMENT-RECORD),

UNSCHED-MVRS: seq(MOVEMENT-RECORD),

GS-RESOURCE: RESOURCE-NAME, GS-TRP: integer,

GS-MVR: MOVEMENT-RECORD

| GS-TRP ~in [1 .. size(P-SCHED(GS-RESOURCE))]

& INVERSE-MAP?(ASSETS, P-SCHED)

& seq-to-set(SCHED-MVRS) = P-SCHEDULED-MVRS(P-SCHED)

& seq-to-set(MVRS)

= seq-to-set(UNSCHED-MVRS) union seq-to-set(SCHED-MVRS)

& DISJOINT(seq-to-set(SCHED-MVRS), seq-to-set(UNSCHED-MVRS))

& DEFINED?(P-SCHED)

& GS-TRP = 1 + size(P-SCHED(GS-RESOURCE))

& GS-RESOURCE in ASSETS & GS-MVR = first(UNSCHED-MVRS)

& P-CONSISTENT-RELEASE-TIMES(P-SCHED)

& P-CONSISTENT-DUE-TIMES(P-SCHED)

& P-CONSISTENT-TRIP-SEPARATION-EST(P-SCHED)

& P-CONSISTENT-TRIP-SEPARATION-LST(P-SCHED)

& P-CONSISTENT-POE(P-SCHED) & P-CONSISTENT-POD(P-SCHED)

& P-CONSISTENT-PAX-RESOURCE-CAPACITY(P-SCHED)

& P-CONSISTENT-CARGO-RESOURCE-CAPACITY(P-SCHED)

& P-CONSISTENT-MOVEMENT-TYPE-AND-RESOURCE(P-SCHED)

& P-AVAILABLE-RESOURCES-USED(ASSETS, P-SCHED))

returns

(S-HAT-1:

tuple

(P-SCHEDULE, seq(MOVEMENT-RECORD), seq(MOVEMENT-RECORD))

| EXTREMAL

(S-HAT-1,

lambda (var T1, var T2) LESS-CONSTRAINED-THAN(T1.1, T2.1),

{T-HAT-1

| (T-HAT-1:

tuple

(P-SCHEDULE, seq(MOVEMENT-RECORD), seq(MOVEMENT-RECORD)))
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T-HAT-1.1(GS-RESOURCE)

= append

(P-SCHED(GS-RESOURCE),

<GS-MVR.POE, GS-MVR.POD, GS-MVR.RELEASE-DATE,

GS-MVR.DUE-DATE

- DURATION(GS-MVR.DISTANCE, *RESOURCE-MAP*(GS-RESOURCE)),

DURATION(GS-MVR.DISTANCE, *RESOURCE-MAP*(GS-RESOURCE)),

[GS-MVR]>)

& P-AVAILABLE-RESOURCES-USED(ASSETS, T-HAT-1.1)

& P-CONSISTENT-MOVEMENT-TYPE-AND-RESOURCE(T-HAT-1.1)

& P-CONSISTENT-CARGO-RESOURCE-CAPACITY(T-HAT-1.1)

& P-CONSISTENT-PAX-RESOURCE-CAPACITY(T-HAT-1.1)

& P-CONSISTENT-POD(T-HAT-1.1) & P-CONSISTENT-POE(T-HAT-1.1)

& P-CONSISTENT-TRIP-SEPARATION-LST(T-HAT-1.1)

& P-CONSISTENT-TRIP-SEPARATION-EST(T-HAT-1.1)

& P-CONSISTENT-DUE-TIMES(T-HAT-1.1)

& P-CONSISTENT-RELEASE-TIMES(T-HAT-1.1)

& T-HAT-1.3 = rest(UNSCHED-MVRS)

& T-HAT-1.2 = prepend(SCHED-MVRS, GS-MVR)

& LESS-CONSTRAINED-THAN(P-SCHED, T-HAT-1.1)}))

= let (C-25: RESOURCE = *RESOURCE-MAP*(GS-RESOURCE),

C-23: seq(MOVEMENT-RECORD) = [GS-MVR])

let (NEW-STATE: tuple(P-SCHEDULE, seq(RESOURCE-NAME))

= if C-25.PAX-CAPACITY

< PAX-RESOURCE-USED-IN-MVRS(C-23)

then undefined

else

if C-25.CARGO-CAPACITY

< CARGO-RESOURCE-USED-IN-MVRS(C-23)

then undefined

else

if C-25.RES-CLASS ~in

CARGO-MODE-TABLE(GS-MVR.MOVE-TYPE, GS-MVR.MODE)

then undefined

else

let (C-21: integer

= DURATION(GS-MVR.DISTANCE, C-25))

let (C-24: seq(P-TRIP) = P-SCHED(GS-RESOURCE),

C-22: TIME = GS-MVR.RELEASE-DATE,

C-18: integer = GS-MVR.DUE-DATE - C-21)

let (STATE: tuple(P-SCHEDULE, seq(RESOURCE-NAME))

= <(P-SCHED

+* {| GS-RESOURCE

-> append

(C-24,

<GS-MVR.POE, GS-MVR.POD, C-22, C-18,
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C-21, C-23>)

|}),

ASSETS>)

let (STATE: tuple(P-SCHEDULE, seq(RESOURCE-NAME))

= let (NEW-STATE-SEQ

: seq(tuple(P-SCHEDULE, seq(RESOURCE-NAME)))

= [PROPAGATE-EARLIEST-START-TIME-1

(<GS-RESOURCE, C-20 + 1, C-15>, STATE)

| (C-20: integer, C-16: P-TRIP,

C-15: integer)

1 <= C-20 & C-22 < C-15

& C-15

= C-16.EARLIEST-START-TIME

+ 2 * C-16.P-TRIP-DURATION

& C-16 = C-24(C-20)

& C-20 = size(C-24)])

if NEW-STATE-SEQ = [] then STATE else first(NEW-STATE-SEQ))

if ~DEFINED?(STATE) then undefined

else

let (NEW-STATE-SEQ

: seq(tuple(P-SCHEDULE, seq(RESOURCE-NAME)))

= [PROPAGATE-LATEST-START-TIME-1

(<GS-RESOURCE, C-19, C-14>, STATE)

| (C-19: integer, C-17: P-TRIP,

C-14: integer)

1 <= C-19

& C-14 < C-17.LATEST-START-TIME

& C-14

= C-18 - 2 * C-17.P-TRIP-DURATION

& C-17 = C-24(C-19)

& C-19 = size(C-24)])

if NEW-STATE-SEQ = [] then STATE else first(NEW-STATE-SEQ))

if DEFINED?(NEW-STATE)

then <NEW-STATE.1, prepend(SCHED-MVRS, GS-MVR),

rest(UNSCHED-MVRS)>

else undefined
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