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Abstract. Concurrent garbage collectors are notoriously difficult to implement correctly. Previous
approaches to the issue of producing correct collectors have mainly been based on posit-and-prove
verification or on the application of domain-specific templates and transformations. We show how
to derive the upper reaches of a family of concurrent garbage collectors by refinement from a formal
specification, emphasizing the application of domain-independent design theories and transforma-
tions. A key contribution is an extension to the classical lattice-theoretic fixpoint theorems to
account for the dynamics of concurrent mutation and collection.

1 Introduction

Concurrent collectors are extremely complex and error-prone. Since such collectors now form part of
the trusted computing base of a large portion of the world’s mission-critical software infrastructure, such
unreliability is unacceptable [21]. The challenge has been to find a way to provide mathematical assurance
of the correctness of concurrent collectors without doing harm to the productivity of the programmers.
The latter aspect still is a major obstacle in verification-oriented systems. Interactive theorem provers
may need thousands of lines of proof scripts or hundreds of lemmas in order to cope with serious collectors
(see e.g. [10, 15, 4]). But also fully automated verifiers exhibit problems. As can be seen in [6], even the
verification of a simplified collector necessitates such a large amount of complex properties that the
specification may easily become faulty itself. The problem of assurance also has to deal with the fact
that garbage collectors come in many variations, each addressing specific quality or efficiency goals.
Separate verification of each variation leads to a tremendous duplication of work. On the other hand it is
extremely difficult to determine for a slightly modified algorithm, which properties and proofs can remain
unchanged, which are superfluous, and which need to be added or redone.

We propose to apply the approach of specification refinement as illustrated in Figures 1 and 2. This
approach has already been successfully applied to complex problems, such as planning and scheduling
tasks [19]. Figure 1 describes the way in which we come from abstract problems to concrete solutions.
(1) Suppose we have an abstract problem description, that is, a collection of types, operations and prop-
erties that together describe a certain problem.
(2) For this abstract problem we then develop an abstract solution, that is, an abstract implementation
that fulfills all the requested properties.
(3) When we now have a concrete problem that is an instance of our abstract problem (since it meets all
its properties), then we can
(4) automatically derive a concrete solution by instantiating the abstract solution correspondingly.
The abstract problem/solution pairs can be organized into a taxonomic library [17] in formal development
environments such as KIDS [16] and Specware [7]. We will consider the abstract problem of finding fixed
points in lattices or cpos and several solutions for this problem. Then we will show that garbage collection
is an instance of this abstract problem by considering the concrete graphs and sets as instances of the
more abstract lattices. This way our abstract solutions carry over to concrete solutions for the garbage
collection problem.
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Fig. 1. Abstract and concrete problems and their solutions

Technically, all of our problem and solution descriptions are algebraic and coalgebraic specifications, which
are usually underspecified and thus possess many models. “Solutions” are treated as borderline cases of
such specifications, which are directly translatable into code of some given programming language. The
formal connections between the various specifications are given by certain kinds of refinement morphisms,
and the derivation of the concrete solution from the other parts is formally a pushout construction from
category theory 3.

Figure 2 illustrates the second essential aspect of our method. We work with a family tree (or dag) of
more and more refined problems, each giving rise to more and more refined solutions. On the problem side
“refined” essentially means that we have additional properties, on the solution side “refined” essentially
means that we have better algorithms, e.g. more efficient, more robust, more concurrent etc.
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Fig. 2. Refinement of problems (and solutions)

This way of proceeding has the primary advantage that it allows us to reuse verification and development
efforts. Suppose that at some point in the tree we want to design a new variation. This is reflected in a
new refinement child of the current specification, to which certain properties are added. In the modified
new solution we need only prove those properties that have been added; everything else is inherited.

3 A morphism Φ from specification S to specification T is given by a type-consistent mapping of the type,
function, and predicate symbols of S to derived types, functions, and predicates in T . The mapping is a
specification morphism if the axioms of S translate to theorems of T . A pushout construction is used to
compose specifications. More detail on the category of specifications may be found in [18, 7, 12]
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Vechev et al. [21] have a similar goal of presenting a derivational treatment of a family of concurrent
garbage collectors. They start from a generic algorithm, which is parameterized by an underspecified
function, such that different instantiations of this function lead to different collection algorithms. A
primary concern of [21] is the possibility to combine various “design dimensions” in a very flexible way.
By contrast, we study the family tree of specifications and implementations that can be systematically
derived using formal refinements that are largely problem-independent. We base the whole treatment of
garbage collection on fundamental mathematical principles, namely lattices and fixed points. This means
that the same design theories can be applied to a wide range of other problems. A key result of our
studies was a generalization of classical fixed-point results of lattice theory to handle the dynamics of
concurrency; i.e. iterating to a fixpoint with a monotone function that is changing over time.

The final efficiency of most practical garbage collection algorithms depends on the use of clever data
representations. Standard techniques range from the classical stacks or queues to bit maps, overlayed
pointers, so-called dirty bits, color toggling, concurrent local structures, and so forth. In our approach
all these designs fall under the paradigm of data reification morphisms. This means that we can work
throughout our developments with high-level abstract data structures such as graphs and sets in order
to specify and verify the algorithmic aspects in the clearest possible way. It will be only at the end of
the derivation that the high-level data structures are implemented by concrete data structures, which are
chosen based on their efficiency in the given context. This step is automated in systems like Specware
[7], together with many low-level optimizations. Since this is very technical and can be done almost
automatically by advanced systems, we will only touch this part very briefly and sketchy here.

Full derivation of practical algorithms requires many more transformations than we can show here. We
focus on the crucial initial refinement steps from a formal specification of concurrent garbage collection
toward a variety of important and practical algorithms. An expanded version of this paper treats more
aspects of contemporary concurrent garbage collectors [13].

2 Notes on Garbage Collection

The very first garbage collectors, which essentially go back to McCarthy’s original design [9], were stop-the-
world collectors. That is, the Mutator was completely laid to sleep, while the Collector did its recycling.
This approach leads to potentially very long pauses, which are nowadays considered to be unacceptable.

The idea of having the Collector run concurrently with the Mutator goes back to the seminal papers
of Dijkstra et al. [3] and Steele [20], which were followed by many other papers trying to improve the
algorithm or its verification. The Doligez-Leroy-Gonthier algorithm (short: DLG) that was developed
for the Concurrent CAML Light system [4, 5], is considered an important milestone, since it not only
takes many practical complications of real-world collectors into account, but also generalizes from a
single Mutator to many Mutators. The transition to concurrent garbage collection necessitates a trade-off
between the precision of the Collector and the degree of concurrency it provides [21]: the higher the degree
of concurrency, the more garbage nodes will be overlooked. However, this is no major concern in practice,
since the escaped garbage nodes will be found in the next collection cycle.

We now illustrate the key problem that can arise in concurrent garbage collection. Figure 3 illustrates the
situation at the beginning of the collection process by showing a little fragment of the store; solid nodes
are reachable from the root A, dashed circles represent dead garbage nodes (the arcs of which are not
drawn here for the sake of readability). We use the metaphor of “planes” to illustrate both mark-and-
sweep and copying collectors. In the former, “lifting” a node to the upper plane means marking, in the
latter it means copying. The picture already hints at a later generalization, where the store is partitioned
into “regions”.



4

A B

C D

E

Fig. 3. At the start of the Collector

Figure 4 shows an intermediate snapshot of the algorithm. Some nodes and arcs are already lifted (i.e.
marked or copied), others are still not considered. The gray nodes are in the the “workset” which means
that they are marked/copied, but not all outgoing arcs have been handled yet.
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Fig. 4. A snapshot

Figure 5 shows the next snapshot. Now all direct successors of A have been treated. Therefore A is taken
out of the workset, which we represent by the color black. Note that we have the invariant property that
all downward arrows start in the workset. This corresponds to one of the two main invariants in the
original paper of Dijkstra et al. [3].

Now let us assume that in this moment the Mutator intervenes by adding an arc A → E and then deleting
the arc D → E . This leads to the situation in Figure 6. Since A is no longer in the workset, its connection
to E will not be detected. Hence, E is hidden from the Collector and therefore will be treated, erroneously,
as a dead garbage node.

There are three reasonable ways to cope with this problem (using suitable write barriers):

– When performing addArc(A,E ), record E . (This is the approach of Dijkstra et al. [3].)
– When performing addArc(A,E ), record A. (This is the approach taken by Steele [20].)
– When performing delArc(D ,E ), record E . (This is the approach taken by Yuasa [22].)

Note also that this bug may appear in an even subtler way during the handling of a node in the workset.
Consider the node C in Figure 5 and suppose that it has lifted the first two of its three arcs. At this
moment the Mutator redirects the first pointer field to, say, E . But a naive Collector will nevertheless
take node C out of the workset (color it black) when its final arc has been treated.
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Fig. 6. A subtle error

2.1 Architecture and Basic Terminology

We modularize the problem by way of three kinds of components; see Figure 7. TheMutators represent the
activities of all programs that use the heap. These activities base on primitive operations that are provided
by the component Store, which represents the memory management system (as part of the runtime system
or operating system). Finally the task of the garbage collection is performed by a component Collector .

The Mutator operates on a graph , which is a data structure of type Graph(Node,Arc). It can essentially
perform three primitive operations:4

– addArc(a, b): add a new arc node a to node b.
– delArc(a, b): delete the arc between a and b. This may have the effect that b and other nodes reachable
from b become unreachable (“garbage”).

– addNew (a): allocate a new node b (from the freelist) and attach it by an arc from a. This reflects the
fact that in reality alloc operations return a pointer, which is stored in some field (variable, register,
heap cell) of the Mutator. Hence, the new node is immediately linked to the Mutator’s graph.

The Store provides the low-level interface to the actual memory-access operations. We distinguish the
following sets:

– active are those nodes that constitute the Mutator’s graph.
– supply are the nodes in the freelist. (They become active through the operation addNew .)
– live is a shorthand for the union of the active and supply nodes.

4 This considerably simplifies the memory model used in the DLG algorithm [4, 5], where the Mutator has eight
operations. However, the essence of these operations is captured by our three operations.
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component Mutator

graph :Graph(Node,Arc)
addArc: . . .
delArc: . . .
addNew : . . .

. . .

component Mutator

graph :Graph(Node ,Arc)
addArc: . . .
delArc: . . .
addNew : . . .

. . .

component Mutator

graph :Graph(Node,Arc)
addArc: . . .
delArc: . . .
addNew : . . .

. . .

component Collector

graph :Graph(Node,Arc)
active :Set(Node)
supply :Set(Node)

. . .

component Store

graph :Graph(Node,Arc)
active :Graph(Node,Arc)
nodes :Set(Node)
active :Set(Node)
supply : Set(Node)
live:Set(Node)
dead :Set(Node)

addArc: . . .
delArc: . . .
addNew : . . .

live = active ] supply
nodes = live ] dead

. . .

// the Mutator’s view
// universe of all nodes
// reachable by Mutator
// freelist
// active + supply
// garbage

Morphism: graph 7→ active

Fig. 7. The system architecture

– dead are the garbage nodes that are neither reachable from the Mutator nor in the freelist. (Nodes
may become dead through the operation delArc.)

Note that the specifications in Figure 7 use A = B ] C as a shorthand notation for the two properties
A = B ∪ C and B ∩ C = ∅. They also use overloading of operation names. For example active is used
both for the subgraph that constitutes the Mutator’s view and for the set of nodes in this subgraph. Such
overloaded symbols must always be distinguishable from their context. Note also that we frequently refer
to the “set” Arcs of the arcs of a graph and also to the “set” sucs(a) of all successors of a node a; but
these are actually multisets, since two nodes may be connected by several arcs. Technically, the cell has
several slots that all point to the same cell.

The Mutator’s operations addArc, delArc, addNew have an invariant property that is decisive for the
working of any kind of garbage collector: being garbage is a stable property [1].

Proposition 1 (Antitonicity of Mutator). A Mutator can only access the nodes in its graph and the
freelist; that is, it can never access garbage nodes. In other words, the set of live nodes (graph + freelist)
monotonically decreases.

2.2 The Fundamental Specification of Garbage Collection

Surprisingly often papers on garbage collection refer to an intuitive understanding of what the Collector
shall achieve. But in a formal treatment we cannot rely on intuition; rather we have to be absolutely precise
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about the goal that we want to achieve. Consider the architecture sketched in Figure 7. The Mutator
continuously performs its basic operations addArc, delArc and addNew , which – from the Mutators
viewpoint – are all considered to be total functions; i.e. they return a defined value on all inputs. This is
trivially so for addArc and delArc, since their arguments exist in the mutators graph. The problematic
operation is addNew , since this operation needs an element from the freelist. However, the freelist may
be empty (i.e. supply = ∅). In this situation there are two possibilities:

1. | active| = MemorySize . That is, the Mutator has used all available memory in its graph. Then
nothing can be done!

2. | active| < MemorySize . When supply = ∅, this means that dead 6= ∅. This is the situation in which
we want to recycle garbage cells into the freelist. And this is the Collector’s reason for existence!

Based on this reasoning, we obtain two basic principles for the Mutator/Collector paradigm.

Assumption 1 (Boundedness of Mutator’s graph) |Mutator .graph | < MemorySize

Under this global assumption the Collector has to ensure that the operation addNew is a total function
(which may at most be delayed). This can be cast into a temporal-logic formula:

Goal 2 (Specification of Collector) 2♦ supply 6= ∅ (provided assumption 1 holds)

This is a liveness property stating that “at any point in time the freelist (may be empty but) will
eventually be nonempty.” When this condition is violated, that is, supply = ∅, then it follows by the
global Assumption 1 that dead 6= ∅. Hence the Collector has to find at least some dead nodes, which it
can then transfer to the freelist. This can be cast into an operation recycle with the initial specification
given in Figure 8.

spec Collector

recycle :Graph(Node ,Arc)→ Set(Node)
∅ ⊂ recycle(G) ⊆ dead if dead 6= ∅
∅ = recycle(G) if dead = ∅

Fig. 8. The Collector’s task

Hence we should design the system’s working such that the following property holds (using an ad-hoc
notation for transitions).

Goal 3 (Required actions of Collector) 2♦
(
supply −→ supply ] recycle(G)

)

When Goal 3 is met, then the original Goal 2 is also guaranteed to hold. In other words, the collector
has to periodically call recycle and add the found subset of the garbage nodes to the freelist.

Note that the above operation can happen at any point in time; we need not wait until the freelist is
indeed empty. This observation leaves considerable freedom for optimized implementations which are all
correct.

2.3 How to Find Dead Nodes

Unfortunately, the specification of recycle in Figure 8 is not easily implementable since the dead nodes
are not directly recognizable. Since the dead nodes are the complement of the live nodes; i.e. live =
{ dead = nodes\live, the idea comes to mind to work with the complement of recycle. This leads to the
simple calculation
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∅ ⊂ recycle(G) ⊆ dead
⇔ { ∅ ⊃ { recycle(G) ⊇ {dead
⇔ nodes ⊃ { recycle(G) ⊇ live
⇔ nodes ⊃ trace(G) ⊇ live

where we introduce a new function trace(G) = { recycle(G). This leads to the refined version of the
Collector’s specification in Figure 9. Note that this specification, which will form the starting point for
our more detailed derivation, is formally derived from the fundamental requirements for garbage collection
as expressed in Assumption 1 and Goal 2 above!

spec Collector

recycle :Graph(Node ,Arc)→ Set(Node)
trace :Graph(Node ,Arc)→ Set(Node)

recycle(G) = { trace(G)
live ⊆ trace(G) ⊂ nodes if dead 6= ∅
trace(G) = nodes if dead = ∅

Fig. 9. The Collector’s task (first refinement)

3 Mathematical Foundation: Fixed Points

In garbage collection one can roughly distinguish two classes of collectors:

– Stop-the-world collectors : these are the classical non-concurrent collectors, where the mutators need
to be stopped while the collector works.

– Concurrent collectors : these are the collectors that allow the mutators to keep working concurrently
with the collector (except for very short pauses).

3.1 Classical Fixed Points (Stop-the-world Collectors)

Computing the set of garbage nodes in a stop-the-world collector can be treated as a classical fixpoint
computation in a finite powerset lattice. We briefly review the basic concepts and then show how to
calculate the overall structure of a marking algorithm.

– For a set s = { x0, x1, x2, . . .} of type Set(A) and a function f :A → A we use the overloaded function
f : Set(A) → Set(A) by writing f (s) as a shorthand for {f (x0), f (x1), f (x2), . . .}.

– A function f :A → A is monotone, if x ≤ y ⇒ f (x ) ≤ f (y) holds.
– The function f is continuous, if f (t{x0, x1, x2, . . .}) = t{ f (x0), f (x1), f (x2), . . .} holds.
– The function f is inflationary in x , if x ≤ f (x ) holds.
– The element x is called a fixed point of f , if x = f (x ) holds; x is the least fixed point, if x ≤ y for any
other fixed point y of f .

– The element x is called a fixed point of f relative to r , if x = f (x ) ∧ r ≤ x holds.

– By f̂(x ) = least u . u = f (u) ∧ x ≤ u we denote the reflexive-transitive closure of f (when it exists);
i.e. the function that yields the least fixed point of f relative to x .
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Lemma 4 (Properties of the closure f̂ ). The closure f̂(x ) has a number of properties that we will
utilize frequently:

– x ≤ f̂(x ) (inflationary);

– f̂(f̂(x )) = f̂(x ) (idempotent);

– f (f̂(x )) = f̂(x ) (fixpoint);

– f̂(f (x )) = f̂(x ) if x ≤ f (x )

Theorem 1 (Kleene[8]). For a continuous function f the least fixed point x is obtained as the least
upper bound of the Kleene chain:

x = t{⊥, f (⊥), f 2(⊥), f 3(⊥), . . . }

where ⊥ is the bottom element of the lattice.

It has been shown that the essence of these theorems also holds in the simpler structure of complete partial
orders (cpos)5. Cai and Paige [2] present a number of generalizations of Theorem 1 that are streamlined
towards practical algorithmic implementations of fixpoint computations.

Theorem 2 (Cai-Paige). Let A be a cpo and f :A → A be a monotone function that is inflationary in
r. Let {s0, s1, s2, . . . , sn} be an arbitrary sequence obeying the conditions

r = s0
si < si+1 ≤ f (si) for i < n

sn = f (sn)

then sn is the least fixed point of f relative to r. Conversely, when the least fixed point is finitely com-
putable, then the sequence will lead to such an sn .

Theorem 2 provides a natural abstraction from workset-based iterative algorithms, which maintain a
workset of change items. At each iteration, a change item is selected and used to generate the next
element of the iteration sequence. The incremental changes tend to be small and localized, hence this is
called themicro-step approach, and the Kleene chain the macro-step approach [14]. All practical collectors
use a workset that records nodes that await marking.

Corollary 1 (Invariance of closure). The elements of the set { s0 < s1 < s2 < . . . < sn } all have the

same closure: f̂(si) = f̂(r).

Using these basic results, we derive the overall structure of a marking algorithm for a stop-the-world
collector. The essence of it is the iterative algorithm for finding garbage nodes to recycle.

Letting roots denote the roots of the active graph together with the head of the supply list, we have
live = f̂(roots) where f(R) = {b | b ∈ G.sucs(a) & a ∈ R}; in words, the active nodes are the closure
of the roots under the successor function in the current graph G.

To derive an algorithm for computing the dead nodes, we calculate as follows:

5 A cpo is a partial order in which every directed subset has a supremum.
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dead
= { live definition

= { f̂(roots) definition

= ǧ(roots) using the law { ĥ(R) = ǐ(R) where i(x) = {h({ x)

where ǧ(R) is the greatest fixpoint of the monotone function

g(x) = nodes \ (roots ∪ {b | b ∈ sucs(a) & a ∈ nodes \ x}).

This allows us to produce a correct, but naive iterative algorithm to compute dead nodes via a Kleene
chain.

Program 1 Raw Fixpoint Iteration Algorithm

1 W ← h.nodes;
2 while W 6= g(W ) do W ← g(W )
3 return W

Following Cai and Paige [2], we can construct a more efficient fixpoint iteration algorithm using a workset
defined by

WS = X \ g(X).

Although this workset definition is created by instantiating a problem-independent scheme, it has an
intuitive meaning: the workset is the set of nodes whose parents have been “marked” as live, but who
themselves have not yet been marked. The workset expression can be simplified as follows

X \ g(X)

= { Definition }

X \ (nodes \ (roots ∪ {b | b ∈ sucs(a) & a ∈ nodes \X}))

= { Using the law A \ (B ∪ C) = (A \B) \ C }

X \ ((nodes \ roots) \ {b | b ∈ sucs(a) & a ∈ nodes \X})

= { Using the law A \ (B \ C) = (A \ B)
⋃

(A ∩ C) }

(X \ (nodes \ roots))
⋃

({b | b ∈ sucs(a) & a ∈ nodes \X} ∩X)

= { Using the law {x|P (x)} ∩Q = {x|P (x) ∧ x ∈ Q} }

(X \ (nodes \ roots))
⋃

{b | b ∈ sucs(a) & b ∈ X & a ∈ nodes \X}

= { Again using the law A \ (B \ C) = (A \ B)
⋃

(A ∩ C) (on first term) }

(X \ nodes) ∪ (X ∩ roots)
⋃

{b | b ∈ sucs(a) & b ∈ X & a ∈ nodes \X}

= { Simplifying }

{} ∪ (X ∩ roots)
⋃

{b | b ∈ sucs(a) & b ∈ X & a ∈ nodes \X}
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= { Simplifying}

(X ∩ roots)
⋃

{b | b ∈ sucs(a) & b ∈ X & a ∈ nodes \X}.

The greatest fixpoint expression can be computed by the workset-based Program 2 justified by Theorem
2.

Program 2 Workset-based Fixpoint Iteration Program

1 W ← nodes;
2 while ∃z ∈ ((W ∩ roots)

⋃
{b | b ∈ sucs(a) & b ∈ W & a ∈ nodes \W }})

3 W ← W − z

4 return W

To improve the performance of this algorithm, we apply the Finite Differencing transformation [11] and
incrementally maintain the invariant

WS = (W ∩ roots)
⋃

{b | b ∈ sucs(a) & b ∈ W & a ∈ nodes \W}.

The calculations to enforce the invariant (detailed in [13]) result in the code is shown in Program 3, where
concurrent assignment is used to update both W and the workset WS.

Program 3 Optimized Fixpoint Iteration Algorithm

invariant WS = (W ∩ roots)
⋃
{b | b ∈ sucs(a) & b ∈W & a ∈ nodes \W } 1

W,WS := nodes, roots; 2
while ∃z ∈ WS do 3

W,WS := W − z, WS
⋃
{b | b ∈ sucs(z) & b ∈W })− z 4

output W. 5

Program 3 represents the abstract structure of most marking algorithms. Our point is that its derivation,
and further steps toward implementation, are carried out by generic, problem-independent transforma-
tions, supported by domain-specific simplifications, as above. Further progress toward a detailed imple-
mentation requires a variety of other transformations, including finite differencing, simplification, and
datatype refinements. For example, the finite set W may be implemented by a characteristic function,
which in turn is refined to a bit array, or concurrent data structures for local buffers or work-stealing
queues.

3.2 Fixed Points in Dynamic Settings (Concurrent Collectors)

The classical fixed-point considerations work with a fixed monotone function f . In the garbage collection
application this is justified as long as the graph, on which the collector works, remains fixed during the
collector’s activities. But as soon as the mutator is working in parallel with the collector, the graph
keeps changing, while the collector is active. This can be modeled by considering a sequence of graphs
G0, G1, G2, . . . and by making the function f dependent on these graphs: f (G0)(. . .), f (G1)(. . .), f (G2)(. . .), . . . ,
where f :Graph → Set(Node) → Set(Node) and

f(G)(S) = S
⋃

{b | a ∈ S & b ∈ G.sucs(a)}.
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Intuitively, f extends a given set of nodes with the set of their successors in the graph. To ease readability
we omit the explicit reference to the graphs and simply write f0, f1, f2, . . . . Using this notational liberty the
specification of the underlying foundation is stated in Figure 10: the fi are monotone 1 and inflationary

in r 2 . Moreover the closure-forming operator f̂ is defined by 3 .

spec Foundation

extend Cpo(A)
f0, f1, f2, . . . :A → A
̂ :A → A → A → A
r :A

x ≤ y ⇒ fi (x ) ≤ fi (y) 1

r ≤ fi(r) 2

f̂(x ) = least s : x ≤ s ∧ s = f (s) 3

// A is a cpo (alternatively: lattice)
// sequence of functions

// f̂ is reflexive-transitive closure of f
// “root”

// all fi are monotone
// all fi are inflationary in r

// closure (computes least fixed point)

Fig. 10. Initial Specification

Based on this foundation we can now formulate our goal. Recall the specification of the garbage collection
task given by Collector in Figure 9: live ⊆ trace(G) ⊂ nodes . This translates into our dynamic setting as
liven ⊆ s ⊂ nodes . We add as a working hypothesis that the set live0 serves as an upper bound that we
will need to guarantee in our dynamic algorithm: liven ⊆ s ⊆ live0 ⊂ nodes . The set live0 is sometimes
called the “snapshot-at-the-beginning” [1]. Since in our abstract setting liven corresponds to the closure

f̂n(r) and live0 corresponds to the closure f̂0(r), we immediately obtain the abstract formulation 5 of
our problem statement (Figure 11).

spec Fixpoint-Problem

extend Foundation

r ≤ x ⇒ fi+1(f̂i(x )) ≤ f̂i(x ) 4

thm ∃n, s : f̂n(r) ≤ s ≤ f̂0(r) 5

thm r ≤ x ⇒ f̂0(x ) ≥ f̂1(x ) ≥ f̂2(x ) ≥ . . . 6

// garbage can only grow

// liven ≤ s ≤ live0

// Lemma 5

Fig. 11. Initial Specification

Axiom 4 is the abstract counterpart of the fundamental Proposition 1: the set of live nodes is monoton-
ically decreasing over time, or, dually, garbage increases monotonically. For proof-technical reasons we
have to conditionalize this property to any set x containing the roots r .)

Note that the existential formula 5 is trivially provable by setting n = 0 and s = f̂0(r). Actually the
property 6 (see Lemma 5 below) shows that such an s exists for any n. However, our actual task will
be to come up with a constructive algorithm that yields such an n and s .

For the specification FixpointProblem we can prove the property 6 (i.e. Lemma 5) that will be needed
later on. This monotonic decreasing of the closure is in accordance with our intuitive perception of the
Mutator’s activities. The operation delArc may lead to fewer live nodes. And the operations addArc and
addNew do not change the set of live nodes (since the freelist is part of the live nodes).
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Lemma 5 (Antitonicity of closure). The closures are monotonically decreasing:

For r ≤ x we have f̂0(x ) ≥ f̂1(x ) ≥ f̂2(x ) ≥ . . . 6

Proof : We use a more general formulation of this lemma: For monotone g and h we have the property

∀x : g(ĥ(x )) ≤ ĥ(x ) ⇒ ĝ(x ) ≤ ĥ(x )

We show by induction that ∀i : g i (x ) ≤ ĥ(x ). Initially we have g0(x ) = x ≤ ĥ(x ) due to the general
reflexivity property 3 of the closure. The induction step uses the induction hypothesis and then the
premise: g i+1(x ) = g(g i (x )) ≤ g(ĥ(x )) ≤ ĥ(x ). By instantiating fi+1 for g and fi for h we immediately

obtain f̂i+1(x ) ≤ f̂i(x ) by using the axiom 4 , when r ≤ x . (End of proof)

3.3 The Microstep Refinement

In order to get closer to constructive solutions we perform our first essential refinement. Generalizing
the idea of Cai and Paige in Theorem 2, we add further properties to our specification, resulting in the
new specification of Figure 12. Note that we now use some member sn of the sequence s0, s1, s2, . . . as a
witness for the existentially quantified s .

spec Micro-Step

extend FixpointProblem
s0, s1, s2, . . . :A

s0 = r 7

si < si+1 ≤ fi (si) ∨ si = fi(si) 8

thm ∃n: f̂n(r) ≤ sn ≤ f̂0(r) 9

thm f̂0(s0) ≥ f̂1(s1) ≥ . . . ≥ f̂n(sn) 10

// sequence of approximations

// start with “root”
// computation step

// to be shown below

// Lemma 6 below

Fig. 12. The “micro-step approach”

Proof of property 9 : In a finite lattice the si cannot grow forever. Therefore there must be a fixpoint
sn = fn(sn) due to axiom 8 . Then the left half of the proof of 9 follows trivially from monotonicity:

∀i : r ≤ si
` r ≤ sn = fn(sn)

` f̂n(r) ≤ f̂n(fn(sn)) = f̂n(sn) = sn

// axiom 7 and 8

// sn is fixpoint

// properties of f̂n Lemma 4

The right half sn ≤ f̂0(r) is a direct consequence of the following Lemma 6. (End of proof)

Lemma 6 (Decreasing Closures). As a variation of Lemma 5 we can show property 10 : the closures
are decreasing, even when applied to the increasing si :

∀i : f̂i+1(si+1) ≤ f̂i(si)

Proof : On the basis of Lemma 5 (property 6 in Figure 11) the proof follows directly from axiom 8 by
monotonicity:
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si+1 ≤ fi(si)

` f̂i+1(si+1) ≤ f̂i+1(fi(si)) ≤ f̂i(fi(si)) = f̂i(si)

// axiom 8

// monotonicity of f̂i+1; 6

Note that 6 is applicable here, since – due to 8 – r ≤ fi(si) holds. (End of proof)

Lemma 6 may be depicted as follows:

s0
s1

s2
f̂2(s2) f̂1(s1) f̂0(s0)

where the approximations s0, s1, s2, . . . keep growing, while their closures f̂0(s0), f̂1(s1), f̂2(s2), . . . keep
shrinking.

This essentially concludes the derivation that can reasonably be done on the abstract mathematical level
of fixed points and lattices.

4 Garbage Collection in Dynamic Graphs

We now take specific properties of garbage collection into account, but still on the semi-abstract level of
sets and graphs. First we note that our specification of garbage collection using sets and set inclusion is
a trivial instance of the lattice-oriented specification in the previous section. Therefore all results carry
over to the concrete problem. The morphism is essentially defined by the following map:

Φ =

[A 7→ Set(Node)
≤ 7→ ⊆
fi(s) 7→ f (Gi )(s) = s ∪Gi .sucs(s) = s ∪

⋃
a∈s Gi .sucs(a)

r 7→ G0 .roots

]

– The basis now is a sequence of graphs G0, G1, G2, . . . which are due to the activities of the Mutator.
– The function f (Gi)(s) = s ∪

⋃
a∈s Gi .sucs(a) adds to the set s all its direct successors. (We will

retain the shorthand notation fi = f (Gi) in the following.)

Figure 13 illustrates the road map through our essential refinements. The left half shows the refinements
that have been performed in the previous Section 3 on the abstract mathematical level of lattices and
fixed points. The right half shows the refinements on the semi-abstract level of graphs and sets that will
be presented in this section.

Lemma 7 (Morphism abstract → concrete). Under the morphism Φ, all axioms of the abstract
specifications Foundation, FixpointProblem and MicroStep hold for the more concrete specifications of
graphs and sets (see Figure 13).

Proof : We show the three morphism properties Φ1, Φ2, Φ3 in turn.

Φ1: The proof is trivial, since the monotonicity axiom 1 is a direct consequence of the definition of Φ(fi ).
Axiom 3 is just a definition.
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spec Foundation spec Reachability

spec FixpointProblem spec Workset

spec MicroStep spec Dirtyset

Φ4

Φ5

Φ1

Φ2

Φ3

Fig. 13. Roadmap of refinements

Φ2: To foster intuition, we first consider the special case x = r : the morphism translates:

4
Φ
7→ fi+1

(
f̂i(r)

)
⊆ f̂i(r)

⇔(
live i ∪

⋃
a∈livei

Gi+1 .sucs(a)
)
⊆ live i

⇔
∀a ∈ live i :Gi+1 .sucs(a) ⊆ live i

// f̂i(r) = livei, def. of Φ(fi)

// (A1 ∪ ... ∪ An) ⊆ B ⇔ ∀i : Ai ⊆ B

In order to prove this last property, i.e. ∀a ∈ live i :Gi+1 .sucs(a) ⊆ live i , we must consider all nodes
a ∈ live i and all (sequences of) actions that the Mutator can use to effect the transition Gi ; Gi+1. We
distinguish the two possibilities for a ∈ live i :

(1) a ∈ Gi .freelist : Then there are two subcases (which base on the reasonable constraint that nodes in
the freelist and newly created nodes do not have “wild” outgoing pointers):

(1a) a ∈ Gi+1 .freelist , then Gi+1 .sucs(a) ⊆ Gi+1 .freelist ⊆ Gi .freelist ⊆ live i
(1b) a ∈ Gi+1 .active (caused by addNew ), then Gi+1 .sucs(a) = ∅ ; now (2) applies

(2) a ∈ Gi .active: Then there are three subcases for b ∈ Gi+1 .sucs(a):

(2a) (a → b) ∈ Gi .arcs ` b ∈ Gi .active ⊆ live i
(2b) (a → b) created by addArc(a, b) ` b ∈ Gi .active ⊆ live i
(2c) (a → b) created by addNew (a) ` b ∈ Gi .freelist ⊆ live i

If we start this line of reasoning not from the roots r but from a superset x ⊇ r , then we need to consider

supersets l̂i ⊇ live i (where the hat shall indicate that these sets are closed under reachability) and prove

∀a ∈ l̂i :Gi+1 .sucs(a) ⊆ l̂i . Evidently the reasoning in (1) and (2) applies here as well. But now there is
a third case:

(3) a ∈ Gi .dead . In this case there is no operation of the Mutator that could change the successors of a
(since all operations require a ∈ active). Hence Gi+1 .sucs(a) = Gi .sucs(a). Due to the closure property

we have a ∈ l̂i ⇒ Gi .sucs(a) ⊆ l̂i . The above equality then entails also Gi+1 .sucs(a) ⊆ l̂i .

Φ3: The morphism Φ translates the axioms 7 and 8 into

si ⊆ si ∪
⋃

a∈si
Gi .sucs(a)

This is trivially fulfilled such that the constraint on the choice of si+1 is well-defined. (End of proof)
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When considering the last specification Micro-Step in Figure 12 then we have basically shown that
any sequence s0, s1, s2, . . . that fulfills the constraints 7 and 8 solves our task. But we have not
yet given a constructive algorithm for building such a sequence. In the next refinement steps Φ4 and
Φ5 we will proceed further towards such a constructive implementation (actually to a whole collection
of implementation variants) by adding more and more constraints to our specification. Each of these
refinements constitutes a design decision that narrows down the set of remaining implementations.

4.1 Worksets (“Wavefront”)

As a first step towards more constructive descriptions we return to the standard idea of worksets (some-
times referred to as “wavefront”), which has already been illustrated Program 2, and in the examples in
Section 2. This refinement is given in Figure 14.

spec Workset

extend MicroStep
b0, b1, b2, . . . :A
w0, w1, w2, . . . :A

si = (bi ] wi)

f̂i(si) = bi ∪ f̂i(wi) 12

thm wn = ∅ ⇒ f̂n(sn) = bn 13

// completely treated (“black”)
// partially treated (“workset” or “gray”)

// partitioning into black and gray

// additional constraint

// termination condition

Fig. 14. The workset approach

The partitioning si = (bi ] wi) arises naturally from the definition of the workset, as in Program 2.

But the additional axiom 12 is a major constraint! It essentially states that the closure f̂i(si) of the
current approximation si shall be primarily dependent on the closure of the workset wi . This reduces
the design space of the remaining implementations considerably – but from a practical viewpoint this
is no problem, since we only exclude inefficient solutions. The theorem 13 stated in the specification
provides a termination condition for the later implementations that is far more efficient than our original
termination criterion fn(sn) = sn .

An important observation: It is easily seen that the subtle error situation illustrated in Figure 6 in
Section 2 violates the axiom 12 . Therefore any further refinement of the specification Workset cannot
exhibit this error. In other words: if we derive an implementation by refinement from the specification
Workset in Figure 14, then we are certain that the bug cannot occur!

A major problem: Unfortunately, just introducing sufficient constraints for excluding error situations
is not enough. Consider the situation of Figure 6 in Section 2. We have to ensure that the Mutator
cannot perform the two operations addArc(A,E ) and delArc(D ,E ) without somehow keeping the axiom
12 intact. This necessitates for the first time that the Mutator cooperates with the Collector, thus
introducing constraints for the Mutator. Even though these constraints may be hidden in the component
Store, they do have an implicit influence on the Mutator’s working.

As has already been pointed out in Section 2, there are three principal possibilities to resolve this problem:

– One can stop the Mutator until the Collector has finished (Section 3.1).
– One can put A or E into the workset, when addArc(A,E ) is executed.
– One can put E into the workset, when delArc(D ,E ) is executed.



17

Each of these solutions keeps the axiom 12 intact, but they have problems. Stopping the Mutator is
unacceptable, since this destroys the very idea of having Mutator and Collector work concurrently. In
both of the other cases the Mutator adds elements to the workset, while the Collector is taking them out
of the workset. Naive implementations of this specification would not guarantee termination.

In the following we will present several refinements for solving this problem. These refinements are the
high-level formal counterparts of solutions that can be found in the literature and in realistic production
systems for the JVM and .Net.

4.2 Dirty Nodes

One can alleviate the stop times for the Mutator by splitting the workset into two sets, one being the
original workset of the Collector, the other assembling the critical nodes from the Mutator. This is shown
in Figure 15. The new axiom 14 is similar to 12 using the partitioning wi = (gi ] di).

spec Dirtyset

extend Workset
g0, g1, g2, . . . :A
d0, d1, d2, . . . :A

si = (bi ] gi ] di)

f̂i(si) = bi ∪ f̂i(gi) ∪ f̂i(di) 14

thm gn = ∅ ⇒ f̂n(sn) = bn ∪ f̂n(dn ) 15

// partially treated by Collector (“gray”)
// introduced by Mutator (“dirty”)

// partitioning into black, gray and dirty

// closure condition

// intermediate termination condition

Fig. 15. Introducing “dirty” nodes

This specification can be implemented by a Collector that successively treats the gray nodes in gi until
this set becomes empty (which can be guaranteed). But – by contrast to the earlier algorithms – this
does not yet mean that all live nodes have been found. As the theorem 15 shows we still have to compute
f̂i(di ). But this additional calculation tends to be short in practice, and the Mutator can be stopped
during its execution. Consequently, correctness has been retained and termination has been ensured.

The Mutator now adds “critical” nodes to the “dirty” set di . In order to keep the set di as small as
possible one does not add all potentially critical nodes to it: as follows from axiom 14 , black or gray
nodes need not be put into di . And since di is a set, nodes need not be put into it repeatedly. Actually,
when the Mutator executes addArc(a, b) with a /∈ si (“a is still before the wavefront”), then axiom 14

would allows us the choice of putting a into di or not (similarly for b. Commonly, a is simply added to
di .

4.3 Implementing the Step si 7→ si+1

So far all our specifications only impose the constraint 8 (see MicroStep in Figure 12) on their imple-
mentations, that is:

si < si+1 ≤ fi(si) ∨ si = fi(si)

The actual computation of the step si 7→ si+1 has to be implemented by some function step. For this
function we can have different degrees of granularity:

– In a coarse-grained implementation we pick some node x from the gray workset and add all its
non-black successors to the workset. Then we color x black.
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This variant is simpler to implement and verify, but it entails a long atomic operation. The corre-
sponding write barrier slows down the standard working of the Mutators.

– In a fine-grained implementation we treat the individual pointer fields within the current (gray) node
x one-by-one. In our abstract setting this means that we work with the individual arcs.
This makes the write barrier shorter and thus increases concurrency, but the implementation and its
correctness proof become more intricate.

On our abstract level we treat this design choice by way of two different refinements. This is depicted
in Figure 16 (where the shorthand notation . . .using x with p(x ) entails that the property only has to
hold when such an x exists).

spec DirtySet

spec CoarseStep

step: Set(Node)× Set(Node)
→ Set(Node)× Set(Node)

step(b, g) = (b ⊕ x ,
(g ∪ sucs(x )) \ (b ⊕ x ))
using x with

x ∈ g \ b

spec FineStep

step: Set(Node)× Set(Node)
→ Set(Node)× Set(Node)

step(b, g) = (b, g ⊕ y)
using x , y with

x ∈ g ∧ (x → y) ∈ Arcs ∧ y /∈ (b ∪ g)
step(b, g) = (b ⊕ x , g 	 x )

using x with

x ∈ g ∧ sucs(x ) ∩ (b ∪ g) = ∅

Φ1 Φ2

Fig. 16. Step functions of different granularities

A note of caution. If we apply the morphism Φ introduced at the beginning of Section 4 directly, the
strict inclusion si < si+1 of axiom 8 would not be provable. Therefore we must interpret

(b, g) < (b′, g ′)
Φ
7→ b ⊂ b′ ∨ (b = b′ ∧ g ⊂ g ′).

But there are still further implementation decisions to be made. Both CoarseStep and FineStep specify (at
least partly) how the step operation deals with the selected gray node. But this still leaves one important
design decision open: How are the gray nodes selected? In the literature we find several approaches to
this task:

1. Iterated scanning. One may proceed as in the original paper by Dijkstra et al. [3] and repeatedly scan
the heap, while applying step to all gray nodes that are encountered. This has the advantage of not
needing any additional space, but it may lead to many scans over the whole heap, in the worst case
O(N 2) times, and is not considered practical.

2. Alternatively one performs the classical recursive graph traversal, which may equivalently be realized
by an iteration with a workset managed as a stack. This allows all the well-known variations, ranging
from a stack for depth-first traversal to a queue for breadth-first traversal. In any case the time cost is
in the order O(|live |), since only the live nodes need to be scanned. However, there also is a worst-case
need for O(|live|) space – and space is a scarce resource in the context of garbage collection.

3. One may compromise between the two extremes and approximate the workset by a data structure
of bounded size (called a cache in [4, 5]). When this cache overflows one has to sacrifice further scan
rounds.
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4. When there are multiple mutators, for efficiency it is necessary to have local worksets working con-
currently.

These design choices are illustrated in Figure 17, but we refrain from coding all the technical details.

spec DirtySet

spec IteratedScan spec Recursion spec BoundedCache spec LocalWorkSets

Ψ1 Ψ2 Ψ3 Ψ4

Fig. 17. Design choices for finding the gray nodes

It should be emphasized that the refinements Ψ1, Ψ2, Ψ3, Ψ4 of Figure 17 are independent of the refinements
Φ1, Φ2 of Figure 16. This means that we can combine them in any way we like. The combination of some
Φi with some Ψj is formally achieved by a pushout construction as already mentioned in Section 1. In a
system like Specware [7] such pushouts are performed automatically.

Further refinements to handle generational garbage collectors, dirty cards, dirty pages and related tech-
niques for scanning the dirty nodes are sketched in [13].

5 Conclusion

It is well known that realistic garbage collectors exhibit a huge amount of technical details that are
ultimately responsible for the size and complexity of the verification efforts. The pertinent issues cover a
wide range of questions such as:

– What are the exact read and write barriers?
– How do we treat the references in the global variables, the stacks and the registers?
– Where do we put the marker bits (in mark-and-sweep collectors) or the forward pointers (in copying
collectors)?

Due to space limitations we have omitted discussion of these and other topics, which may however be
found in the extended version of this paper [13], particularly the issue of computing the dynamically
changing set of roots.

We have shown how the main design concepts in contemporary concurrent collectors can be derived
from a common formal specification. The algorithmic basis of the concurrent collectors required the
development of some novel generalizations of classical fixpoint iteration theory. We hope to find a wide
variety of applications for the generalized theory, as there has been for the classical theory. This is of
interest since the reuse of abstract design knowledge across application domains is a key factor in the
economics of formal derivation technology. Alternative refinements from the basic algorithm lead to a
family tree of concurrent collectors, with shared ancestors corresponding to shared design knowledge.
While our presentation style has been pedagogical, the next step is to develop the derivation tree in a
formal derivation system, such as Specware.
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