
to appear in IEEE Transactions on Software Engineering Special Issue on Formal Methods, September 1990

KIDS: A Semi-Automatic Program Development System

Douglas R. Smith
Kestrel Institute

3260 Hillview Avenue
Palo Alto, California 94304

4 February 1994

Abstract

The Kestrel Interactive Development System (KIDS) provides automated sup-
port for the development of correct and efficient programs from formal specifi-
cations. The system has components for performing algorithm design, deductive
inference, program simplification, partial evaluation, finite differencing optimiza-
tions, data type refinement, compilation, and other development operations. Al-
though their application is interactive, all of the KIDS operations are automatic
except the algorithm design tactics which require some interaction at present.
Dozens of programs have been derived using the system and we believe that
KIDS could be developed to the point that it becomes economical to use for
routine programming. To illustrate the use of KIDS, we trace the derivation
of an algorithm for enumerating solutions to the k-queens problem. The initial
algorithm that KIDS designs takes about sixty minutes on a SUN-4/110 to find
all 92 solutions to the 8-queens problem instance. The final optimized version
finds the same solutions in under one second.

Index Terms – formal specifications, program transformation, automated programming, au-
tomated deduction, algorithm design, program optimization, data type refinement.

1

Contents

1 Introduction 4

2 Usage of KIDS 5

3 Preliminaries 6

3.1 Language . 7

3.2 Specifications . 7

3.3 Directed Inference . 8

4 Derivation of a k-Queens Algorithm 10

4.1 Domain Theory and Specification . 11

4.2 Algorithm Design . 12

4.3 Simplification . 21

4.4 Partial Evaluation/Specialization . 25

4.5 Finite Differencing . 26

4.6 Case Analysis . 30

4.7 Data Type Refinement . 30

4.8 Compilation . 33

4.9 Results and Summary . 33

5 Critique 35

6 Related Work 38

7 Concluding Remarks 38

Appendix 1: KIDS Interface 40

Appendix 2: Domain Theory for the Queens Problem 41

References 45

2

List of Figures

1 Formulating the k-queens problem . 10

2 Generator of bounded length sequences . 16

3 Generator of sequences over the set {1..k} 19

4 Global search algorithm for the k-queens problem 22

5 Queens code after context-independent simplification 23

6 Queens code after context-dependent simplification 25

7 Queens code after partial evaluation/specialization 26

8 Abstraction operation underlying the finite differencing optimization 27

9 Queens algorithm after one finite differencing step 28

10 Queens algorithm after finite differencing . 29

11 Queens algorithm after case analysis . 30

12 A structure-sharing representation of sequences 32

13 Queens algorithm after data type selection 34

3

1 Introduction

The construction of a computer program is based on several kinds of knowledge: knowl-
edge about the particular problem being solved, general knowledge about the application
domain, programming knowledge peculiar to the domain, and general programming knowl-
edge about algorithms, data structures, optimization techniques, performance analysis, etc.
We report here on an ongoing effort to formalize and automate various sources of program-
ming knowledge and to integrate them into a highly automated environment for developing
formal specifications into correct and efficient programs (c.f. [2]). The system, called KIDS
(Kestrel Interactive Development System), provides tools for performing deductive inference,
algorithm design, expression simplification, finite differencing, partial evaluation, data type
refinement, and other transformations. The KIDS tools serve to raise the level of language
from which the programmer can obtain correct and efficient executable code through the use
of automated tools.

A user of KIDS develops a formal specification into a program by interactively applying
a sequence of high-level transformations. During development, the user views a partially
implemented specification annotated with input assumptions, invariants, and output condi-
tions (a snapshot of a typical screen appears in the Appendix 1). A mouse is used to select a
transformation from a command menu and to apply it to a subexpression of the specification.
In effect, the user makes high-level design decisions and the system carries them out.

The unique features of KIDS include its algorithm design tactics and its use of a deductive
inference component. Its other operations, such as simplification and finite differencing, are
well-known, but have not been integrated before in one system. All of the KIDS transforma-
tions are correctness-preserving, fully automatic (except the algorithm design tactics which
require some interaction at present) and perform significant, meaningful steps from the user’s
point of view. Our intent is to provide a base level of program transformations that can be
composed via a tactic or metaprogramming language to yield higher-level or domain-specific
transformations [19, 42, 18].

After briefly discussing the environment and inference system underlying KIDS, we step
through the derivation of a program for enumerating all solutions to the k-queens problem.
The steps are as follows. First we build up a domain theory in order to state and reason
about the queens problem. Then, a well-structured but inefficient backtrack algorithm [37]
is created that works by extending partial solutions. To improve efficiency we apply sim-
plification and partial evaluation [6] (specialization [32]) operations. We also perform finite
differencing [29] which results in the incremental maintenance of data structures recording
the rows and diagonals that are currently unoccupied by queens in the partial solution. Next,
high-level-datatypes such as sets and sequences are refined into more machine-oriented types
such as bit-vectors and linked lists. Finally, the resulting code is translated to executable
form by a conventional compiler.

The initial algorithm that KIDS designs takes about sixty minutes on a SUN-4/110 to find
all 92 solutions to the 8-queens problem instance. The final optimized version finds the same
solutions in under one second. Dozens of programs have been derived using the system and

4

we believe that KIDS could be developed to the point that it becomes economical to use for
routine programming.

In Section 2 we present an overview of the usage of KIDS and discuss some of the underlying
system support and its graphical interface. In Section 3 we introduce some basic concepts
of language, specification format, and deductive inference. The derivation of an algorithm
for enumerating solutions to the k-queens problem is in Section 4. Discussions of the math-
ematical foundations of the various KIDS development operations are interleaved with the
derivation steps. We conclude with a critique of KIDS with respect to various characteristics
of a successful automated software design system and discussion of related work.

2 Usage of KIDS

We present an overview of general characteristics of the KIDS system and how it is used.
Currently, KIDS runs on Symbolics, SUN-4, and SPARC workstations. It is built on top
of REFINE 1, a commercial knowledge-based programming environment [1]. The REFINE
environment provides

• an object-attribute-style database that is used to represent software-related objects via
annotated abstract syntax trees;

• grammar-based parser/unparsers that translate between text and abstract syntax;

• a very-high-level language (also called REFINE) and compiler. The language supports
first-order logic, set-theoretic data types and operations, transformation and pattern
constructs that support the creation of rules. The compiler generates CommonLisp
code.

The KIDS system is almost entirely written in REFINE and all of its operations work on
the annotated abstract syntax tree representation of specifications in the REFINE database.
A key feature of the unparsers/pretty-printers is the option for mouse-sensitive syntax - the
pretty printer sets up active regions on the screen so that by moving the mouse around, the
system can compute the nearest subexpression in the text and highlight it.

KIDS is basically a program transformation system – one applies a sequence of consistency-
preserving transformations to an initial specification and achieves a correct and hopefully
efficient program. The system emphasizes the application of complex high-level transforma-
tions that perform significant and meaningful actions. From the user’s point of view the
system allows the user to make high-level design decisions like, “design a divide-and-conquer
algorithm for that specification” or “simplify that expression in context”. We hope that
decisions at this level will be both intuitive to the user and be high-level enough that useful
programs can be derived within a reasonable number of steps.

1REFINE is a trademark of Reasoning Systems, Inc., Palo Alto, California.

5

The user typically goes through the following steps in using KIDS for program development.

1. Develop a domain theory – The user builds up a domain theory by defining appropriate
types and functions. The user also provides laws that allow high-level reasoning about
the defined functions. Our experience has been that distributive and monotonicity
laws provide most of the laws that are needed to support design and optimization.
Recently we have added a theory development component to KIDS that supports the
automated derivation of distributive laws.

2. Create a specification – The user enters a specification stated in terms of the underlying
domain theory.

3. Apply a design tactic – The user selects an algorithm design tactic from a menu and
applies it to a specification. Currently KIDS has tactics for simple problem reduc-
tion (reducing a specification to a library routine) [35], divide-and-conquer [35], global
search (binary search, backtrack, branch-and-bound) [37], and local search (hillclimb-
ing) [22, 23].

4. Apply optimizations – The KIDS system allows the application of optimization tech-
niques such as simplification, partial evaluation, finite differencing, and other trans-
formations. The user selects an optimization method from a menu and applies it by
pointing at a program expression. Each of the optimization methods are fully auto-
matic and, with the exception of simplification (which is arbitrarily hard), take only a
few seconds.

5. Apply data type refinements – The user can select implementations for the high-level
data types in the program. Data type refinement rules carry out the details of con-
structing the implementation.

6. Compile – The resulting code is compiled to executable form. In a sense, KIDS can be
regarded as a front-end to a conventonal compiler.

Actually, the user is free to apply any subset of the KIDS operations in any order – the above
sequence is typical of our experiments in algorithm design and is followed in this paper. The
screen dump in Appendix 1 shows the interface at the point after algorithm design when
the user has just selected the Simplify operation on the command menu at the top and is
pointing to an expression as the argument to the simplifier. This ability to select arguments
by pointing greatly enhances the usability of a program transformation system.

3 Preliminaries

In this section we present the language used in this paper. We also describe “directed infer-
ence”, a generalization of first-order theorem-proving that underlies many of the development
operations of KIDS.

6

3.1 Language

A functional specification/programming language augmented with set-theoretic data types
will be used in this paper. The main type constructors and their operations (listed below)
are based on those of the REFINE language. The boolean type admits the usual operators
and quantifiers of the predicate calculus (∧ , ∨ ,¬, =⇒ , ∀, ∃) with the exception that
equality (=) is used for logical equivalence.

Sets

S: set(Nat) example type declaration of a set of natural numbers
{ } the empty set
{1, 2, 4, 8}, {2..5} literal set former; e.g. {2..5} = {2, 3, 4, 5}
{f(~x) | P (~x)} general set former
=, 6=, ∈, 6∈, ⊆ comparison predicates: equality; membership; improper subset
∪, ⊎, ∩ union, disjoint union, intersection
reduce(bop, S) reduction of the set S by the associative and commutative binary operator bop;

e.g., reduce(∪, {{1, 2}, {2}, {3}}) = {1, 2, 3}
S + x element addition
S − x element deletion

Sequences

A: seq(integer) type declaration
[] the empty sequence
empty(A) A = []
A(i) the ith element of A; e.g. [4, 5, 6](2) = 5
=, 6=, ∈, 6∈ comparison predicates: equality; membership, e.g. 3 ∈ [2, 3, 5, 3]
domain(A) the set of integers between 1 and length(A) inclusive
range(A) same as {A(i) | i ∈ domain(A)}
length(A) length([]) = 0, length ([3, 4]) = 2
first(A) same as A(1)
rest(A) all but the first; e.g. rest([4, 5, 6, 4]) = [5, 6, 4]
append(A, x) insert x at end of A; e.g. append([1, 2], 3) = [1, 2, 3]
concat(A,B) concatenate sequences A and B.

REFINE is strongly typed and has a type inference system. We will freely insert or omit
type specifications for the sake of readability. Other notation will be introduced as needed.

3.2 Specifications

In this paper a formal specification serves to define the problem for which we desire an
efficient computational solution. We define a problem by means of functional constraints on
input/output behavior. A specification can be presented as a quadruple F = 〈D,R, I, O〉
where D is the input type restricted to those values satisfying I : D → boolean, the input

7

condition (also called input assumptions). The output type is R and the output condition
O : D × R→ boolean defines the notion of acceptable or feasible solutions – if O(x, z) then
we say z is a feasible solution with respect to input x.

Specifications/programs will also be presented in a more program-like format:

function F (x : D) : set(R)
where I(x)
returns {z | O(x, z)}
= Body

This program specification for problem F returns the set of all values z of type R that satisfy
the output condition O. The expression Body (when present) is code that can be executed
to compute F . A specification of this form is consistent if for all possible inputs satisfying
the input condition, the body produces the same set as specified in the returns expression;
formally

∀(x : D) (I(x) =⇒ F (x) = {z | O(x, z)}). (1)

The KIDS interface shown in Appendix 1 separates the program body (left pane) from the
input and output conditions, called the interface specification (right pane).

3.3 Directed Inference

Deductive inference is necessary for applying general knowledge to particular problems. We
have built a system called RAINBOW II that performs a form of deduction called directed
inference. In directed inference, a source term (or formula) is transformed into a target
term (or formula) bearing a specified relationship to the first [34]. As special cases it can
perform first-order theorem-proving and formula simplification. It also allows the inference of
sufficient conditions (antecedents) or necessary conditions (consequents) of a formula. This
flexibility allows us to formulate a variety of design and optimization problems as inference
tasks. Directed inference can play a constructive role in design rather than simply verifying
work done by the user or by some system.

Generally, inference tasks in this paper are specified in the following (slightly simplified)
form

Find some (Target) (A =⇒ (Source(x1, . . . , xm) −→ Target(y1, . . . , yn)))

where A is a conjunction of assumptions, Source is the “source” term (or formula), and −→
is a reflexive and transitive ordering relation between terms, called the inference direction.
For notational simplicity all free variables are universally quantified. In words, we want to

8

derive some term (or formula) Target expressed over the variables {y1, . . . , yn} (a subset of
the free variables {x1, . . . , xm} of Source) such that the relationship

Source(x1, . . . , xm) −→ Target(y1, . . . , yn)

holds under the given assumptions. Currently the inference direction can be specified to be
one of the following.

forward inference =⇒
backward inference ⇐=
simplification =
deriving a lower bound ≥
deriving an upper bound ≤

The inference process involves applying a sequence of transformations to the source term.
The transformations are restricted to those that preserve the specified inference direction.

RAINBOW II relies on a library of over 500 rules for reasoning about REFINE program
expressions. The rules have the general form of conditional rewrite rules:

C =⇒ (s −→ t)

where −→ is an inference direction (as above), C is an applicability condition, s is the
source expression, and t is the target expression. The rules are automatically compiled
from first-order theorems and are indexed according to (1) the dominant operator symbol
in s and (2) the inference direction. For example, when deriving a necessary condition on
P (f(x), g(x, y)), RAINBOW II retrieves and tries to apply all rules whose dominant symbol
is P and whose inference direction is either =⇒ or =. RAINBOW II keeps track of how
many inequations it has applied in deriving each target expression and uses this quantity to
compute a measure of “semantic distance” of the source from the target. Semantic distance
plus a heuristic measure of computational complexity is used to select an optimal solution
from amongst the derived solutions.

Most of the development operations in this paper invoke RAINBOW II. Some of these tasks
could be performed more efficiently by special-purpose inference systems, but we feel that
the flexibility and conceptual economy allowed by using a common library of laws and a
general-purpose inference system has resulted in a net productivity gain in our research.

RAINBOW II can be run in interactive or automatic modes, although in KIDS it is almost
always treated as a subroutine that runs automatically and returns a result. It can be
thought of as a transformational search engine that explores alternatives and selects solutions
on the basis of a simple complexity measure (which can be user-supplied). The traditional
problems with using general-purpose inference systems are treated by carefully structuring
the deductive tasks that are fed to RAINBOW II so that solutions can be reached without
deep search. Also, resource bounds are placed on the execution of RAINBOW II and it
returns the best solution that it can find within the bounds.

9

Figure 1: Formulating the k-queens problem

4 Derivation of a k-Queens Algorithm

KIDS has been used to design and optimize global search algorithms for several dozen prob-
lems including search of an ordered sequence (binary search), job scheduling according to a
precedence relation, graph coloring, vertex covers, set covers, knapsack, traveling salesman
tours, and others [37]. We use the classic k-queens problem to illustrate KIDS since it is
well-known and the derivation exercises several interesting transformations.

The eight main steps of the derivation are presented in roughly independent subsections
below. The most difficult step is the design of a backtrack algorithm in Section 4.2. The
reader may profitably skim this section and continue with subsequent sections which present
program optimizations and refinements.

10

4.1 Domain Theory and Specification

Suppose that we want to find all ways to place k queens on a k × k chessboard so that no
two queens are in the same row, column, or diagonal. A solution to the 4−queens problem is
shown in Figure 1. In order to specify the queens problem we must first define some queens-
related concepts and develop laws for reasoning about them – that is, we need to build
up a domain theory for the queens problem. The output can be represented as a sequence
assign in which assign(i) is the row placement of the queen in the ith column; e.g., [3, 1, 2, 4]
represents a solution to the 4-queens problem where queens are placed at coordinates (1,3),
(2,1), (3,2), and (4,4) (see Figure 1). The constraint that no queens can appear in the same
row or column is captured in the usual notion of a bijection.

injective(M : seq(integer), S : set(integer)) : boolean
= range(M) ⊆ S
∧ ∀(i, j)(i ∈ domain(M) ∧ j ∈ domain(M) ∧ i 6= j =⇒ M(i) 6=M(j))

bijective(M : seq(integer), S : set(integer)) : boolean
= injective(M,S) ∧ range(M) = S

That is, a sequenceM is injective into a set S if all elements ofM are in S and no element of
M occurs twice. A sequence M is bijective into a set S if it is injective and each element of
S occurs in M . We also create special definitions for the notion that no queens can appear
in the same diagonal. Each “up” diagonal on the chessboard (arbitrarily from southwest to
northeast) is uniquely characterized by the difference of the row number and column number
of its squares (See Figure 1). Analogously, down diagonals are characterized by the sum of
row and column numbers.

no two queens per up diagonal(S : seq(integer)) : boolean
= ∀(i, j)(i ∈ domain(S) ∧ j ∈ domain(S) ∧ i 6= j =⇒ (S(i)− i 6= S(j)− j))

no two queens per down diagonal(S : seq(integer)) : boolean
= ∀(i, j)(i ∈ domain(S) ∧ j ∈ domain(S) ∧ i 6= j =⇒ (S(i) + i 6= S(j) + j))

Distributive laws, monotonicity laws, and other inference rules are also developed in order to
reason about the specification at the level of the defined terms rather than the level of their
detailed definitions. While this is not logically necessary, it allows a reasoning process that
is often simpler (because inference steps have a larger, more appropriate grainsize), better
structured, and more understandable.

We are currently developing a configuration of KIDS that is used to develop domain theories.
A theory is comprised of a list of imported theories, a set of introduced types, new operations
and their definitions, laws, and rules (c.f. [16, 20]). A hierarchic library of theories is main-
tained with importation as the principle link. Users can enter definitions of new functions

11

or create new definitions by abstraction on existing expressions. The inference system can
be used to verify common properties such as associativity, commutativity, or idempotence.
More interestingly, we have used RAINBOW II to automatically derive distributive and
monotonicity laws.

Distributive laws for the injective predicate are as follows.

∀(S)(injective([], S) = true)

∀(W, a, S) (injective(append(W, a), S) = (injective(W,S) ∧ a ∈ S ∧ a /∈ range(W)))

∀(W1,W2, S) (injective(concat(W1,W2), S)
= (injective(W1, S) ∧ injective(W2, S) ∧ range(W1)

⋂
range(W2) = {}))

The complete queens theory used by KIDS is listed in Appendix 2.

We can now formulate a specification for the queens problem:

function Queens (k : integer) : set(seq(integer))
where 1 ≤ k
returns {assign | bijective(assign, {1..k})

∧ no two queens per up diagonal(assign)
∧ no two queens per down diagonal(assign)}.

This formulation incorporates the constraint that exactly one queen must be placed in each
column. We could start with the more abstract specification that simply asks for a map from
queens to the coordinates of their placement. Although we have not tried it, KIDS should
be able to derive a similar algorithm.

4.2 Algorithm Design

The next step is to develop a correct, high-level algorithm for enumerating solutions to
the queens problem. KIDS has specialized tactics for creating algorithms of various kinds
such as divide-and-conquer [35], local search [22, 23], and global search [37]. The latter class
generalizes binary search, backtracking, branch-and-bound, constraint satisfaction, and other
algorithmic paradigms.

The basic idea of global search is to represent and manipulate sets of candidate solutions.
The principal operations are to extract candidate solutions from a set and to split a set into
subsets. Derived operations include various filters which are used to eliminate sets containing
no feasible or optimal solutions. Global search algorithms work as follows: starting from an
initial set that contains all solutions to the given problem instance, the algorithm repeatedly
extracts solutions, splits sets, and eliminates sets via filters until no sets remain to be split.

12

The process is often described as a tree (or DAG) search in which a node represents a set of
candidates and an arc represents the split relationship between set and subset. The filters
serve to prune off branches of the tree that cannot lead to solutions.

The sets of candidate solutions are often infinite and even when finite they are rarely rep-
resented extensionally. Thus global search algorithms are based on an abstract data type
of intensional representations called space descriptors (denoted by hatted symbols). In ad-
dition to the extraction and splitting operations mentioned above, the type also includes
a predicate satisfies that determines when a candidate solution is in the set denoted by a
descriptor.

The various operations in the abstract data type of space descriptors together with problem
specification can be packaged together as a theory. Formally, abstract global search theory
(or simply gs−theory) G = 〈B, R̂, Î , r̂0 , Satisfies , Split ,Extract , ≻ 〉 is presented as follows:

Sorts D ,R, R̂
Operations

I : D → boolean
O : D × R → boolean

Î : D × R̂ → boolean

r̂0 : D → R̂

Satisfies : R × R̂ → boolean

Split : D × R̂ × R̂ → boolean

Extract : R × R̂ → boolean

≻ : R̂ × R̂ → boolean
Axioms

GS0. I (x) =⇒ Î (x , r̂0 (x))

GS1. I (x) ∧ Î (x , r̂) ∧ Split (x , r̂ , ŝ) =⇒ Î (x , ŝ) ∧ r̂ ≻ ŝ
GS2. I (x) ∧ O(x , z) =⇒ Satisfies(z , r̂0 (x))

GS3. I (x) ∧ Î (x , r̂) =⇒ (Satisfies(z , r̂) = ∃(ŝ) (Split∗(x , r̂ , ŝ) ∧ Extract(z , ŝ)))
GS4. Well-foundedness of ≻

where B = 〈D ,R, I ,O〉 constitutes a problem specification, R̂ is the type of space descriptors,

Î defines legal space descriptors, r̂ and ŝ vary over descriptors, r̂0 (x) is the descriptor of
the initial set of candidate solutions, Satisfies (z , r̂) means that z is in the set denoted by
descriptor r̂ or that z satisfies the constraints that r̂ represents, Split(x , r̂ , ŝ) means that ŝ is a
subspace of r̂ with respect to input x , and Extract(z , r̂) means that z is directly extractable
from r̂ . Axiom GS0 asserts that the initial descriptor r̂0 (x) is a legal descriptor. Axiom
GS1 asserts that legal descriptors split into legal descriptors and that Split induces a well-
founded ordering on spaces. Axiom GS2 constrains the denotation of the initial descriptor
— all feasible solutions are contained in the initial space. Axiom GS3 gives the denotation
of an arbitrary descriptor r̂ — an output object z is in the set denoted by r̂ if and only if z
can be extracted after finitely many applications of Split to r̂ where

Split∗(x , r̂ , ŝ) = ∃(k : Nat) (Split k(x , r̂ , ŝ))

13

and
Split0(x , r̂ , t̂) = r̂ = t̂

and for all natural numbers k

Split k+1(x , r̂ , t̂) = ∃(ŝ : R̂) (Split(x , r̂ , ŝ) ∧ Split k(x , ŝ , t̂)).

Note that all variables are assumed to be universally quantified unless explicitly specified
otherwise.

Example: Enumerating sequences of bounded length

Consider the problem of enumerating sequences of bounded length m over a given finite
set S. A space is a set of sequences with common prefix part sol and is represented as
a pair 〈part sol,m〉 where length(part sol) ≤ m. The descriptor for the initial space is
just 〈[], m〉. Splitting is performed by appending an element from S onto the end of the
common prefix part sol. The sequence part sol itself is directly extractable from the space.
This global search theory for enumerating sequences can be presented via a correspondence
between the components of abstract gs-theory [38] and a concrete gs-theory (technically this
correspondence is known as theory interpretation or theory morphism).

F 7→ gs bounded sequences over finite set
D 7→ set(α)× integer
I 7→ λ〈S,m〉. m ∈ integer ∧ 0 ≤ m
R 7→ seq(α)
O 7→ λ〈S,m〉, q. range(q) ⊆ S ∧ length(q) ≤ m

R̂ 7→ seq(α)

Î 7→ λ〈S,m〉, part sol. length(part sol) ≤ m ∧ range(part sol) ⊆ S
Satisfies 7→ λq, part sol. ∃(r) (q = concat(part sol, r))

r̂0 7→ λ〈S,m〉. []
Split 7→ λ〈S,m〉, part sol, part sol′. length(part sol) < m

∧ ∃(i : S) (part sol′ = append(part sol, i))
Extract 7→ λq, part sol. q = part sol

End of Example

In addition to the above components of global search theory, there are various derived op-
erations which may play a role in producing an efficient algorithm. Filters, described next,
are crucial to the efficiency of a global search algorithm. Filters correspond to the notion of
pruning branches in backtrack algorithms and to pruning via lower bounds and dominance
relations in branch-and-bound. A filter ψ : D × R̂ → boolean is used to eliminate spaces
from further processing. The ideal filter decides the question “Does there exist a feasible
solution in space r̂?”, or, formally,

∃(z : R) (Satisfies(z , r̂) ∧ O(x , z)). (2)

14

However, to use (2) directly as a filter would usually be too expensive, so instead we use an
approximation to it. A necessary filter Φ satisfies

∃(z : R) (Satisfies(z , r̂) ∧ O(x , z)) =⇒ Φ(x , r̂). (3)

By the contrapositive of this definition, if Φ(x , r̂) is false for some space r̂ then there does
not exist a solution in r̂ . Thus necessary filters can be used to eliminate spaces that do not
contain solutions.

The design tactic for global search in KIDS is based on the following theorems. The proofs
may be found in [37]. The first shows how to produce a correct program from a given global
search theory. Consequently, construction of a correct global search program reduces to the
problem of constructing a global search theory. The second theorem tells us how to obtain
a global search theory for a given problem by specializing an existing global search theory.
This theorem suggests that we set up a library of global search theories for the various data
types of our language and simply select and specialize these library theories.

Theorem 4.1 Let G be a global search theory. If Φ is a necessary filter then the following
program specification is consistent

function F (x : D) : set(R)
where I (x)
returns {z | O(x , z)}
= if Φ(x , r̂0 (x))

then F gs(x , r̂0 (x))
else { }

function F gs(x : D , r̂ : R̂) : set(R)

where I (x) ∧ Î (x , r̂) ∧ Φ(x , r̂)
returns {z | Satisfies(z , r̂) ∧ O(x , z)}
= {z | Extract(z , r̂) ∧ O(x , z)}
∪ reduce(∪, { F gs(x , ŝ) | Split (x , r̂ , ŝ) ∧ Φ(x , ŝ)}).

In words, the abstract global search program works as follows. On input x the program
F calls F gs with the initial space r̂0 (x) if the filter holds, otherwise there are no feasible
solutions. The program F gs unions together two sets: (1) all solutions that can be directly
extracted from the space r̂ , and (2) the union of all solutions found recursively in spaces ŝ
that are obtained by splitting r̂ and that survive the filter. In terms of the search tree model,
F gs unions together the solutions found at the current node with the solutions found at
descendants. Note that Φ is an input invariant in F gs.

If we were to apply Theorem 4.1 to gs bounded sequences over finite set then we would
get an algorithm to generate all sequences of length at most m over the input set S. The
backtrack generator of this set could be pictured as in Figure 2.

15

Figure 2: Generator of bounded length sequences

16

The following definition gives conditions under which an algorithm for solving problem B
can be used to enumerate all solutions to A. Specification BA = 〈DA,RA, IA,OA〉 completely
reduces to specification BB = 〈DB,RB, IB,OB〉 if

RA = RB ∧ ∀(x : DA) ∃(y : DB) ∀(z : RA) (IA(x) ∧ OA(x , z)⇒ OB(y , z)). (4)

BA completely reduces to BB with substitution θ if θ(y) = t(x) and RA = RBθ

∀(x : DA) ∀(z : RA) (IA(x) ∧ OA(x , z)⇒ OB(t(x), z)). (5)

Theorem 4.2 Let GB = 〈BB , R̂, Î , r̂0 , Satisfies, Split ,Extract〉 be a global search theory, and
let BA be a specification that completely reduces to BB with substitution θ, then the structure
GA = 〈BA, R̂θ, Î θ, Satisfiesθ, r̂0θ, Splitθ,Extractθ〉 is a global search theory.

A proof may be found in [37].

A simplified tactic for designing global search algorithms has three steps.

1. Select a global search theory GB from a library which solves the problem of enumerating
the output type for the given problem A.

2. Find a substitution θ whereby BA completely reduces to BB by verifying formula (4).
Apply Theorem 4.2 to create a specialized global search theory GA.

3. Derive a necessary filter Φ via formula (3). That is, use directed inference to derive a
necessary condition of formula (2) expressed over the variables {x , r̂}. Apply Theorem
4.1 to create a global search program.

The tactic is sound and thus only generates correct programs. The interested reader should
consult [37] for the full generality of the global search model and design tactic.

The KIDS library currently contains global search theories for a number of problem domains,
such as enumerating sets, sequences, maps, and integers. For the queens problem we select
from a library a standard global search theory for enumerating sequences over a finite do-
main – gs bounded sequences over finite set. In accord with step 2, the following inference
specification is created.

set(integer) = set(α) ∧
∀(k : integer) ∃(S : set(integer), m : integer) ∀(assign : seq(integer))

(bijective(assign, {1..k})
∧ no two queens per up diagonal(assign)
∧ no two queens per down diagonal(assign))

⇒
range(assign) ⊆ S ∧ length(assign) ≤ m).

17

The derivation is simple and proceeds as follows: The types are unified yielding substi-
tution {α 7→ integer}. By forward inference from bijective(assign, {1..k}) KIDS derives
injective(assign, {1..k}) and range(assign) = {1..k}, then

range(assign) ⊆ S

= % applying range(assign) = {1..k}

{1..k} ⊆ S

= % unifying with the reflexivity law ∀(R)(R ⊆ R)

true with substitution {S 7→ {1..k}}.

From bijective(assign, {1..k}) KIDS infers length(assign) = k then

length(assign) ≤ m

= % applying length(assign) = k

k ≤ m

= % unifying with the reflexivity law ∀(i)(i ≤ i)

true with substitution { m 7→ k }.

Thus, altogether the queens problem completely reduces to gs bounded sequences over finite set
with substitution {α 7→ integer, S 7→ {1..k}, m 7→ k}. The construction in Theorem 4.2
yields the following global search theory.

F 7→ queens
D 7→ integer
I 7→ 1 ≤ k
R 7→ set(seq(integer))
O 7→ λk, assign. bijective(assign, {1..k})

∧ no two queens per up diagonal(assign)
∧ no two queens per down diagonal(assign)}

R̂ 7→ seq(integer)

Î 7→ λk, part sol. length(part sol) ≤ k ∧ range(part sol) ⊆ {1..k}
Satisfies 7→ λassign, part sol. ∃(r)(assign, concat(part sol, r))

r̂0 7→ []
Split 7→ λk, part sol, part sol′. length(part sol) < k

∧ ∃(i : integer) (i ∈ {1..k} ∧ part sol′ = append(part sol, i))
Extract 7→ λassign, part sol. assign = part sol

The analogue to Figure 2 for this new specialized theory is shown in Figure 3. This generator
enumerates a superset of queens solutions. Notice that, for example, the space descriptor

18

Figure 3: Generator of sequences over the set {1..k}

[2,2] cannot lead to any queens solutions since it denotes the placement of two queens in row
2. The next design step is to derive mechanisms for pruning away such useless nodes of the
search tree. The effect of this step is to incorporate more problem-specific information into
the generator in order to improve efficiency.

To derive a necessary filter for the Queens problem, the inference system is directed to
produce necessary conditions on the existence of an extension of a partial solution part sol
that satisfies all the Queens constraints; formally

find some (Φ)
(1 ≤ k =⇒ ∃(assign) (∃(r) (assign = concat(part sol, r)

∧ bijective(assign, {1..k})
∧ no two queens per up diagonal(assign)
∧ no two queens per down diagonal(assign))
=⇒ Φ(k, part sol)).

Any such Φ serves as a filter since if Φ does not hold for some partial solution, then by the
contrapositive of the implication there does not exist an extension that satisfies the Queens
constraints. The derivations proceed as follows.

bijective(assign, {1..k})

19

= % by definition of bijective

injective(assign, {1..k}) ∧ range(assign) = {1..k}

=⇒ % applying assign = concat(part sol, r) to the first conjunct

injective(concat(part sol, r), {1..k})

= % distributing injective over concat

injective(part sol, {1..k}) ∧ injective(r, {1..k})
∧ range(part sol)

⋂
range(r) = {})

=⇒ % dropping conjuncts

injective(part sol, {1..k}).

Also

no two queens per down diagonal(assign)

= % applying assign = concat(part sol, r)

no two queens per down diagonal(concat(part sol, r))

= % distributing no two queens per down diagonal over concat

no two queens per down diagonal(part sol) ∧ no two queens per down diagonal(r) ∧ cr

=⇒ % dropping conjuncts

no two queens per down diagonal(part sol).

An analogous derivation yields the necessary condition no two queens per up diagonal(part sol).

From among the many derived consequents RAINBOW discards useless ones and presents a
menu of possibilities for the user to choose from. The conjunction of any subset will result in
a correct algorithm. The following choices are the strongest and most useful. (It is possible
to automate this selection process using dependency tracking but we have not done so at
this writing).

no two queens per down diagonal(part sol)
∧ no two queens per up diagonal(part sol)
∧ injective(part sol, {1..k})

20

In words, the partial solution must itself satisfy the constraints that there are no two queens
per diagonal and no two queens per row. An important property of this inference task is
that the system can spend as much or as little resource as desired in search of necessary
conditions. The constant true is immediately available (though when used as a filter it
prunes no branches). Spending more resource at design time typically results in stronger
filters.

Finally the recursive REFINE program in Figure 4 is produced by applying Theorem 4.1.
That is, the correspondence between the symbols of abstract gs-theory and concrete expres-
sions is used to instantiate the program scheme in Theorem 4.1. Note that the filter derived
above is tested prior to each call to the backtracking function Queens gs and thus the filter
is displayed as an input invariant. Being produced as an instance of a program abstraction,
this algorithm obviously has some inefficiencies, even though it is correct. The intent of the
design tactics is to produce correct, very-high-level, well-structured algorithms. Subsequent
refinement and optimization is necessary in order to realize the potential of the algorithm.

Other derivations of backtrack algorithms for the queens problem appear in [3, 12, 43].
Related approaches to deriving backtrack algorithms are presented in [9, 26].

4.3 Simplification

KIDS provides two expression simplifiers. The simplest and fastest, called the Context-
Independent Simplier (CI-SIMPLIFY), is a set of equations treated as left-to-right rewrite
rules that are fired exhaustively until none apply. Some typical equations used as rewrite
rules are

length({}) = 0

and
if true then P else Q = P.

We also treat the distributive laws in Queens theory as rewrite rules: e.g.

injective([], S) = true

and

injective(append(W, a), S) = (injective(W,S) ∧ a ∈ S ∧ a /∈ range(W)).

We apply CI-Simplify to the body of all newly derived programs. As a result, the conditional
in program Queens

if injective([], {1..k})
∧ no two queens per up diagonal([])
∧ no two queens per down diagonal([])

thenQueens gs(k, [])
else { }

21

function Queens (k)
where 1 ≤ k
returns {assign | bijective(assign, {1..k})

∧ no two queens per up diagonal(assign)
∧ no two queens per down diagonal(assign)}

= if injective([], {1..k})
∧ no two queens per up diagonal([])
∧ no two queens per down diagonal([])

thenQueens gs(k, [])
else { }

function Queens gs (k, part sol : seq(integer))
where 1 ≤ k

∧ range(part sol) ⊆ {1..k}
∧ length(part sol) ≤ k
∧ injective(part sol, {1..k})
∧ no two queens per up diagonal(part sol)
∧ no two queens per down diagonal(part sol)

returns {assign | ∃(r) (assign = concat(part sol, r))
∧ no two queens per down diagonal(assign)
∧ no two queens per up diagonal(assign)
∧ bijective(assign, {1..k})}

% This set-former gathers the solutions extracted from each node of the search tree
= {assign | no two queens per down diagonal(assign)

∧ no two queens per up diagonal(assign)
∧ bijective(assign, {1..k})
∧ assign = part sol}

% This reduction collects the solutions returned from child nodes of the search tree
∪ reduce(∪, {Queens gs (k, new part sol) |

no two queens per down diagonal(new part sol)
∧ no two queens per up diagonal(new part sol)
∧ injective(new part sol, {1..k})
∧ length(part sol) < k
∧ ∃(i) (i ∈ {1..k} ∧ new part sol = append(part sol, i))}

Figure 4: Global search algorithm for the k-queens problem

22

function Queens (k)
where 1 ≤ k
returns . . .
= Queens gs(k, [])

function Queens gs (k, part sol : seq(integer))
where 1 ≤ k

∧ range(part sol) ⊆ {1..k}
∧ length(part sol) ≤ k
∧ injective(part sol, {1..k})
∧ no two queens per up diagonal(part sol)
∧ no two queens per down diagonal(part sol)

returns . . .
= {part sol | no two queens per down diagonal(part sol)

∧ no two queens per up diagonal(part sol)
∧ bijective(part sol, {1..k})}

∪ reduce(∪, {Queens gs (k, append(part sol, i)) |
no two queens per down diagonal(part sol)
∧ cross ntqpdd(part sol, [i])

∧ no two queens per up diagonal(part sol)
∧ cross ntqpud(part sol, [i])

∧ injective(part sol, {1..k}) ∧ i ∈ {1..k} ∧ i /∈ range(part sol)
∧ length(part sol) < k
∧ i ∈ {1..k}}).

Figure 5: Queens code after context-independent simplification

simplifies to Queens gs(k, []).

Another rule modifies a set former by replacing all occurrences of a local variable that is
defined by an equality:

{ C(x) | x = e ∧ P (x) } = { C(e) | P (e) }.

For example, this rule will replace new part sol by append(part sol, i) everywhere inQueens gs.
This replacement in turn triggers the application of the laws for distributing
no two queens per up diagonal, no two queens per down diagonal, and injective over append.
These distributive laws (see Appendix 2) results in the introduction of the terms
cross ntqpud(part sol, [i]) and cross ntqpdd(part sol, [i]). The result of applying CI-Simplify
to the bodies of Queens and Queens gs is shown in Figure 5. (For brevity we will sometimes
omit or use ellipsis in place of expressions that remain unchanged after a transformation).

There are other simplification opportunities in this code. For example, notice that in both

23

set-formers of Queens gs the predicate

no two queens per up diagonal(part sol)

is being tested, but it is already true because it is an input invariant. The second expression
simplifier, Context-Dependent Simplify (CD-Simplify), is designed to simplify a given expres-
sion with respect to its context. CD-Simplify gathers all predicates that hold in the context
of the expression by walking up the abstract syntax tree gathering the test of encompassing
conditionals, sibling conjuncts in the condition of a set-former, etc. and ultimately the input
conditions of the encompassing function. The expression is then simplified with respect to
this rich assumption set.

In applying CD-Simplify to the predicate of the first set-former in Queens gs, the following
inference task is setup:

find some (simplified wff)
(no two queens per down diagonal(part sol)
∧ no two queens per up diagonal(part sol)
∧ injective(part sol, {1..k})
∧ length(part sol) ≤ k
∧ range(part sol) ⊆ {1..k}
∧ 1 ≤ k
=⇒ (no two queens per down diagonal(part sol)

∧ no two queens per up diagonal(part sol)
∧ bijective(part sol, {1..k}))

= simplified wff (part sol, k)).

The first two conjuncts of the source expression immediately unify with assumptions and
thus simplify to true. For the third conjunct KIDS infers

bijective(part sol, {1..k})

= % by definition of bijective

injective(part sol, {1..k}) ∧ range(part sol) = {1..k}

= % matching the first conjunct with assumption

range(part sol) = {1..k}

= % by definition of set equality : (S = T) = (S ⊆ T ∧ T ⊆ S)

range(part sol) ⊆ {1..k} ∧ {1..k} ⊆ range(part sol)

= % matching the first conjunct with assumption

{1..k} ⊆ range(part sol)

24

function Queens (k)
= Queens gs (k, [])

function Queens gs (k, part sol)
= {part sol | {1..k} ⊆ range(part sol)}
∪ reduce(∪, {Queens gs (k, append(part sol, i))

| i 6∈ range(part sol) ∧ i ∈ {1..k}
∧ length(part sol) < k
∧ cross ntqpud(part sol, [i])
∧ cross ntqpdd(part sol, [i])})

Figure 6: Queens code after context-dependent simplification

The resulting simplified expression is

{1..k} ⊆ range(part sol).

After applying CD-Simplify to the predicates of both set-formers in Queens gs we obtain
the code in Figure 6.

4.4 Partial Evaluation/Specialization

Next we notice that the calls to cross ntqpud and cross ntqpdd have arguments of a re-
stricted form — singleton sequences. This suggests the application of partial evaluation
[6] or specialization [32]. KIDS has the classic UNFOLD transformation [10] that replaces
a function call by its definition (with arguments replacing parameters). Partial evaluation
proceeds by first UNFOLDing then simplifying.

UNFOLDing cross ntqpud(part sol, [i]), we obtain

∀(a, b)(a ∈ domain(part sol) ∧ b ∈ domain([i])
=⇒ part sol(a)− a 6= [i](b)− (length(part sol) + b)).

The following rules in the KIDS rule base

domain([x]) = {1}

x ∈ {a} = (x = a)

∀(x, y1, . . . , yn)(Q(x) ∧ x = e =⇒ P (x)) = ∀(y1, . . . , yn)(Q(e) =⇒ P (e)).

and others are used by CI-Simplify resulting in

25

function Queens gs (k, part sol)
= {part sol | {1..k} ⊆ range(part sol)}
∪ reduce(∪, {Queens gs (k, append(part sol, i))

| i 6∈ range(part sol) ∧ i ∈ {1..k}
∧ length(part sol) < k
∧ ∀(a)(a ∈ domain(part sol)

=⇒ part sol(a)− a 6= i− (length(part sol) + 1))
∧ ∀(a)(a ∈ domain(part sol)

=⇒ part sol(a) + a 6= i+ (length(part sol) + 1))}).

Figure 7: Queens code after partial evaluation/specialization

∀(a)(a ∈ domain(part sol)
=⇒ part sol(a)− a 6= i− (length(part sol) + 1)).

After applying similar operations on cross ntqpdd(part sol, [i]) KIDS produces the code in
Figure 7.

4.5 Finite Differencing

Notice that the expression range(part sol) in Figure 7 is computed each time Queens gs is
invoked and that the parameter part sol changes in a regular way. This suggests that we
create a new variable whose value is maintained equal to range(part sol) and which allows
for incremental computation – a significant speedup. This transformation is known as finite
differencing [29]. We have developed and implemented a version of finite differencing for
functional programs.

Finite differencing can be decomposed into two more basic operations: abstraction followed
by simplification. The abstraction operation is presented informally in Figure 8. Abstraction
of function f with respect to expression E(x) adds a new parameter c to f ’s parameter list
(now f(x, c)) and adds c = E(x) as a new input invariant to f . Any call to f , whether a
recursive call within f or an external call, must now be changed to supply the appropriate
new argument that satisfies the invariant – f(U) is changed to f(U,E(U)).

It now becomes possible to simplify various expressions within f and calls to f . In the
KIDS implementation, CI-Simplify is applied to the new argument in all external calls. In
terms of Figure 8, within f we temporarily add the invariant E(x) = c as a rule and apply
CI-Simplify to the body of f . This replaces all occurrences of E(x) by c. Often, distributive
laws apply to E(U(x)) yielding an expression of the form U ′(E(x)) and then U ′(c). The real
benefit of this optimization comes from the last step, because this is where the new value of
the expression E(U(x)) is computed in terms of the old value E(x).

26

function g(y)
= . . .

f(V)
. . .

function f(x)
where I(x)
= . . .

E(x)
. . .
f(U(x))
. . .

−→

function g(y)
= . . .

f(V,E(V))
. . .

function f(x, c)
where I(x) ∧ c = E(x)
= . . .

E(x)
. . .
f(U(x), E(U(x)))
. . .

Figure 8: Abstraction operation underlying the finite differencing optimization

Our approach to finite differencing differs from that in Paige’s RAPTS system [29] in
several respects. KIDS can incrementally maintain expressions containing user-defined terms
as long as appropriate distributive laws are available. Also the initialization and update
codes are performed in parallel with the modification to the dependent variable. Also there
is considerable flexibility gained by relying on a common knowledge-base of laws rather
than a specialized format as in RAPTS. On the other hand our functional approach relies
on RAINBOW II to perform simplifications whereas the RAPTS approach is specialized
and more efficient. Also, Paige has analyzed various set-theoretic expressions in order to
ascertain when finite differencing would result in a net improvement with respect to a simple
performance model. We have also implemented a table-lookup finite differencing system and
are working to integrate these two systems to get the advantages of both.

The evolving algorithm is prepared for finite differencing by subjecting it to conditioning
transformations. In this case they transform the two conjuncts

i 6∈ range(part sol) ∧ i ∈ {1..k}

to
i ∈ setdiff ({1..k}, range(part sol)).

The rationale is to group together information concerning a local variable.

We select the set difference as an expression to maintain incrementally. The changes include
(1) the addition of a new input parameter, named unoccupied rows, and its invariant to
Queens gs, (2) all occurrences of the term setdiff ({1..k}, range(part sol)) in Queens gs are
replaced by unoccupied rows, (3) appropriate arguments are created and simplified for all
calls to the function Queens gs. The initial call to Queens gs becomes

Queens gs(k, [], setdiff ({1..k}, range([])))

27

function Queens (k)
= Queens gs(k, [], {1..k})

function Queens gs (k, part sol, unoccupied rows)
where ... ∧ unoccupied rows = setdiff ({1..k}, range(part sol))
= {part sol | empty (unoccupied rows)}
∪ reduce (∪, {Queens gs (k, append(part sol, i),

unoccupied rows − {i}) |
i ∈ unoccupied rows
∧ ∀(a)(a ∈ domain(part sol)

=⇒ part sol(a)− a 6= i− (length(part sol) + 1))
∧ ∀(a)(a ∈ domain(part sol)

=⇒ part sol(a) + a 6= i+ (length(part sol) + 1))
∧ length(part sol) < k})

Figure 9: Queens algorithm after one finite differencing step

which CI-Simplifies to
Queens gs(k, [], {1..k}).

The recursive call to Queens gs becomes

Queens gs (k, append(part sol, i), setdiff ({1..k}, range(append(part sol, i)))

which CI-Simplifies to

Queens gs (k, append(part sol, i), unoccupied rows − {i}).

The resulting code is shown in Figure 9.

Notice how finite differencing introduces a meaningful data structure at this point. The
concept of which rows are currently unoccupied would naturally occur to many programmers
who are developing a queens algorithm. Here it is introduced by a problem-independent
transformation technique. Not only is the concept natural in the context of the problem, but
its incremental computation dramatically improves the efficiency of the algorithm. Note also
the need for a software database – this transformation needs global access to all invocations
of a function in order to consistently modify its interface.

Next we condition

∀(a)(a ∈ domain(part sol) =⇒ part sol(a)− a 6= i− (length(part sol) + 1)).

for finite differencing yielding

28

function Queens (k)
= Queens gs (k, [], {1..k}, { }, { }, 0)

function Queens gs (k, part sol,
unoccupied rows,
occupied up diagonals,
occupied down diagonals,
part sol length)

where ...
∧ occupied down diagonals = {part sol(j) + j | j ∈ domain(part sol)}
∧ occupied up diagonals = {part sol(j)− j | j ∈ domain(part sol)}
∧ part sol length = length(part sol)

= {part sol | empty(unoccupied rows)}
∪ reduce (∪, {Queens gs (k, append(part sol, i),

unoccupied rows − {i},
occupied up diagonals ∪ {i− (part sol length+ 1)},
occupied down diagonals ∪ {i+ part sol length+ 1)},
part sol length+ 1)

| i ∈ unoccupied rows
∧ i− (part sol length+ 1) 6∈ occupied up diagonals
∧ 1 + part sol length+ i 6∈ occupied down diagonals
∧ part sol length < k})

Figure 10: Queens algorithm after finite differencing

i− (length(part sol) + 1) 6∈ {part sol(a)− a | a ∈ domain(part sol)}.

After selecting
{part sol(a)− a | a ∈ domain(part sol)},

{part sol(a) + a | a ∈ domain(part sol)},

and
length(part sol)

for incrementalmaintenance (and naming them occupied up diagonals, occupied down diagonals,
and part sol length respectively), KIDS produces the code in Figure 10.

29

function Queens gs (k, part sol,
unoccupied rows,
occupied up diagonals,
occupied down diagonals,
part sol length)

= if empty(unoccupied rows)
then {part sol}
else reduce (∪, {Queens gs (k, append(part sol, i),

unoccupied rows − {i},
occupied up diagonals ∪ {i− (part sol length+ 1)},
occupied down diagonals ∪ {i+ part sol length+ 1)},
part sol length+ 1)

| i ∈ unoccupied rows
∧ i− (part sol length+ 1) 6∈ occupied up diagonals
∧ 1 + part sol length+ i 6∈ occupied down diagonals})

Figure 11: Queens algorithm after case analysis

4.6 Case Analysis

The Queens gs algorithm is a union of two set-valued expressions. Notice that these two
sets treat disjoint cases – when one is nonempty the other is empty. This suggests the use of
case-analysis to clarify and simplify the code. The idea of the case analysis transformation in
KIDS is simple: an expression e is replaced with the expression if P then e else e, where P is
a predicate whose variables are all bound in e’s context. The payoff from this transformation
rule comes from applying CD-simplification to the branches of the conditional. For Queens gs
we select the whole body as e and use empty(unoccupied rows) as the case analysis predicate.
After simplification we get the code in Figure 11.

4.7 Data Type Refinement

Our next step is to choose implementations for the abstract data types in the algorithm.
Compilers typically provide a standard implementation for each type in their programming
language. However as the level of the language rises, and higher-level data types, such as
sets, sequences, and mappings, are included in the language, or as users specify their own
abstract data types, standard implementations cease being satisfactory. The difficulty is
that the higher-level datatypes can be implemented in many different ways; e.g. sets may be
implemented as lists, arrays, trees, etc. Depending on the mix of operations, their relative
frequency of invocation, size information, and dataflow considerations, one implementation

30

may be much better than another. Thus no single default implementation will give good
performance for all occurrences of an abstract type. Work on data structure selection and
refinement for very-high-level languages attempts to deal with these problems [5, 33].

We are currently integrating a data type refinement system (called DTRE and built by Lee
Blaine) with KIDS. DTRE allows interactive specification of implementation annotations for
data types in programs. It also provides machinery for stating data type refinements (as
theory interpretations) and a modified compiler that handles the translation of high-level
types to low-level implementations. The following refinements have been performed using
DTRE, but required some manual transformation in order to deal with special assumptions
in the current version. We continue the derivation as if DTRE and KIDS were smoothly
integrated. We see no fundamental impediment to this integration.

Consider the sequence-valued parameter part sol which denotes a partial schedule: it is
initialized to the empty sequence once, the operation append is applied many times, and
occasionally it is copied to the output.

Operation Frequency

part sol ← [] once
append(part sol, a) often
solution ← part sol occasionally

A standard representation for sequences is linked lists; however, this representation is ex-
pensive for part sol because it entails copying part sol every time the append operation
is performed. A better representation is shown in Figure 12 where alternative versions of
part sol coexist and share common structure. The data structure part sol is simply a pointer
to the last element of the sequence. In this reversed list representation, initialization and
append take constant time, and the assignment operation takes time linear in the length of
part sol (by tracing upwards from the element pointed to by part sol).

Consider next the set-valued parameter occupied up diagonals. It is initialized to the empty
set once, element membership is applied often, and union with a singleton set is performed
often. If we can show that the set is bounded, then a bit vector representation would be
applicable and efficient. The data type refinement for bit vectors sets up the inference task
of deriving upper and lower bounds. The inference specification for deriving an upper bound
is as follows. As assumptions we gather all input conditions for Queens gs. The goal is to
derive an upper bound on the maximum value of the variable occupied up diagonals (which
we replace by its definition).

31

Figure 12: A structure-sharing representation of sequences

find some (ub)(1 ≤ k
∧ range(part sol) ⊆ {1..k}
∧ length(part sol) ≤ k
∧ injective(part sol, {1..k})
∧ no two queens per up diagonal(part sol)
∧ no two queens per down diagonal(part sol)
∧ unoccupied rows = setdiff ({1..k}, range(part sol))
∧ occupied down diagonals = {part sol(j) + j | j ∈ domain(part sol)}
∧ occupied up diagonals = {part sol(j)− j | j ∈ domain(part sol)}
∧ part sol length = length(part sol)

=⇒ max{part sol(j)− j | j ∈ domain(part sol)} ≤ ub(k)).

32

The derivation of an upper bound proceeds as follows.

max({part sol(j)− j | j ∈ domain(part sol)})

≤ % distributing max over subtraction expression in a setformer

max({part sol(j) | j ∈ domain(part sol)})−min({j | j ∈ domain(part sol)})

= % by definition of domain and range of a sequence

max(range(part sol))−min(domain(part sol))

≤ % using assumption range(part sol) ⊆ {1..k} and simplifying

max({1..k})− 1

= % applying max({m..n}) = n and simplifying

k − 1.

Analogously, RAINBOW II derives 1− k as a lower bound on occupied up diagonals. Anal-
ogous bounds are derived for occupied down diagonals and unoccupied rows.

The user must supply a fixed upper bound on k thus restricting the initial specification. The
result of applying data type refinements is that various annotations are added to the type
declarations of variables. The resulting code is shown in Figure 13. These annotations are
used by the DTRE compiler to construct the detailed implementation.

4.8 Compilation

The COMPILE operation translates the program into Common Lisp and then into machine
code.

4.9 Results and Summary

The Queens algorithm produced by the global search tactic has been optimized, refined, and
compiled. The initial specification cannot be compiled by REFINE. The unoptimized global
search algorithm with default implementation spends O(k2) time per node (disregarding the
cost of unioning solutions together). The unoptimized global search algorithm takes just
under 60 minutes to find all 92 solutions to the 8-queens problem instance on a SUN-4/110.
The final optimized version spends O(1) time per node and finds all 92 solutions in less than
1 second.

33

function Queens (k)
= Queens gs (k, [], {1..k}, { }, { }, 0)

function Queens gs (k : integer,
part sol : seq(integer)

implemented as reverse list(std integer),
unoccupied rows : set(integer)

implemented as int bit vector(std integer),
occupied up diagonals : set(integer)

implemented as int bit vector(std integer),
occupied down diagonals : set(integer)

implemented as int bit vector(std integer),
part sol length : integer)

where . . .
returns . . .
= . . .

Figure 13: Queens algorithm after data type selection

For the queens derivation, the user makes a total of 16 high-level decisions some of which
involve subsidiary decisions. It would be easy to cut this number significantly by automati-
cally applying CI-Simplify after every operation (this is not done at present). Each decision
involves either selecting from a machine-generated menu, pointing to an expression, or typing
a name into a text buffer. The high-level development operators encapsulate the firing of
hundreds of low-level transformation rules. Excluding the time spent setting up the queens
domain theory, the total time for the derivation is about 15 minutes on a SUN-4/110.

There are several opportunities for automating the selection and application of KIDS opera-
tions. The steps of the queens derivation are typical of almost all the global search algorithms
that we have derived. After algorithm design the program bodies are fully simplified, par-
tial evaluation is applied, followed by finite differencing, and data type refinement. It is
encouraging to note the degree to which Paige has automated the application of finite difer-
encing in RAPTS [28]. It is conceivable that the entire queens derivation could be performed
automatically.

We have used KIDS to design and optimize algorithms for over fifty problems. Examples
include optimal job scheduling [39], enumerating cyclic difference sets [38], finding graph
colorings, bin packing, binary search, vertex covers of a graph, linear programming (derived
a variant of the simplex algorithm [22]), maximal segment sum [36], and sorting [35]. On
several occasions we have been able to perform new derivations before an audience.

34

5 Critique

To become more widely used, we believe that formal methods will require automated support.
Listed below are several characteristics that we feel are important in order for a system to
successfully support formal software development. We comment on the extent to which the
current KIDS system does and does not meet them.

1. Automated Support – Formal design methods bring with them a heavy burden of de-
tail. To be useful it must be possible to provide machine support for expressing and
reasoning about this detail.

2. Soundness – A central tenet of formal methods is that changes preserve some specified
semantics. Typically one desires that transformations preserve correctness or consis-
tency.

3. Coverage – The system should be competent to generate the detailed structure of
conventional software.

4. Explanatory Power – Derivations performed by the system should provide a unified and
compelling explanation of the structure of known algorithms and data structures. Such
explanation is useful both during the design process itself and for later documentation.
It seems that a useful explanation must combine general concepts of programming with
domain knowledge and the details of problem structure.

5. Conceptual Coherence – Techniques for dealing with various aspects of software design
should be mutually coherent. They should share underlying concepts and tools and not
require difficult translations when moving from one aspect to another during design.

6. Effectiveness – The application of development methods to particular problems must
be effective and reasonably efficient.

7. Quality of the designed code – The resulting code must not only meet functional require-
ments, but also satisfy any constraints on resource utilization, interfaces, reliability,
fault-tolerance, security, architecture, etc.

8. Usability and the Control of Decision-making – Given the theoretical complexity of
the problem of program derivation, there is little hope of producing a fully automatic
program development system in the short term – interaction with a skilled user seems
to be required. Thus a successful theory of software design must carefully cater to the
needs of interactive control. Users need a relatively small understandable collection
of automatic tools that they can apply to do their programming tasks. Other general
principles of interactive systems apply: significant decisions should be made first; users
should not be forced to make too many low-level decisions; users should be able to
understand the ongoing design process and be able to supply what they know when
appropriate, etc.

35

9. Acquisition of domain theories and specifications – The availability of automated soft-
ware development tools will result in a greater proportion of the effort in software
engineering being placed on the building up of domain theories and specifications.

10. Evolution – The dominant cost in the software lifecycle is for error-correction and en-
hancement (evolution). An automated formal system should minimize or eliminate
error-correction costs (see “Soundness” above), leaving evolution as the dominant ac-
tivity of the future. Ultimately the effectiveness of a theory of software design will
depend on the degree to which it facilitates the adaptation of software to changing
human needs and changing environments.

As we have tried to indicate in this paper, KIDS provides a high level of automated support
and all of its operations are sound. We believe that a derivation that results from apply-
ing general algorithmic, optimization, and data refinement concepts will be compelling to
programmers and provide a satisfying explanation of the code for documentation purposes.

The conceptual coherence of KIDS derivations depends partly on the large “grain-size” of
the KIDS operations and their high level of automation (effectiveness). Directed inference
provides a technical unifying foundation. Term simplification is naturally performed as the
search for a minimal complexity equivalent term. Finite differencing can be decomposed
into an abstraction operation followed by simplification of some subterms. Partial evalua-
tion and specialization are both decomposed into an unfold step followed by simplification.
Algorithm design tactics make repeated use of directed inference – for example, the global
search tactic requires the derivation of a necessary condition in order to obtain a search tree
pruning mechanism. Data type refinement uses inference to check applicability conditions
by deriving properties such as upper and lower bounds of sets. The coherence of this view of
the various development steps stems from the common underlying set of rules (axioms) used
by the inference system. Furthermore, all of these development operations mainly depend
on the existence of distributive, monotonicity, and other laws concerning the preservation of
structure under change.

The effectiveness of KIDS is limited by several problems. One is its reliance on general-
purpose deductive inference. We have sought to postpone the combinatorial explosion by
only using deductive inference in highly constrained contexts where solutions to problems can
usually be found without deep inference. A KIDS derivation involves a sequence of relatively
short deductions – the queens derivation is typical in this regard. T.C. Wang at Kestrel
Institute is currently constructing a new directed inference system that is significantly faster
than RAINBOW II. Another problem facing the KIDS user is incompleteness of the library
of inference rules. Our experience has been that distributive laws comprise the bulk of the
rule set. We have sought to address the problem of incompleteness by providing distributive
laws for the REFINE operators and by constructing a theory development system which
supports the automatic derivation of distributive and monotonicity laws. Users build up a
domain theory by entering initial information into a text buffer, such as definitions of relevant
concepts and laws for reasoning about them. The system has been used to automatically
derive some of the needed laws, especially distributive laws. The theory development system
should encourage a more systematic approach to building a pragmatically complete rule

36

library. Another problem is that deriving highly optimized programs can become a long and
intricate process. See for example the derivation of a topological sort in [7].

The code generated by KIDS can be quite efficient and comparable to that produced man-
ually by a competent programmer. Furthermore, the interface specification provides a com-
plete characterization of the semantics of all data structures via the invariants. The invariants
plus the derivation itself (which constitutes a proof of consistency between specification and
code) provide documentation of the program.

Our experience has been that users find the interface easy to learn and enjoyable to use.
The high-level operations of KIDS tend to be readily understandable with some training,
although gaining a sense of their applicability conditions seems to require some practice.
A history mechanism allows the user to switch to earlier design states or to switch to an
entirely different development path – that is, the user is supported in exploring a tree of
derivations.

KIDS is weakest in the areas of coverage and support for evolution. Much more work needs
to be done in order to give KIDS enough general knowledge to support routine programming
– for example, to use KIDS in developing KIDS. One of our goals has been to develop the
competence in KIDS to derive algorithms from standard graduate texts on algorithm design.
We feel that KIDS is well on its way towards that goal. For these kinds of algorithms it
seems that KIDS is nearing the breakeven point where it becomes more economical to use
the formal approach than to use manual approaches.

However, many people believe that software often has little algorithmic content, leading to
concerns that a KIDS-like system would play a minor role in conventional programming. The
question seems to reduce to the difference in information content between the specification
and program that implements it. For the Queens problem there is a great difference which
has been supplied by bringing to bear representations of domain knowledge and general pro-
gramming knowledge. For some kinds of software, such as report generators, there may be
little difference. Our approach has been to use an executable wide-spectrum language (an
extension of REFINE) that allows users to write specifications at an appropriate level of
abstraction from implementation detail. As the KIDS system becomes more robust and pro-
vides greater coverage, users will need to supply less detail. Some subset of KIDS operations
will be used to transform specifications down to the level at which the compiler produces
acceptably efficient code. Our intent is to demonstrate this incremental introduction of
KIDS-like support through the use of KIDS for its own development.

Evolution is supported in KIDS the same as in any transformation system – one modifies
the specification and then reimplements it. The specification is easier to modify than the
detailed code that is finally produced by KIDS. Furthermore KIDS has a rudimentary ability
to replay design decisions after a specification change [17].

37

6 Related Work

In addition to KIDS, a number of experimental interactive transformational systems have
been developed, a few of which are mentioned below. For a survey of early systems see
[31]. Feather’s ZAP system [14] built on the basic fold/unfold method [10] by introducing
tactics – metaprograms to control the application of basic transformations. More recently
Darlington has been developing a system which provides a uniform functional and transfor-
mational programming environment [13]. This project is also exploring the use of functional
metaprogramming and high-level transformations such as function inversion and memoizing.
The TI (Transformational Implementation) system at the Information Sciences Institute [3]
had a large library of transformations for implementing the GIST specification language.
The GLITTER system [15] built on TI to provide a higher-level of transformational activity
to the user. It used a problem-solving model where the user supplies development goals and
occasionally some formal reasoning steps and manual editing. A library of methods were
applied to goals and selection rules were used to prune and order the search. The DRACO
system [27] emphasizes domain-specific modeling and program transformation. The NuPRL
system [11] supports program construction as a by-product of the interactive development of
a constructive mathematical proof. The RAPTS system [28] emphasizes the optimization of
set-theoretic programs. RAPTS achieves a high level of automation by restricting its specifi-
cation language. The CIP project in Munich emphasizes wide-spectrum languages, algebraic
specifications, and program transformation. An interactive system called CIP-S has been
developed for student use [30]. Proof obligations are built up during development and must
be discharged by the user. The ERGO [21] and CENTAUR [8] systems emphasize language-
generic programming environments. Both use abstract syntax representations of programs
and aim to provide tools to support program transformation. Other automated program
development systems are described in [4, 24, 25, 40]. A comparative study of published
algorithm derivations is given in [41].

7 Concluding Remarks

The final queens algorithm is apparently not very complicated, however we see that it is
an intricate combination of knowledge of the Queens problem, the global search algorithm
paradigm, various program optimization techniques and data structure refinement. The
derivation has left us not only with an efficient, correct program but also assertions that
characterize the meaning of all data structures and subprograms. These invariants together
with the derivation itself serve to explain and justify the structure of the program. The
explicit nature of the derivation process allows us to formally capture all design decisions
and reuse them for purposes of documenting the derivation and helping to evolve the speci-
fications and code as the user’s needs change.

KIDS supports a formal approach to program development that is fairly natural to use. The
extent to which a KIDS-like system can evolve to the breakeven point for routine program-
ming will depend on formalizing enough programming knowledge at an appropriate level of

38

abstraction. Properties of well-formalized programming knowledge include (1) wide applica-
bility, (2) automatic or near-automatic application, and (3) accomplishing a significant and
readily understandable design step.

KIDS is unique among systems of its kind for having been used to design, optimize, and refine
dozens of programs. Applications areas have included scheduling, combinatorial design,
sorting and searching, computational geometry, pattern matching, routing for VLSI, and
linear programming. We have had good success in using KIDS to account for the structure
of many well-known algorithms. In order to demonstrate the practicality of automated
support for formal methods, we are working toward the goal of using KIDS for its own
development.

Acknowledgements

I would like to thank Mike Lowry and Tom Pressburger for their comments on drafts of this
paper. Lee Blaine, Li-Mei Gilham, Allen Goldberg, Mike Lowry, Tom Pressburger, Xiaolei
Qian, and Stephen Westfold have all contributed to the KIDS system. This research was
supported in part by the Office of Naval Research under Contract N00014-87-K-0550, the
Rome Air Development Center under contracts F30602-86-C-0026 and F30602-88-C-0127,
Personal Services Agreement No. LC90G0250F from Lockheed Corporation, and the Air
Force Office of Scientific Research under Contract F49620-88-C-0033.

39

Appendix 1: KIDS Interface

40

Appendix 2: Domain Theory for the Queens Problem

41

References

[1] Abraido-Fandiño, L. An overview of REFINETM 2.0. In Proceedings of the Second
International Symposium on Knowledge Engineering (Madrid, Spain, April 8–10, 1987).

[2] Balzer, R., Cheatham, T. E., and Green, C. Software technology in the 1990’s:
Using a new paradigm. IEEE Computer 16, 11 (November 1983), 39–45.

[3] Balzer, R. M. Transformational implementation: An example. IEEE Transactions
on Software Engineering SE-7, 1 (1981), 3–14.

[4] Barstow, D. Automatic programming for streams II: Transformational implemen-
tation. In 10th International Conference on Software Engineering (Singapore, 1988),
pp. 439–447.

[5] Barstow, D. R. Knowledge-Based Program Construction. North-Holland, New York,
1979.

[6] Bjørner, D., Ershov, A. P., and Jones, N. D., Eds. Partial Evaluation and
Mixed Computation. North-Holland, Amsterdam, 1988.

[7] Blaine, L., Goldberg, A., Pressburger, T., Qian, X., Roberts, T., and

Westfold, S. Progress on the KBSA Performance Estimation Assistant. Tech. Rep.
KES.U.88.11, Kestrel Institute, May 1988. Appeared in 3rd Annual RADC KBSA
Conference, August 2–4, 1988, Utica, New York.

[8] Borras P., et al. CENTAUR: the system. In Proceedings of the ACM SIG-
SOFT/SIGPLAN Software Engineering Symposium on Practical Software Development
Environments, (Boston, Massachusetts, November 1988), ACM, pp. 14–24. (ACM SIG-
PLAN Notices, 24(2), November 1988).

[9] Broy, M., and Wirsing, M. Program development: From enumeration to back-
tracking. Information Processing Letters 10, 4 (July 1980), 193–197.

[10] Burstall, R. M., and Darlington, J. A transformation system for developing
recursive programs. Journal of the ACM 24, 1 (January 1977), 44–67.

[11] Constable, R. L. Implementing Mathematics with the NuPrl Proof Development
System. Prentice-Hall, New York, 1986.

[12] Dahl, O. J., Dijkstra, E. W., and Hoare, C. A. R. Structured Programming.
Academic Press, London, 1972.

[13] Darlington, J.D. et al. A functional programming environment supporting exe-
cution, partial execution and transformation. In PARLE 89: Parallel Architectures &
Languages Europe, Vol. I: Parallel Architectures, E. Odijk, M. Rem, and J. Syre, Eds.
Springer-Verlag, New York, 1989, pp. 286–305. Lecture Notes in Computer Science,
Vol. 365.

45

[14] Feather, M. A system for transformationally deriving programs. ACM Transactions
on Programming Languages and Systems 4, 1 (January 1982), 1–21.

[15] Fickas, S. F. Automating the transformational development of software. IEEE Trans-
actions on Software Engineering SE-11, 11 (November 1985), 1268–1278.

[16] Goguen, J. A., and Winkler, T. Introducing OBJ3. Tech. Rep. SRI-CSL-88-09,
SRI International, Menlo Park, California, 1988.

[17] Goldberg, A. Reusing software developments. In Proceedings of the ACM SIGSOFT
4th Symposium on Software Development Environments (Irvine, CA, December 6–8,
1990), pp. 107–119.

[18] Goldberg, A., Blaine, L., Pressburger, T., Qian, X., Roberts, T., , and

Westfold, S. KBSA Performance Estimation Assistant, Final TR. Tech. Rep. RADC-
TR-89-98, Rome Air Development Center, August 1989.

[19] Gordon, M. J., Milner, A. J., and Wadsworth, C. P. Edinburgh LCF: A
Mechanised Logic of Computation. Springer-Verlag, Berlin, 1979. Lecture Notes in
Computer Science, Vol. 78.

[20] Guttag, J. V., and Horning, J. J. Report on the larch shared language. Science
of Computer Programming 6, 2 (1986), 103–157.

[21] Lee, P., Pfenning, F., Rollins, G., and Scott, D. The ERGO support system:
An integrated set of tools for prototyping integrated environments. In Proceedings of
the ACM SIGSOFT/SIGPLAN Software Engineering Symposium on Practical Software
Development Environments (November 1988), pp. 25–34.

[22] Lowry, M. R. Algorithm synthesis through problem reformulation. In Proceedings of
the 1987 National Conference on Artificial Intelligence (Seattle, WA, July 13–17, 1987).

[23] Lowry, M. R. Algorithm Synthesis Through Problem Reformulation. PhD thesis,
Computer Science Department, Stanford University, 1989.

[24] Lubars, M., and Harandi, M. Knowledge-based software design using design
schemas. In Proceedings of the Ninth International Conference on Software Engineering
(Monterey, California, 1987), pp. 253–262.

[25] McCartney, R. D. Synthesizing algorithms with performance constraints. In Pro-
ceedings of the 1987 National Conference on Artificial Intelligence (Seattle, WA, July
13–17, 1987), pp. 149–154.

[26] Mostow, J. D. Machine transformation of advice into a heuristic search procedure.
In Machine Learning: An Artificial Intelligence Approach, R. S. Michalski, Ed. Tioga
Press, Palo Alto, CA, 1983, pp. 367–404.

[27] Neighbors, J. M. The Draco approach to constructing software from reusable compo-
nents. IEEE Transactions on Software Engineering SE-10, 5 (September 1984), 564–574.

46

[28] Paige, R., and Henglein, F. Mechanical translation of set theoretic problem speci-
fications into efficient RAM code – a case study. Journal of Symbolic Computation 4, 2
(1987), 207–232.

[29] Paige, R., and Koenig, S. Finite differencing of computable expressions. ACM
Transactions on Programming Languages and Systems 4, 3 (July 1982), 402–454.

[30] Partsch, H. The CIP transformation system. In Program Transformation and Pro-
gramming Environments, P. Pepper, Ed. Springer-Verlag, New York, 1983, pp. 305–322.

[31] Partsch, H., and Steinbrüggen, R. Program transformation systems. ACM Com-
puting Surveys 15, 3 (September 1983), 199–236.

[32] Scherlis, W. Program improvement by internal specialization. In Eighth ACM Sym-
posium on Principles of Programming Languages (Williamsburg, VA, January 1981),
ACM, pp. 41–49.

[33] Schonberg, E., Schwartz, J., and Sharir, M. An automatic technique for the se-
lection of data representations in SETL programs. ACM Transactions on Programming
Languages and Systems 3, 2 (April 1981), 126–143.

[34] Smith, D. R. Derived preconditions and their use in program synthesis, LNCS 138.
In Sixth Conference on Automated Deduction (Berlin, 1982), D. W. Loveland, Ed.,
Springer-Verlag, pp. 172–193.

[35] Smith, D. R. Top-down synthesis of divide-and-conquer algorithms. Artificial Intelli-
gence 27, 1 (September 1985), 43–96. (Reprinted in Readings in Artificial Intelligence
and Software Engineering, C. Rich and R. Waters, Eds., Los Altos, CA, Morgan Kauf-
mann, 1986.).

[36] Smith, D. R. Applications of a strategy for designing divide-and-conquer algorithms.
Science of Computer Programming 8, 3 (June 1987), 213–229.

[37] Smith, D. R. Structure and design of global search algorithms. Tech. Rep.
KES.U.87.12, Kestrel Institute, November 1987.

[38] Smith, D. R., and Lowry, M. R. Algorithm theories and design tactics. In Proceed-
ings of the International Conference on Mathematics of Program Construction, LNCS
375, L. van de Snepscheut, Ed. Springer-Verlag, Berlin, 1989, pp. 379–398. (reprinted
in Science of Computer Programming, 14(2-3), October 1990, pp. 305–321).

[39] Smith, D. R., and Pressburger, T. T. Knowledge-based software development
tools. In Software Engineering Environments, P. Brereton, Ed. Ellis Horwood Ltd.,
Chichester, 1988, pp. 79–103. (also Technical Report KES.U.87.6, Kestrel Institute,
May 1987).

[40] Steier, D. Automatic Algorithm Design within a General Architecture for Intelligence.
PhD thesis, Dept. of Computer Science, Carnegie-Mellon University, April 1989.

47

[41] Steier, D. M., and Anderson, A. P. Algorithm Synthesis: A Comparative Study.
Springer-Verlag, New York, 1989.

[42] Wile, D. S. Program developments: Formal explanations of implementations. Com-
munications of the ACM 26, 11 (November 1983), 902–911.

[43] Wirth, N. Program development by stepwise refinement. Communications of the
ACM 14, 4 (April 1971), 221–227.

48

