
Toward a Classification Approach to Design

Douglas R. Smith

Kestrel Institute, 3260 Hillview Avenue, Palo Alto, California 94304, USA
smith@kestrel.edu
18 March 1996

Abstract. This paper addresses the problem of how to construct re-
finements of specifications formally and incrementally. The key idea is
to use a taxonomy of abstract design concepts, each represented by a
design theory. An abstract design concept is applied by constructing a
specification morphism from its design theory to a requirement specifi-
cation. Procedures for propagating constraints, computing colimits, and
constructing specification morphisms provide computational support for
this approach. Although we conjecture that classification generally ap-
plies to the incremental application of knowledge represented in a tax-
onomy of design theories, this paper mainly focuses on algorithm design
theories and presents several examples of design by classification.

1 Introduction

Mathematically-based techniques for software construction will play an increas-
ing, if not critical, role in the future of software engineering. This paper is part
of a broader research program to explore a mechanizable model of software de-
velopment based on algebraic specifications and specification morphisms. An
algebraic specification (or simply a specification or theory) defines a language
and constrains its possible meanings via axioms and inference rules. Specifica-
tions can be used to express many kinds of software-related artifacts, including
application domain models [22], formal requirements [1, 5, 14], abstract data
types [7, 10], abstract algorithms [17], and programming languages [3, 9, 11]. A
specification morphism (or simply a morphism) translates the language of one
specification into the language of another specification in a way that preserves
theorems. Specification morphisms underlie several aspects of software develop-
ment, including the binding of parameters in parameterized specifications [4, 9],
specification refinement and implementation [2, 15, 24], and algorithm design
[12, 17, 25].

Despite years of research on specification languages and specification refine-
ment, there has been relatively little work on formal techniques for constructing
refinements, as opposed to verifying refinements that have been written man-
ually. This paper addresses the following overall problem: given a specification
S0, construct a specification morphism J : S0 → S1 that refines S0 by using
preexisting knowledge about standard generic designs.

Software often can be explained in terms of a relatively small collection of
abstract design concepts. Examples of design abstractions include divide-and-
conquer as an algorithm abstraction, heaps as a data structure abstraction, and



a standard tracking architecture as a software system abstraction. An abstract
design concept corresponds to a class of artifacts and the common structure of
the class can be represented as a specification, called an artifact theory. Consider
a class of related artifactsA. Elements of A can be described via normal-formex-
pressions in an appropriate artifact description language. Then, abstracting out
those sorts and operations that vary over the elements we obtain the language
of a design theory DT for A and an artifact scheme with free sort and opera-
tor symbols. The axioms of DT arise as conditions under which the sorts and
operations can be instantiated in the artifact scheme to yield a correct concrete
artifact. A specification AT containing the artifact scheme and parameterized
on the design theory is called an artifact theory.

Greedy algorithms provide a particularly clear and well-known example of
these concepts. Many algorithm design texts give a program scheme for greedy
algorithms. If the free operators of the scheme have matroid structure, then the
corresponding instance of the greedy scheme is provably correct with respect to
its optimization objective [13]. Here, matroid theory is the design theory, and
the artifact theory is parameterized on matroid theory and contains the greedy
scheme.

DT
I ✲ S0

AT
❄

✲ S1

J

❄

The diagram to the left shows how a design and
artifact theory can be used to construct a refine-
ment of a requirement specification S0. The hard
work in design is constructing a classification ar-
row (a morphism or interpretation between the-
ories) I from the design theory DT to S0, which
explicates the A-structure of S0, or classifies S0

as an A-structure. Given I and DT −→ AT , then
the refinement J : S0 → S1 is automatically gener-
ated via a colimit construction which instantiates
the parameter to AT .

In Section 3 a design theory for the algorithmic concept of divide-and-conquer
is presented. Any particular divide-and-conquer algorithm corresponds to an in-
terpretation from divide-and-conquer theory to a specification of the particular
problem being solved. In particular, various interpretations from divide-and-
conquer theory to a sorting specification correspond to various sorting algo-
rithms, such as quicksort, mergesort or Batcher’s sort. Given such an inter-
pretation, a concrete sorting algorithm is obtained by instantiating a divide-
and-conquer scheme with the translations of the symbols in divide-and-conquer
theory.

Design theories can be arranged in a refinement hierarchy with specification
morphisms providing the refinement links; e.g. a hierarchy of algorithm theories
is presented in Figure 4 (see [17, 25]). The main technical focus of this paper
is showing how a refinement hierarchy of design theories supports incremental
construction of refinements.

The concepts and procedures described below are intended to improve the
practicality of machine support for formal software development. This work is



based on experience with algorithmdesign and optimization using KIDS (Kestrel
Interactive Development System) which has been used to design over 70 algo-
rithms from formal specifications [18]. Currently in KIDS, algorithm design is
carried out by specialized procedures for each class of algorithms, called design
tactics [17]. Classification allows us to duplicate and extend the functionality of
the KIDS algorithm design tactics. Classification is being implemented in the
successor to KIDS, called Specware [23]. We conjecture that classification will
also support a much broader range of design tasks, such as the design of data
structures, user interfaces, and software systems.

After reviewing basic concepts and notation in Section 2, the classification
method is presented in Section 3. Two examples are presented in Section 4.

2 Basic Concepts and Notations

2.1 Specifications

As much as possible we adhere to conventional concepts and notation for first-
order algebraic specification [6, 8, 26]. A signature Σ = 〈S,Ω〉 consists of a
set of sort symbols S and a family Ω = 〈Ωv,s〉 of finite disjoint sets indexed
by S∗ × S, where Ωv,s is the set of operation symbols of rank 〈v, s〉. We write
f : v → s to denote f ∈ Ωv,s for v ∈ S∗, s ∈ S when the signature is clear
from context. As far as possible in this paper we treat truth-values as any other
sort. Letting boolean be the sort symbol for truth values, then Ωv,boolean is a
set of predicate symbols for each v ∈ S∗. The usual logical connectives ∧ , ∨ ,
¬, =⇒ , and ⇐⇒ are treated as boolean operations. For any signature Σ, the
Σ-terms are defined inductively in the usual way as the well-sorted composition
of operator symbols and variables. A Σ-formula is a boolean-valued term built
from Σ-terms and the quantifiers ∀ and ∃. A Σ-sentence is a closed formula.
The generic term expression is used to refer to a term, formula, or sentence. A
specification T = 〈S,Ω, Ax〉 comprises a signature Σ = 〈S,Ω〉 and a set of Σ-
sentences Ax called axioms. Specification T ′ = 〈S′, Ω′, Ax′〉 extends specification
T = 〈S,Ω, Ax〉 if S ⊆ S′, Ωv,s ⊆ Ω′

v,s for each v ∈ S∗, s ∈ S, and Ax ⊆ Ax′.
Alternatively, we say T ′ is an extension of T . A model for T is a structure
for 〈S,Ω〉 that satisfies the axioms. We shall use modus ponens, substitution
of equals/equivalents and other natural deduction rules of inference in T . A
sentence e is a theorem of T , written ⊢T e, if e is in the closure of the axioms
under the rules of inference.

2.2 Morphisms

A signature morphism I : 〈S,Ω〉 → 〈S′, Ω′〉 maps S to S′ and Ω to Ω′ such
that the ranks of operations are preserved: if f : v → s in Ω and v = v1, . . . vn
then I(f) : I(v1) . . . I(vn) → I(s) in Ω′. A signature morphism extends in a
unique way to a translation of expressions (as a homomorphism between term
algebras) or sets of expressions. For Σ-expression e, let I(e) denote its translation



to a Σ′-expression. For a set of Σ-expressions E, let I(E) denote the set of
Σ′-expressions {I(e) | e ∈ E}. The notion of a signature morphism can be
extended to a specification morphism by requiring that the translation preserve
theorems. Let T = 〈S,Ω, Ax〉 and T ′ = 〈S′, Ω′, Ax′〉 be specifications and let
I : 〈S,Ω〉 → 〈S′, Ω′〉 be a signature morphism between them. I is a specification
morphism if for every axiom A ∈ Ax, I(A) is a theorem of T ′: ⊢T ′ I(A). It is
straightforward to show that a specification morphism translates theorems of
the source specification to theorems of the target specification.

Specifications and specification morphisms form a category. Colimits exist in
this category and are easily computed.

The semantics of a specification morphism is given by a model construction.
If I : T1 → T2 is a specification morphism, then every modelM of T2 can be
made into a model of T1 by simply “forgetting” some structure ofM.

It will be convenient to generalize the definition of signature morphism slightly
so that the translations of operator symbols are allowed to be expressions in
the target specification and the translations of sort symbols are allowed to be
constructions (e.g. products) over the target sorts. A symbol-to-expression mor-
phism is called an interpretation between theories (or simply, an interpretation).

An interpretation, notated I : A =⇒ B or A
I

=⇒ B, can be represented as a
morphism into an extension by definitions of the target specification; i.e. as a pair
of morphisms A → A-B ← B. The specification A-B is called the mediator of
the interpretation. Composition of interpretations is straightforward.

2.3 Examples of Specifications and Morphisms

A problem P consists of a set of possible inputs x ∈ D such that input condition
I(x) holds, and a set of outputs (also called feasible solutions) z ∈ R such that
some output condition O(x, z) holds. A problem specification can be presented
in the following format

Spec Problem-Theory
sorts D,R

op I : D → Boolean

op O : D× R→ Boolean

end-spec

A concrete problem can be presented via an interpretation from Problem-Theory
into the specification of the problem. For example, consider the problem of sort-
ing a bag of integers. A specification for sorting defines the concepts and laws
necessary to support the definition of the sorting problem. The following domain
specification is parameterized on a linear order — given any particular set S that
is linearly ordered by ≤ we obtain a concrete sorting specification.



Spec Sorting-Theory (〈S,≤〉 :: Linear-Order)
imports seq-over-linear-order(〈S,≤〉),

bag-over-linear-order(〈S,≤〉)
op ordered : seq(S) → boolean

op bagify : seq(S) → bag(S)
op Sorting (x : bag(S) | true)

returns (z : seq(S) | ordered(z) ∧ x = bagify(z))
axioms ... axioms defining the operations ...

end-spec

Here a program-like format is used for specifying problems:

op f (x : D | I(x))
returns (z : R | O(x, z))

which can be regarded as syntactic sugar for the following signature and axiom

op f : D → R

ax ∀(x : D)(I(x) =⇒ O(x, f(x)))

We can present the sorting problem via an interpretation from Problem-Theory
to Sorting:

D 7−→ bag(S)
I 7−→ λ(x) true
R 7−→ seq(S)
O 7−→ λ(x, z) (ordered(z) ∧ x = bagify(z)

Again this interpretation is represented as a pair of morphisms. The mediator is
a definitional extension to Sorting-Theory with the new symbols and definitional
axioms

op Im : seq(S) → boolean

op Om : seq(S) × bag(S) → boolean

def Im(x) = true

def Om(x, z) = ordered(z) ∧ x = bagify(z)

The morphism from problem-theory to the mediator is

D 7−→ bag(S)
I 7−→ Im
R 7−→ seq(S)
O 7−→ Om

In the following we will present interpretations in the more convenient symbol-
to-expression format.



3 Classification Approach to Design

The hard work in the classification approach to design lies in constructing in-
terpretations from design theories to requirement specifications; that is, con-
structing classification arrows. There are two problems related to constructing
classification arrows: (1) selecting an appropriate design theory, and (2) con-
structing an interpretation. Suppose that we have a refinement hierarchy of de-
sign theories with specification morphisms providing the refinement links. The
refinement hierarchy provides a framework for solving the selection problem,
and simultaneously providing a way to construct classification arrows incremen-
tally. The stronger a theory is, the more structure that can be exploited in an
artifact theory. Consequently, we want to construct an interpretation from the
deepest possible theories in the hierarchy to the given requirement specifica-
tion. This suggests an incremental procedure for accessing a hierarchic library
of design theories and for constructing classification arrows. First, construct an
interpretation from the root theory of the hierarchy. Then, iteratively, given an
interpretation from design theory DT , try to construct an interpretation from
DT ’s refinements in the hierarchy. If several succeed, then select one or keep
several and repeat the process. If none succeed, then the current design the-
ory exploits as much of the problem structure as possible (with respect to this
classification hierarchy). A concrete design can be obtained by instantiating an
artifact theory parameterized on the design theory.

DT0 ====
I0
⇒ Spec0

DT1

❄
====

I1
⇒ Spec1

❄

DT2

❄
====

I2
⇒ Spec2

❄

...

❄
...

❄

DTn ====
In
⇒ Specn

Ladder Construction

The process of incrementally con-
structing an interpretation is illus-
trated in the ladder construction dia-
gram to the left. The left-hand side of
the ladder is a path in a refinement hi-
erarchy of design theories starting at
the root. The ladder is constructed a
rung at a time from the top down.
The initial interpretation from prob-
lem theory to Spec0 may be sim-
ple to construct. Subsequent rungs of
the ladder are constructed by a con-
straint solving process that involves
user choices, the propagation of consis-
tency constraints, calculation of colim-
its, and constructive theorem proving
[20].

Once we have constructed a classification arrow, then constructing a refine-
ment of Spec0 is straightforward. Elaborating a little on the presentation in the

introduction, if we have a classification arrow DTn
In=⇒ Specn represented by

the pair of morphisms DTn
Mn−→ DT-Specn

dn←− Sn, and an artifact theory ATn

that is parameterized on DTn, then we can mechanically calculate a morphism
that refines Specn (by computing the pushout and then composing Jn and dn):



DTn

Mn✲ DT-Specn ✛dn Specn

p.o.

✠�
�
�
�
�

Jn ◦ dn

ATn

❄
✲ AT-Specn

Jn

❄

Finally, by composition we construct the refinement morphism

Spec0 −→ AT-Specn

whose codomain contains the artifact specified in Spec0.
The incremental situation in rung construction is this: given Ii and DTi −→

DTi+1

DTi

Mi✲ DT-Speci
✛di

Speci

DTi+1

❄
. . . . .
Mi+1✲ DT-Speci+1

❄

.........
✛. . . Speci+1

❄

.........

construct specifications DT-Speci+1 and Speci+1, and the dotted-line morphisms.
It is unlikely that a general automated method exists for constructing rungs.

At present it seems that users must be involved in guiding the rung construction
process. Our intent is to build an interface providing the user with various generic
automated operations and libraries of standard components. The user applies
various operators with the goal of filling out partial morphisms and specifications
until the rung is complete. After each user-directed operation, various constraint
propagation rules are automatically invoked to perform sound extensions to the
partial morphisms and specifications in the rung diagram.

Strategies for rung construction vary according to the particular refinement
DTi → DTi+1. Different design theories call for different methods for construct-
ing the morphism Mi+1. The construction of Speci+1 is mainly driven by the
construction Mi+1 . Typically Speci+1 is a conservative extension of Speci; how-
ever, in some cases arising during algorithm design (global search in particular),
Speci+1 is a (conservative) extension of a colimit involving a refinement of Speci.

There are several obvious user-directed actions, including supplying trans-
lations for symbols and invoking a prover to verify that axioms translate to
theorems. The user may translate a symbol into existing or new symbols, in
which case the codomain specification Speci+1 is extended. The user may also
elect to translate imported specifications via preexisting interpretations.

Constraint propagation rules are based on constraints that are generic to
rung construction, such as commutativity of the rung diagram and preserva-
tion of operator rank under a morphism. Initially, we can propagate the symbol

translations in Ii through DTi
Ki−→ DTi+1. For example, if symbol a in DTi is



translated to b (Ii : a 7→ b), then let Ii+1 : Ki(a) 7→ b. If two symbols of DTi

translate to the same symbol in DTi+1, then they are effectively equated by the
morphism, so the translation of either one will suffice.

The constraint that morphisms must preserve signatures under translations
yields various propagation rules. If Ii : f 7→ g where f : D → R and g : E → S,
then propagation rules can add the translations Ii : D 7→ E and Ii : R 7→ S.

There are several mechanizable techniques for constructing morphisms [20],
one of which, called unskolemization, will be discussed here. The key idea in
unskolemization is to use the axioms of the source specification as constraints
on the translations of source symbols. Theorem-proving techniques are used to
deduce symbol translations such that the source axioms are properly translated.

Skolemization is the process of replacing an existentially quantified variable
z with a Skolem function over the universally quantified variables whose scope
includes z. For example, the formula

∃(w)∀(x, y)∃(z)∀(u)H(w, x, y, z, u) (1)

is skolemized to

∀(x, y)∀(u)H(a, x, y, f(x, y), u) (2)

where f is a Skolem function of x and y and a is a Skolem function of no
arguments – a Skolem constant. A simple occurrence of an operation symbol
g : v → s in a sentence G is a subexpression of G of the form g(x) where
x : v is a sequence of distinct variables that are universally quantified in G.
Skolemization always replaces an existentially quantified variable with simple
occurrences of a fresh operation symbol.

We are interested in the inverse process, unskolemization : given a sentence
(such as (2)) containing identical simple occurrences of operation symbol g, say
g(x), replace g by a fresh existentially quantified variable in the scope of x (such
as (1)).

Suppose that we are trying to complete a partial specification morphism σ

from specification T to specification S. Let f : v → s be a function symbol of
T that has no translation yet under σ. Suppose that F is a prenex normal form
axiom in which all occurrences of f are identical and simple, and suppose that
all other symbols in F are translatable under σ (i.e. the domain of σ includes
all of the sort and operator symbols of F except for the function symbol f). To
obtain a candidate translation for a function symbol f , we proceed as follows.

(1) Unskolemize f in F yielding F ′. Since this has the effect of replacing each
occurrence of f by a variable, each symbol in F ′ can be translated via σ.

(2) Translate F ′. The translated sentence σ(F ′) need not be an axiom of S.
In order for σ to become a specification morphism we need an expression
defining the translation of f in S. σ(F ′) can be viewed as a constraint on
the possible translations of f .

(3) Attempt to prove σ(F ′) in S. A constructive proof will yield a (witness)
expression t(x) for f that depends only on the variables x. If the proof
involves induction (resulting in a recursively defined witness), then we extend



the target specification with a fresh operator symbol and an axiom stating
its recursive definition.

(4) Extend the partial morphism σ by defining σ(f) to be t(x). By construction
this translation for f guarantees that σ properly translates the axiom F .

Other axioms that involve f may now be translatable, and if so, then we can
attempt to prove that they translate to theorems. In this manner constructive
theorem-proving can help to construct a specification morphism.

4 Examples

A partial taxonomy of algorithm classes that we have developed over the years is
shown in Figure 4 [17]. Each algorithm theory is a refinement of Problem-Theory.
The classification approach to algorithm design starts with the construction of
an interpretation from Problem-Theory to the requirement specification; this
interpretation makes explicit what problem is to be solved. Given the format for
expressing requirements, this task is simple since it amounts to little more than
parsing.

Ladder construction has the effect of making more structure explicit in the
requirement specification so that appropriate problem-solving methods can be
applied. For efficiency we want to find the strongest problem structure exhibited
by the problem, so that the strongest problem-solving method can be applied.

Two examples are presented: Sorting and a Goods Distribution Problem
(GDP). These are intended to clearly illustrate the concepts of this paper. They
are not intended as complex or particularly challenging problems, nor are they
presented in full detail. Sorting illustrates the use of classification in generating a
new (divide-and-conquer) algorithm. The GDP example illustrates the synthesis
of code to solve a problem by reducing it to an existing library code – it is
necessary to set up the appropriate call to the code and to back-translate its
results.

4.1 Sorting

The principle of divide-and-conquer is to solve small problem instances by some
direct means, and to solve larger problem instances by decomposing them, solv-
ing the pieces, and composing the resulting solutions. Part of a specification for a
simple divide-and-conquer design theory is given next. It provides the structure
for a binary decomposition operator and corresponding composition operator. A
general scheme for problem reduction theories (including divide-and-conquer) is
given in [19].



Problem Theory
generate-and test

Constraint Satisfaction
Problems (CSP)

Local Search
steepest ascent

simulated annealing
genetic algorithms

repair methods

Global Search
binary search

backtrack
branch-and-bound

Problem  Reduction
Structure

Integer
Linear

Programming
0-1 methods

Linear
Programming

simplex
interior point methods

primal-dual

Network Flow
specialized

simplex

Transportation
NW Algorithm

Complement
Reduction

sieves

Problem  Reduction
Generators

dynamic programming
branch-and-bound
game tree search

Divide-and-Conquer
divide-and-conquer

Integer
Programming

Real-Valued
Programming

Combinatorial CSP
relaxation

Fig. 1. Refinement Hierarchy of Algorithm Theories



Spec Divide-and-Conquer
Sorts

D input domain
R output domain

Operations

I : D → boolean input condition
O : D ×R → boolean output condition
ODecompose : D×D ×D → boolean decomposition relation
OCompose : R×R× R→ boolean composition relation
primitive : D → boolean primitive predicate

Axioms

∀(x0, x1, x2 : D) ∀(z0, z1, z2 : R) Soundness axiom
(I(x0) ∧ ODecompose(x0, x1, x2)
∧ O(x1, z1) ∧ O(x2, z2)
∧ OCompose(z0, z1, z2)
=⇒ O(x0, z0))

. . .

end spec

The Soundness axiom relates O, ODecompose, and OCompose. It asserts that
if (1) nonprimitive problem instance x0 can decompose into two subproblem
instances x1 and x2, (2) subproblem instances x1 and x2 have feasible solutions
z1 and z2 respectively, (3) z1 and z2 can compose to form z0, then z0 is a feasible
solution to input x0. We omit the remaining axioms.

An artifact theory for divide-and-conquer is parameterized on divide-and-
conquer (design) theory and contains a schematic definition for the top-level
divide-and-conquer functions and schematic requirement specifications for subal-
gorithms Directly-Solve, Decompose, and Compose. For simplicity we omit well-
foundedness constraints that ensure termination. With well-foundedness con-
straints in place, this theory can be shown to be consistent. That is, given
any interpretation from Divide-and-Conquer and functions that satisfy the re-
quirement specifications for the subalgorithms, the corresponding instance of the
divide-and-conquer function satisfies its requirement specification (see [16]).

Spec Divide-and-Conquer-Program (T :: Divide-and-Conquer)

op Directly-Solve (x : D | I(x) ∧ prim(x))
returns (z : R | O(x, z))

op Decompose (x0 : D | I(x0) ∧ ¬prim(x0))
returns (〈x1, x2〉 : D ×D | ODecompose(x0, x1, x2) ∧ I(x1) ∧ I(x2))

op Compose (z1 : R, z2 : R | ICompose(z1, z2))
returns (z0 : R | OCompose(z0, z1, z2))



def F (x0 : D | I(x0))
returns (z : R | O(x, z))
= if prim(x0)

then Directly-Solve(x0)
else let(〈x1, x2〉 : D×D = Decompose(x0))

Compose(F (x1), F (x2))

end spec

The development by classification of a divide-and-conquer algorithm for sort-
ing begins with the construction of an interpretation from Problem-theory to
Sorting theory (as described earlier):

D 7−→ bag(S)
I 7−→ λ(x) true
R 7−→ seq(S)
O 7−→ λ(x, z) ordered(z) ∧ x = bagify(z)

Since the morphism from Problem-theory to Divide-and-Conquer is an inclusion,
we can use straightforward propagation to obtain translations for the compo-
nents of Problem-theory in Divide-and-Conquer:

D 7−→ bag(S)
I 7−→ λ(x) true
R 7−→ seq(S)
O 7−→ λ(x, z) ordered(z) ∧ x = bagify(z)

Primitive 7−→ ?
ODecompose 7−→ ?
OCompose 7−→ ?

To complete the classification arrow we attempt to translate the remaining op-
erators into expressions of Sorting. Alternative translations give rise to different
sorting algorithms.

There are several ways to proceed. One tactic in KIDS is based on the choice
of a standard decomposition operator from a library. The tactic then uses un-
skolemization on the soundness axiom to derive a specification for a composition
operator. This approach allows the derivation of insertion sort, mergesort, and
various parallel sorting algorithms [16, 21]. A dual approach is to choose a sim-
ple composition relation and use the Soundness axiom to derive a decomposition
operator.

Suppose that we choose concatenation as a simple composition relation on
the output domain seq(integer). This gives us the partial signature morphism



D 7−→ bag(S)
I 7−→ λ(x) true
R 7−→ seq(S)
O 7−→ λ(x, z) ordered(z) ∧ x = bagify(z)

Primitive 7−→ ?
ODecompose 7−→ ?
OCompose 7−→ λ(z0 , z1, z2) z0 = concat(z1, z2)

The soundness axiom

∀(x0, x1, x2 : D) ∀(z0, z1, z2 : R)
(I(x0) ∧ ODecompose(x0, x1, x2)
∧ O(x1, z1) ∧ O(x2, z2)
∧ OCompose(z0, z1, z2)
=⇒ O(x0, z0))

cannot yet be translated into Sorting because ofODecompose. However, unskolem-
ization on operator symbol ODecompose replaces the occurrence of ODecompose by
a variable:

∀(x0, x1, x2 : D) ∃(y : boolean) ∀(z0, z1, z2 : R)
(I(x0) ∧ y ∧ O(x1, z1) ∧ O(x2, z2) ∧ OCompose(z0, z1, z2)
=⇒ O(x0, z0)).

This formula can be translated via the partial signature morphism yielding:

∀(x0, x1, x2 : bag(integer)) ∃(y : boolean) ∀(z0, z1, z2 : seq(integer))
(true ∧ y

∧ ordered(z1) ∧ x1 = bagify(z1)
∧ ordered(z2) ∧ x2 = bagify(z2)
∧ z0 = concat(z1, z2)

=⇒ ordered(z0) ∧ x0 = bagify(z0))

A straightforward proof of this formula in Sorting results in a constructive defi-
nition of ODecompose (see [16]):

x0 = x1 ⋒ x2 ∧ x1 ≤ x2

where ⋒ is bag-union and x1 ≤ x2 means that each element of bag x1 is less-than-
or-equal to each element of bag x2. This is, of course, a specification for a par-
tition operation in a Quicksort. If we take this as the translation of ODecompose,
then we know that the soundness axiom translates to a theorem in Sorting-theory
by construction.

The remaining steps in constructing this classification arrow include un-
skolemizing another axiom to obtain a translation for the prim predicate, and
translating and proving other axioms. The resulting algorithm is a variant of
Quicksort. Once the classification arrow is complete, divide-and-conquer-program-
theory can be instantiated to obtain concrete code; see [16, 19] for details.



4.2 Distribution of Goods

Problem
Theory =====

I0
⇒ GDP0

Constraint
Satisfaction

❄

===
I1
⇒ GDP1

❄

Integer
Programming

❄

==
I2
⇒ GDP2

❄

Integer
Linear

Programming

❄

==
I3
⇒ GDP3

❄

Network
Flow

❄

=====
I4
⇒ GDP4

❄

GDP Ladder Construction

Suppose that a large organization
needs to rationalize its distribu-
tion system and to lower its ship-
ping costs. The distribution sys-
tem comprises factories that pro-
duce goods, warehouses that store
the goods, and outlets that sell
the goods. There is a known cost
for shipping goods from factory to
warehouse and from warehouse to
outlet. The problem is to find a
least cost flow of goods from the
factories through the warehouses to
the outlets. The figure to the left
shows the ladder construction that
enables us to classify this problem
as a network flow problem and gen-
erate code to solve it by invoking a
pre-existing network flow code.

The natural first approach to modeling this problem domain is to introduce
three sorts called Factory, Warehouse, and Retail-Outlet. A little further work
on the nature of the problem constraints leads to the conclusion that these
distinctions are cumbersome. The shipping routes from Factory to Warehouse
are a distinct type from routes from Warehouse to Retail-Outlet. More seriously,
factories and warehouses may coincide, similarly warehouses and retail outlets,
and even factories and retail outlets. These observations suggest that we abstract
a little and use a generalized sort called depot. Associated with each depot is
a supply of goods. Depots that represent factories have a positive supply; retail
outlets consume goods, so their supply is negative; and warehouses have zero
supply since goods flow through them. A specification for this goods distribution
problem appears in Figure 2. For simplicity we focus on the problem of finding
a feasible distribution flow:

GDP (dpts : set(Depot), supply : map(Depot , Supply-quant )
| domain(supply) = dpts)

returns (flow : map(Channel , Flow-quant)
| domain(flow) = cart-product(dpts, dpts)
∧ ∀(ch : Channel) (ch ∈ domain(flow) =⇒ 0 ≤ flow(ch))
∧ balanced-flow (dpts, supply , flow))

This problem specification is easily expressed as an interpretation fromProblem-
Theory to DISTRIBUTION-SYSTEM:



Spec GDP

imports arithmetic, map, set , tuple

sorts Depot ,

Channel = tuple(Depot , Depot),
Supply-quant = integer ,

Flow-quant = integer

def FLOW-OUT

(d : Depot , dpts : set(Depot), flow : map(Channel , Flow-quant)
| d ∈ dpts ∧ domain(flow) = cart-product(dpts , dpts)) : Flow-quant
= reduce(+, image(λ(e : Depot) flow(〈d , e〉), dpts))

def FLOW-IN

(d : Depot , dpts : set(Depot), flow : map(Channel , Flow-quant)
| d ∈ dpts ∧ domain(flow) = cart-product(dpts , dpts)) : Flow-quant
= reduce(+, image(λ(e : Depot) flow(〈e , d〉), dpts))

def BALANCED-FLOW

(dpts : set(Depot),
supply : map(Depot , Supply-quant),
flow : map(Channel , Flow-quant)
| domain(supply) = dpts

∧ domain(flow) = cart-product(dpts , dpts)) : boolean
= ∀(d : Depot)

(d ∈ dpts

=⇒ flow-out(d , dpts , flow)−flow-in(d , dpts , flow) = supply(d))

op GDP(dpts : set(Depot), supply : map(Depot , Supply-quant)
| domain(supply) = dpts)

returns (flow : map(Channel , Flow-quant)
| domain(flow) = cart-product(dpts , dpts)
∧ ∀(ch : Channel) (ch ∈ domain(flow) =⇒ 0 ≤ flow(ch))
∧ balanced-flow(dpts , supply , flow))

end-spec

Fig. 2. GDP Specification

D 7−→ set(Depot) ×map(Depot, Supply-quant )
I 7−→ λ(dpts, supply) domain(supply) = dpts

R 7−→ map(Channel,Flow-quant)
O 7−→ λ(dpts, supply, flow )

domain(flow ) = cart-product(dpts, dpts)
∧ ∀(ch : Channel) (ch ∈ domain(flow ) =⇒ 0 ≤ flow(ch))
∧ balanced-flow (dpts, supply, flow )



4.3 Constraint Satisfaction Problems

The goal now is to classify the structure of the goods-distribution problem (GDP)
so that we can design a good algorithm for it. We try to classify the goods-
distribution problem towards the classes of Operations Research algorithms in
Figure 1.

The first step is to see if GDP can be classified as a Constraint Satisfaction
Problem (CSP). Intuitively, the goal of a CSP is to produce an assignment of
values to some finite set of variables subject to contraints on the assignments. A
specification of CSP is:

Spec Constraint-Satisfaction-Problem
imports Boolean, map, set
sorts D , Var , Val
op I : D → boolean
op Variables : D → set(Var)
op Legal-Val : D , Var , map(Var , Val)→ boolean
op O-Constraint : D , map(Var , Val)→ Boolean
op O-CSP : D , map(Var , Val)→ Boolean
def O-CSP (x , vm) = (domain(vm) = Variables(x)

∧ ∀(v : Var)(v ∈ domain(vm)
=⇒ Legal-Val(x , v , vm))

∧ O-constraint(x , vm))
end-spec

The intention is that sort D provides input data constrained by input condition
I. V ar and V al are the sorts of variables and values respectively. V ariables com-
putes the set of variables for a given input and Legal-Val constrains the values
that can be assigned to a particular variable. The output sort is map(Var,Val)
and is subject to the further condition O-constraint. The view of CSPs as prob-
lems is carried by the refinement morphism from Problem-Theory to Constraint-
Satisfaction-Problem:

D 7−→ D

I 7−→ I

R 7−→ map(V ar, V al)
O 7−→ O-CSP

To classify GDP as a CSP we perform propagation of the symbol translations

from Problem-Theory
I0=⇒ GDP, yielding the main translations in Figure 3.

Identification of the map subspecification in CSP with the corresponding map
in GDP triggers propagation rules that infer

V ar 7→ Depot ×Depot

V al 7→ Flow-Quant

i.e. that the variables are pairs of depots and the values being assigned to the
variables are flow quantities. These translations are shown in small font inside



(e)(e  domain (flow)  0  flow(e))

D

R

I

O

D

map(Var, Val)

I

set (Depot)  x  map (Depot, Supply-Quant)

map (Depot  x  Depot, Flow-Quant)

 (dpts, supply) domain (supply) = dpts

 (dpts, supply, flow)

domain (flow) = cartprod (dpts, dpts)

balanced-flow (dpts, supply, flow)

^

^

Val  Flow-Quant

Legal-val    (dpts,supply, e, fl)  0  fl

set (Depot)  x map (Depot, Supply-Quant)

map (Depot x Depot,  Flow-Quant)

 (dpts, supply)  domain (supply) = dpts

Variables   (dpts, supply) cartprod (dpts, dpts)

O-constraint   balanced-flow

Var  Depot x Depot

•   •   •O-CSP

Fig. 3. Classifying GDP as a CSP



the main translations in Figure 3. Unskolemization of the definition of O-CSP
on the operator symbols Variables, Legal-val, and O-constraint easily yields the
remaining translations via unification with the output condition in GDP (See
figure).

4.4 Integer Programming Problems

Integer Programming Problems (IPPs) are one possible refinement of CSPs, in
that they further constrain Vals to be integers, and restrict the constraints to
be a set of equations of a certain form. A specification of IPP follows:

Spec Integer-Programming-Problem
imports Boolean, integer , map, set
sorts D , Constraint , Var
op I : D → boolean
op Variables : D → set(Var)
op Legal-Val : D , Var , integer → boolean
op Constraints : D → set(Constraint)
op H : D , Constraint , map(Var , integer)→ integer
op b : D , Constraint → integer
op O-IPP-constraint : Dmap(Var , integer)→ boolean
def O-IPP-constraint(x , vm)

= ∀(c : Constraint)(c ∈ Constraints(x)
=⇒ H (x , c, vm) = b(x , c))

end-spec

A new sort called Constraint is introduced and is used to index two new func-
tions H and b which serve to define a system of equational constraints that are
encapsulated in the definition of O-IPP-constraint. Again, note that Integer-
Programming-Problem only provides the basic sorts and operations needed to
state IPPs. No more is needed at this point. The view of IPPs as problems
is carried by the refinement morphism from Constraint-Satisfaction-Problem to
Integer-Programming-Problem:

D 7−→ D

I 7−→ I

V ar 7−→ V ar

V al 7−→ integer

Legal-Val 7−→ Legal-Val
V ariables 7−→ V ariables

O-constraint 7−→ O-IPP-constraint
To classify GDP as an IPP we perform propagation of the symbol translations

from Constraint-Satisfaction-Problem
I1=⇒ GDP, yielding the main translations

in Figure 4 (which only shows the nonobvious translations). Unskolemization of
the definition of O-IPP-constraint yields the remaining translations via unifica-
tion with the balanced flow constraint in GDP (See figure). The classification
arrow shows that the constraints correspond to depots and that the constraints
check whether the flows in and out match the supply for each depot.



D set (Depot)  x  map (Depot Supply-Quant)

Var

Val

I

Variables

Legal-val

O-constraint

D

Var

Integer

I

Variables

Legal-val

Depot x Depot

Flow-Quant

 (dpts, supply) domain (supply) = dpts

 (dpts, supply) cartprod (dpts, dpts)

 (dpts, supply, e, fl)  0 ≤ fl

Depot
 (dpts, supply) dpts
(dpts, supply, d, flow)

   flow-out (d, dpts, flow) - flow-in (d, dpts, flow)
 (dpts, supply, d, flow)   supply (d)

•  •  •

Constraint
Constraints
H

b

O-IPP-Constraint

balanced-flow

Fig. 4. Classifying GDP as an IPP



Spec MODFLO-Solver (NF :: Network-Flow)

def NF-solve(x : D | I (x ))
returns (flow : map(ARC , integer) | domain(flow) = Arcs(x ) ∧ . . .)
= . . . code to compute a feasible network flow

expressed over the symbols of Network-Flow

and programming language L . . .

end-spec

Fig. 5. Artifact Theory for Network Flow

Spec MODFLO-Solver-for-GDP

imports DISTRIBUTION-SYSTEM

def GDP(dpts : set(Depot), supply : map(Depot , Supply-quant)
| domain(supply) = dpts)

returns (flow : map(Channel , integer)
| domain(flow) = cart-product(dpts , dpts) ∧ . . .)

= . . . code to compute a feasible network flow
expressed over the symbols of DISTRIBUTION-SYSTEM

and programming language L . . .

end-spec

Fig. 6. Goods Distribution Program

4.5 Network Flow Problems

We skip two rungs down the ladder at this point. Network Flow Problems (NFPs)
are a refinement of Integer Linear Programming (ILP) which in turn is a refine-
ment of Integer Programming Problem (IPP). The input to a NFP is a directed
graph with upper and lower bounds on arc capacity and a supply value at each
node (positive for sources, negative for sinks). The goal is to assign a flow to each
arc such that the flow is balanced and each flow is within the capacity bounds
on the arc. The optimization version assigns a cost to each unit of flow through
each arc and asks for a minimal cost flow over all feasible flows. A specification
of the feasibility form of NFP is:

Spec Network-Flow
imports Boolean, integer , tuple, set
sorts D , Node, Arc = tuple(Node, Node)
op I : D → boolean
op Nodes : D → set(Node)



op Arcs : D → set(Arc)
op Arc-lb-capacity : D , Node, Node, integer → boolean
op Arc-ub-capacity : D , Node, Node, integer → boolean
op Supply : D , Node → integer
end-spec

Suppose that we have continued the ladder construction and finally managed
to classify GDP as a Network Flow problem:

D 7−→ set(Depot) ×map(Depot, Supply-quant )
I 7−→ λ(dpts, supply) domain(supply) = dpts

Node 7−→ Depot

Nodes 7−→ λ(dpts, supply) dpts
Arc 7−→ Channel

Arcs 7−→ λ(dpts, supply) cart-product(dpts, dpts)
Arc-lb-capacity 7−→ λ(dpts, supply, d1, d2, i) 0 ≤ i

Arc-ub-capacity 7−→ λ(dpts, supply, d1, d2, i) true
Supply 7−→ λ(dpts, supply, d : Depot) supply(d)

Once we have a problem classified as a NFP, then the artifact theory (called
a program theory) shown in Figure 5 can be used to obtain concrete code. The
classification arrow from NFP to GDP binds the parameter in the program
theory and a pushout calculation carries out the instantiation. The effect is to
extend the GDP specification with the translated program scheme as shown in
Figure 6.

The actual program theory in our system sets up a foreign function call to a
FORTRAN network flow solver called MODFLO. In effect MODFLO has been
wrapped in a well-defined interface, providing an example of how “legacy” code
can be made to work in a formal software development process. An alternative
approach to solving GDP using a network flow algorithm would be via problem
reduction [16] which is a special case of a connection between specifications [20].
The necessary inferences would be difficult in general, whereas here we have
achieved a similar result with a sequence of relatively easy propagation and
unskolemization steps.

5 Concluding Remarks

The examples in this paper have shown how a refinement hierarchy of algorithm
theories can be used to support algorithm design. We believe that the classi-
fication approach can usefully support a much broader range of design tasks,
such as the design of data structures, user interfaces, and software systems.
data structure design and software system design. For example, we conjecture
that a hierarchy of software architecture theories could be used to support soft-
ware system design. An architecture theory is parameterized on the interfaces
to its component modules and its body specifies exported services, interconnec-
tions between components, system invariants, etc. More generally, we conjecture
that classification is applicable to the design of any kind of artifact whose re-
quirements can be specified and for which standard design abstractions can be



expressed in a refinement hierarchy.

The ladder construction technique is being implemented in Specware [23],
a specification-based development system at Kestrel Institute. We believe that
this system will be much more flexible and easy to use than KIDS because a few
general mechanisms support design directly from a taxonomic library of design
theories without relying on complex, hard-to-write design tactics.

Acknowledgements

Discussions with Richard Jüllig, Junbo Liu, and Y.V. Srinivas helped to
clarify the ideas presented above. This research was supported by the Air Force
Office of Scientific Research under Contract F49620-91-C-0073, by the Office
of Naval Research under Grant N00014-93-C-0056, and by ARPA and Rome
Laboratories under Contracts F30602-91-C-0043 and F30602-95-10018.

References

1. Astesiano, E., and Wirsing, M. An introduction to ASL. In Program Speci-

fication and Transformation, L. Meertens, Ed. North-Holland, Amsterdam, 1987,
pp. 343–365.

2. Blaine, L., and Goldberg, A. DTRE – a semi-automatic transformation sys-
tem. In Constructing Programs from Specifications, B. Möller, Ed. North-Holland,
Amsterdam, 1991, pp. 165–204.

3. Broy, M., Wirsing, M., and Pepper, P. On the algebraic definition of program-
ming languages. ACM Transactions on Programming Languages and Systems 9, 1
(January 1987), 54–99.

4. Ehrig, H., Kreowski, H. J., Thatcher, J., Wagner, E., and Wright, J.

Parameter passing in algebraic specification languages. In Proceedings, Workshop

on Program Specification (Aarhus, Denmark, Aug. 1981), vol. 134, pp. 322–369.

5. Ehrig, H., and Mahr, B. Fundamentals of Algebraic Specification, vol. 2: Module

Specifications and Constraints. Springer-Verlag, Berlin, 1990.

6. Enderton, H. B. A Mathematical Introduction to Logic. Academic Press, New
York, 1972.

7. Goguen, J. A., Thatcher, J. W., and Wagner, E. G. An initial algebra ap-
proach to the specification, correctness and implementation of abstract data types.
In Current Trends in Programming Methodology, Vol. 4: Data Structuring, R. Yeh,
Ed. Prentice-Hall, Englewood Cliffs, NJ, 1978.

8. Goguen, J. A., Thatcher, J. W., Wagner, E. G., and Wright, J. B. Initial
algebra semantics and continuous algebras. Journal of the ACM 24, 1 (January
1977), 68–95.

9. Goguen, J. A., and Winkler, T. Introducing OBJ3. Tech. Rep. SRI-CSL-88-
09, SRI International, Menlo Park, California, 1988.

10. Guttag, J. V., and Horning, J. J. The algebraic specification of abstract data
types. Acta Inf. 10 (1978), 27–52.

11. Hoare, C. Varieties of programming languages. Tech. rep., Programming Re-
search Group, University of Oxford, Oxford, UK, 1989.



12. Lowry, M. R. Algorithm synthesis through problem reformulation. In Proceed-

ings of the 1987 National Conference on Artificial Intelligence (Seattle, WA, July
13–17, 1987).

13. Papadimitriou, C. H., and Steiglitz, K. Combinatorial Optimization: Algo-

rithms and Complexity. Prentice Hall, Englewood Cliffs, NJ, 1982.
14. Partsch, H. Specification and Transformation of Programs: A Formal Approach

to Software Development. Springer-Verlag, New York, 1990.
15. Sannella, D., and Tarlecki, A. Toward formal development of programs from

algebraic specifications: Implementations revisited. Acta Informatica 25, 3 (1988),
233–281.

16. Smith, D. R. Top-down synthesis of divide-and-conquer algorithms. Artificial

Intelligence 27, 1 (September 1985), 43–96. (Reprinted in Readings in Artificial

Intelligence and Software Engineering, C. Rich and R. Waters, Eds., Los Altos,
CA, Morgan Kaufmann, 1986.).

17. Smith, D. R., and Lowry, M. R. Algorithm theories and design tactics. In Pro-

ceedings of the International Conference on Mathematics of Program Construction,

LNCS 375, L. van de Snepscheut, Ed. Springer-Verlag, Berlin, 1989, pp. 379–398.
(reprinted in Science of Computer Programming, 14(2-3), October 1990, pp. 305–
321).

18. Smith, D. R. KIDS – a semi-automatic program development system. IEEE

Transactions on Software Engineering Special Issue on Formal Methods in Software

Engineering 16, 9 (September 1990), 1024–1043.
19. Smith, D. R. Structure and design of problem reduction generators. In Construct-

ing Programs from Specifications, B. Möller, Ed. North-Holland, Amsterdam, 1991,
pp. 91–124.

20. Smith, D. R. Constructing specification morphisms. Journal of Symbolic Compu-

tation, Special Issue on Automatic Programming 15, 5-6 (May-June 1993), 571–606.
21. Smith, D. R. Derivation of parallel sorting algorithms. In Parallel Algorithm

Derivation and Program Transformation, R. Paige, J. Reif, and R. Wachter, Eds.
Kluwer Academic Publishers, New York, 1993, pp. 55–69.

22. Srinivas, Y. V. Algebraic specification for domains. In Domain Analysis: Ac-

quisition of Reusable Information for Software Construction, R. Prieto-Diaz and
G. Arango, Eds. IEEE Computer Society Press, Los Alamitos, CA, 1991, pp. 90–
124.

23. Srinivas, Y. V., and J̈ullig, R. Specware:tm formal support for composing soft-
ware. In Proceedings of the Conference on Mathematics of Program Construction,
B. Moeller, Ed. Springer-Verlag, Berlin, 1995. Lecture Notes in Computer Science,
Vol. 947.

24. Turski, W. M., and Maibaum, T. E. The Specification of Computer Programs.
Addison-Wesley, Wokingham, England, 1987.

25. Veloso, P. A. Problem solving by interpretation of theories. In Contemporary

Mathematics, vol. 69. American Mathematical Society, Providence, Rhode Island,
1988, pp. 241–250.

26. Wirsing, M. Algebraic specification. In Formal Models and Semantics,
J. van Leeuwen, Ed., vol. B of Handbook of Theoretical Computer Science. MIT
Press/Elsevier, 1990, pp. 675–788.

This article was processed using the LaTEX macro package with LLNCS style


