
Composition and Re�nement of Behavioral Speci�cations

Dusko Pavlovic and Douglas R. Smith

Kestrel Institute

3260 Hillview Avenue

Palo Alto, California 94304 USA

Abstract

This paper presents a mechanizable framework for

specifying, developing, and reasoning about complex

systems. The framework combines features from alge-

braic speci�cations, abstract state machines, and re-

�nement calculus, all couched in a categorical setting.

In particular, we show how to extend algebraic spec-

i�cations to evolving speci�cations (especs) in such a

way that composition and re�nement operations ex-

tend to capture the dynamics of evolving, adaptive,

and self-adaptive software development, while remain-

ing eÆciently computable. The framework is partially

implemented in the Epoxi system.

1 Introduction

How can we make the construction of complex systems

easier and more reliable? To get a handle on the com-

plexity, many researchers and engineers advocate an

architectural approach to system design: a system is

treated as a composition of components together with

the connectors that mediate their interaction (e.g. see

[10]). Sometimes however, the goal of having a clear,

simple architecture is at odds with performance goals

for the system. A way out of this dilemma is to work to-

ward a framework that allows the composition of com-

ponents and connectors in a high-level architectural de-

sign, followed by the re�nement of the design to code.

The re�nement process may break down component

and connector boundaries to optimize system perfor-

mance, as well as introducing lower-level design deci-

sions (such as subsystem architectures, algorithms, and

data structures).

This paper introduces a formal framework, called

evolving speci�cations (or simply especs), that supports

the speci�cation and development of complex systems.

Especs provide the means for explicitly modeling the

logical structure and behavior of systems. The frame-

work supports precise, automatable operations for the

composition of especs and their re�nement. The es-

pec framework is partially implemented in the Epoxi

system.

Especs grew out of higher-order algebraic speci�-

cations as implemented in Specware [11], the evolv-

ing algebras of Gurevich (aka abstract state machines)

[4], as well as the classical axiomatic semantics of

Floyd/Hoare/Dijkstra. Especs go beyond all three, not

only allowing the capture of logical structure and be-

havior, but also the composition of systems and their

re�nement to code. Of course the composition and

re�nement operations are meaning-preserving, so that

any code produced by means of composition and re-

�nement is guaranteed to be consistent with the initial

especs.

The paper is structured straightforwardly. We �rst

discuss how to extend logical speci�cations to model

behavior, and then de�ne especs and how to re�ne

and compose them formally. These concepts are illus-

trated by simple examples. This paper presumes some

knowledge of basic category theory (see [2, 11] for rel-

evant background). More details about especs may be

found in [8]. Related approaches to providing categor-

ical foundations for specifying, composing and re�ning

behaviors may be found in [3, 5].

2 From Logical Theories to

State Machines/Behaviors

EPOXI is made of two basic building blocks: theories

and translations (also known as theory morphisms).

� A theory formalizes, in predicate logic, what is

known about a domain, or an artifact in general.

A theory is comprised of a language and a subset

of the language called theorems.

� A translation is a morphism between theories:

it maps the language (signature) of one theory

into the terms of another one, while preserving

their meaning and validity: type structure is pre-

served, and the theorems are mapped to theo-

rems. A translation is presented by a map from

the symbols in one theory to expressions in an-

other. The map is applied recursively to translate

expressions.

On this foundation we can formally model state

machines. A state of computation can be viewed as a

snapshot of the abstract computer performing the com-

putation. A rudimentary computer can be viewed as

a set of stores, with an abstract mechanism rewriting

the stored values. The rewrites are the computation

steps, or transitions. As in many logical formalisms for

behavior (cf. [4, 6], we treat states as (static, mathe-

matical)models of a global theory thyA, and transitions

as �nite changes to the components of a state/model.

For example, an array is represented as a �nite func-

tion, whose value may vary over the possible models.

A transition could correspond to an assignment that

changed the array/�nite-function. The computation of

a program speci�ed by thyA, evolving from state to

state, can be envisioned as \jumping" from model to

model, in Mod(thyA).

To see the connection between theories and trans-

lations on one hand, and states and transitions on the

other, consider the correctness of an assignment state-

ment relative to a precondition P and a postcondition

Q; i.e. a Hoare triple P fx := eg Q. If we consider

the initial and �nal states as characterized by theories

thypre and thypost with theorems P and Q respectively,

then the triple is valid i� Q[e=x] is a theorem in thypre.

That is, the triple is valid i� the symbol map f x 7! eg

induces a translation from thypost to thypre. Note that

the translation goes in the opposite direction from the

state transition.

In practice however, one usually deals with ab-

stract states rather than individual states/models. In

reasoning about programs, we are typically interested

in states that satisfy certain properties, so we use spec-

i�cations as general state descriptions, and pass from

models to sets of models that are speci�ed by exten-

sions of the global spec.

The basic idea of especs is to use speci�cations (�-

nite presentations of a theory) as state descriptions,

and to use translations to represent abstract transitions

between state descriptions.

The speci�cation of each state description corre-

sponds to its local structure and properties/invariants.

The speci�cation common to all state descriptions spec-

i�es the global structure and invariants of the system.

Any structure that is common to all states that a com-

putation can reach is formalized as a (global) speci�-

cation; the common structure includes variables and

their sorts, as well as axioms (global invariants) and

operations (global constants).

Example

Let us see a simple program in this framework. Here,

stad denotes a state description, step a transition.

The espec GCD-0 de�nes the concept of the greatest-

common-divisor of two natural numbers and the state

machine speci�es the required behavior of a greatest-

common-divisor computation.

espec GCD-base is

spec ;; the keyword spec encloses the logical specification

const X-in,Y-in : Pos ;; X-in and Y-in are constant positive integers

var Z : Pos ;; Z is a positive integer that varies over states

op gcd : Pos, Pos -> Pos

axiom gcd-spec is ;; this axiom specifies the gcd problem

gcd(x,y) = z => (divides(z,x) & divides(z,y)

& forall(w:Pos)(divides(w,x) & divides(w,y) => w <= z))

end-spec

prog ;; the keyword prog encloses the state machine (empty in this case)

end-prog

end-espec

espec GCD-0 is

import GCD-base

spec ;; the spec extends the spec from GCD-base with a theorem

thm gcd(x,x) = x ;; this theorem follows from axiom gcd-spec

end-spec

prog ;; the keyword prog encloses the state machine

stad One init[X-in,Y-in] is ;; the initial state receives X-in and Y-in

end-stad

stad Two fin[Z] is ;; this stad extends the global spec with a local axiom

axiom Z = gcd(X-in,Y-in)

end-stad

step Out : One -> Two is ;; transition from stad One to stad Two

Z |-> gcd(X-in,Y-in)

end-step

end-prog

end-espec

Note that the steps are expressed in terms of symbol

translations. Because of the connection between trans-

lations and transitions, we will henceforth use assign-

ments instead; i.e. write x := e instead of x |-> e.

Espec GCD-1, below, re�nes GCD-0. The prog ex-

presses the classical GCD algorithm, which might have

been generated by a design tactic. GCD-1 extends the

logical spec of GCD-0 with two local variables X and Y.

Essentially, the re�nement adds a new stad and two

looping transitions that preserve the key loop invariant

of the program: X and Y change under the transitions,

but always so that their GCD is the same as the GCD

of the input values X-in and Y-in.

espec GCD-1 is

import GCD-base

spec ;; two new vars used to compute GCD

var X,Y : Pos

end-spec

prog

stad One init[X-in,Y-in] is

end-stad

stad Loop is

axiom gcd(X-in,Y-in) = gcd(X,Y)

end-stad

stad Two fin[Z] is

axiom Z = X

axiom X = Y

axiom Z = gcd(X-in,Y-in)

end-stad

step initialize : One -> Loop is

X := X-in

Y := Y-in

end-step

step Loop1 : Loop -> Loop is

X>Y -> X := X - Y

end-step

step Loop2 : Loop -> Loop is

Y>X -> Y := Y - X

end-step

step Out : Loop -> Two is

X=Y -> Z := X

end-step

end-prog

end-espec

It is straightforward to check that GCD-1 is inter-

nally consistent; e.g. to show that Loop1 corresponds

to a translation, we must show

Loop; X > Y ` gcd(X�in; Y�in) = gcd(X � Y; Y)

The correctness conditions of re�nements is ad-

dressed in Section 4.

3 Especs

The concept of espec is now formally de�ned.

De�nition 3.1 A graph s consists of two sets edges
and nodes, and two functions, doms and cods from

edges to nodes.

A shape is a graph s, which is moreover

� reexive, in the sense that there is a function

ids : nodes �! edges, which assigns a distin-

guished loop to each node;

� distinguished initial node i, and a set O of �nal

nodes o;

Together with the morphisms preserving all displayed

structure, shapes form the category Shape.

De�nition 3.2 An evolving spec, or espec A con-

sists of

� a spec specA, and

� a program progA, presented by

{ a shape shapeA;

{ a reexive graph morphism

stA : shapeA �! ext
op
A

where extA is specA=Spec, the category of

extensions of spec specA;

{ a labeling cond of the edges of shapeA by the

formulas in the language of specA. That is,

stA maps that nodes of shapeA to specs in

extA, and maps arcs u : a ! b to trans-

lations in ext
op
A : stA(u) : stA(a) stA(b).

Furthemore, stA maps self-loops in shapeA
to identity translations.

It is often convenient to also display the input and

output interfaces, presented as parameter subtheories
1

Xi,!stad(i) and Xo,!stad(o), of the initial and the

�nal states, respectively.

Notation and terminology. The input and the out-

put interfaces are usually written stad hnamei init[Xi]

and stad hnamei �n[Xo].

If n is a node of shapeA, the codomain of stA(n)

is written as stadA(n). If u : m ! n is an edge of

shapeA, its image stA(u) is usually written as stepA(u).

In summary,

� stad assigns to each shape-node n a state de-

scription stad(n), which comes with a translation

stA(n) : specA �! stad(n);

� step assigns to each shape-edge u : m! n a step

(or transition) step(u) : stad(m) stad(n), keep-

ing S invariant, in the sense that the following

diagram commutes.

specA

st(m)

�����������
st(n)

�����������

stad(m) stad(n)
step(u)

��

4 Re�nements

We now de�ne the concept of a re�nement (or mor-

phism) between two especs. A characteristic of espec

re�nements is that logical structure and behavior re-

�ne contravariantly, in opposite directions. If A re�nes

to B, then the spec of A re�nes to the spec of B by a

translation, but the prog of B maps into the prog of

A, simulating it. So a re�nement preserves the logical

structure of A in B and preserves the behavior of B in

A.

De�nition 4.1 Given especs A and B, a re�nement

f : A �! B consists of:

A

f

��

= hspecA;

fspec

��

shapeA
stA �� extopA i

��
fstad���

���

B = hspecB ; shapeB stB

��

fshape

��

ext
op
B i

f�
spec

��

� a structure map (or translation) fspec

� a behavior map (or simulation) fprog =

hfshape; fstadi, where

{ fshape is a reexive graph morphism, pre-

serving the initial and the �nal nodes,

{ fstad is specA-preserving natural transfor-

mation; this naturality and preservation

amount to the commutativity of Figure 1 for

every v : k ! ` in shapeB (see notes below).

1By de�nition, the parameterX � S of a parametric speci�cation S[X] can be freely instantiated, without causing any inconsistencies

in the parameterized speci�cation [7]. This also captures the idea of interface.

stadA(fshape(k)) ^ condA (fshape(v)) stadA(fshape(`))
step

A
(fshape(v))��

specA

stA(fshape(k))

����������������������
stA(fshape(`))

		�������������

fspec

��
specB

stB(k)

��������������������
stB(`)

���������������

stadB(k) ^ condB(v)
��

fstad(k)

stadB(`)
��

fstad(`)

step
B
(v)

��

Figure 1: Naturality Condition of a Re�nement

� Together, fspec and fprog must also satisfy the

guard condition: for every edge v : k ! ` in

shapeB and edge u = fshape(v) in shapeA

stadB(k) ` condB(v) =) fspec(condA(u))

� The inverse-image functor f�

spec acts on the cate-

gory of extensions: f�

spec
(e) = e Æ fspec.

Clearly, especs and re�nements form a category, which

we shall denote ESpec.

Intuition. The last diagram tells that the components

of fstad coherently extend fspec from the global specs

specA and specB to their extensions stadA and stadB .

Just like specB re�nes specA because it proves all for-

mulas in the image fspec[specA], each stadB(n) re�nes

stadA(fshape(n)) because it proves all formulas in the

image fstad(n)[stadA(fshape(n))]. The structural re�ne-

ment is thus extended from fspec : specA �! specB
to fstad : stadA �! stadB . Its naturality ensures that

each transition stepB(v) of B extends the transition

stepA(fshape(v)) of A.

The guard condition ensures that every behavior of

B maps to a behavior of A. There are stronger versions

of the guard condition that also ensure that B simu-

lates all of A's behaviors, and others that eliminate

nondeterminism. Rather than commit to one such def-

inition, we use several, but the guard condition above

is suÆcient for the purposes of this paper.

Let us return to the example in Section 2. In the

re�nement from GCD-0 to GCD-1, fspec is a simple in-

clusion, and fshape is given by the stad map

One 7! One

Loop 7! One

Two 7! Two

and the step map

initialize 7! idOne
Loop1 7! idOne
Loop2 7! idOne
Out 7! Out

Three of the steps map to the identity step on

stad One in GCD-0 because they only change the lo-

cal variables X and Y, corresponding to identity steps

in GCD-0 (sometimes called stuttering steps). Check-

ing the components of the natural transformation is

straightforward { the proof obligations include showing

that fstad(k) is a translation for all nodes k in shapeA;

e.g. that the axioms of stad One in GCD-0 translate to

theorems in stad Loop in GCD-1. Checking the guard

condition is also straightforward; e.g. for step Loop1 in

GCD-1, the guard condition instantiates to

Loop ` X > Y =) true

where the consequent is the guard on step idOne in

GCD-0.

5 Colimits

Composition of especs is carried out by the colimit op-

eration. Colimits in ESpec are constructed from the

colimits in Spec, the limits in Shape, plus some wiring

to connect them in Cat. First of all, recall that all

colimits can be derived from the initial object and the

pushouts. Of course, the initial espec consists of the

empty spec, and a one-state-one-step program (with

the state represented by the empty spec).

To describe the pushout of especs, suppose we are

given a span of especs

specAfspec

�������� gspec

������������

specB specC

shapeA

stA

��

shapeB

fshape 						

stB

��

shapeC

gshape��

stC

��

fstad

�� ��
����
�� gstad

��
��

��
��

��

ext
op
A

ext
op
B

f�
spec

��������
ext

op
C

g�
spec

��

To compute the pushout, we �rst compute the corre-

sponding pushout of specs and the pullback of shapes.

specAfspec

�� gspec

�����������������������

specB

sspec ����������������������� specC

tspec��

specD

shapeA

shapeB

fshape ������������
shapeC

gshape
����������������������

shapeD
tshape

������������sshape

����������������������

It is easy to see that M : Specop �! Cat maps the

upper pushout to the pullback at the bottom of the

induced cube.

shapeA

stA

��

shapeB

fshape ������

stB

��

shapeC

gshape��

stC

��

shapeD
tshape

������sshape

��

fstad
�� �
����
� gstad

��
��
�
��
�

ext
op
A

ext
op
B

f�
spec

������
ext

op
C

g�
spec

������������

ext
op
D

t�
spec

������
s�
spec

������������

If fstad and gstad were identities, i.e. if the two back

faces of the cube were commutative, the fact that

the bottom face is a pullback would induce a functor

stD : shapeD �! (specD=Spec)
op. Since they are not,

this functor must be constructed taking fstad and gstad
into account. The image stD(k) of a node k of shapeD
is now obtained as the unique arrow from the pushout

at the top to the pushout at the bottom of the following

cube.

specA

stA(`)

��

specB

fspec ���������

stB(i)

��

specC
��

gspec
�������������������

stC(j)

��

specD

stD(k)

���
�
�
�
�
�
�
�

 tspec

�����������sspec

�������������������

stadA(`)

stadB(i)
��

fstad(i) ������
stadC(j)

��
gstad(j)����������

������

stadD(k)
��
tstad(k)

��������sstad(k)

����������������

Since shapeD is the pullback of fshape and gshape, the

node k corresponds to a pair hi; ji of the nodes from

shapeB and shapeC , identi�ed in shapeA as the node

` = fshape(i) = gshape(j). Of course, i = sshape(k) and

j = tshape(k).

This construction gives the node part stadD of

stD : shapeD �! ext
op
D , as well as the components of

sstad and tstad. The arrow part stepD is induced by the

fact that the bottom of the cube is a pushout, using the

naturality of fstad and gstad. This also yields the natu-

rality of sstad and tstad. Finally we construct the guards

for the edges of shapeD. Given an edge w : k ! k0 of

shapeD de�ne

condD(w) = sspec(condB(sshape(w)))

^ tspec(condC(tshape(w)))

A proof that this construction yields an espec with the

desired universal properties may be found in [8].

Explanation. The pushout of specs is clear enough:

the languages get joined together, and identi�ed along

the common part. The pullback of shapes produces

the parallel composition of the behaviors they present.

This is particularly easy to see for products, i.e. pull-

backs over the �nal espec. For example, a product of

any shape with the two-node shape � �! � consists of

the cylinder, with the two copies of shape, and each two

of their corresponding nodes connected by an edge. A

product with the three-node shape � �! � �! � con-

sists of three copies, similarly connected.

In general, the product of any two shapes shapeB
and shapeC can be envisaged by putting a copy Sn of

shapeB at each node n of shapeC , and then expanding

each edge m
u
! n of shapeC into a cylinder from Sm

to Sn, i.e. a set of parallel edges, connecting the cor-

responding nodes. The initial node is the pair of the

initial nodes of shapeB and shapeC , whereas the �nal

nodes are the pairs of �nal nodes.

In the resulting shape shapeB � shapeC , each edge

either comes from a copy of shapeB placed on a node

of shapeC , or from an edge of shapeC copied to connect

two particular copies of a node of shapeB ; so it is either

in the form hnode of shapeC ; edge of shapeBi, or in the

form hnode of shapeB ; edge of shapeCi. A moment of

thought shows that each path through shapeB�shapeC
corresponds to a shu�e of a path through shapeB , and a

path through shapeC ; and that every such path comes

about as a unique path in shapeB � shapeC . In this

sense, shapeB � shapeC is the parallel composition of

shapeB and shapeC .

A pullback extracts a part of such product, iden-

ti�ed by a pair of shape morphisms shapeB �!

shapeA � shapeC . Since the initial node must be

preserved, the initial node of the product will surely be

contained in the pullback. The set of �nal nodes may

be empty in general.

For each pair of nodes hi; ji, contained in the pull-

back shapeD as the node k, the corresponding state

description is constructed as the pushout stadD(k) of

stadB(i) and stadC(j) on the above diagram. As a the-

ory, this state description may be inconsistent. Indeed,

if B and C are not independent, but have a shared part

A, their parallel composition may be globally incon-

sistent, in the sense that specD may be inconsistent;

or some of the pairs of states that may come about

in shu�ing their computation paths may be inconsis-

tent, which makes such paths computationally impos-

sible. Inference tools can be used to eliminate incon-

sistent/unreachable stads from the colimit espec.

Despite the seeming complexity and mathemati-

cal depth in the description of the colimit, the actual

computation is relatively simple. There are just three

steps:

� pullback of shapes;

� pushout of specs; (the guards can be directly

computed at this point)

� the pushout extensions of stads and steps.

The �rst two steps are simple and well known. The

third one amounts to computing a pushout of theories

for each stad, and using the universality of each such

pushout to generate the steps from it { Epoxi's colimit

algorithm returns both the cocone and a generator of

translations that witness the universality of the apex.

6 Composition Example

The following example illustrates the composition of

especs in the context of bank account transactions. An

espec for an account deposit and an espec for an ac-

count withdrawal are composed to form an espec that

simultaneously withdraws from one account and de-

posits in another. The example also indicates how es-

pecs can model some aspects of object-oriented pro-

gramming. Speci�cally, classes are modeled as specs,

and objects are classes with state. Multiple inheritance

comes for free. Methods can be partially speci�ed and

re�ned but cannot be overridden.

espec Account_class is

spec

sort Account

op name : Account -> String

op balance : Account -> Int

end-spec

end-espec

espec Account_instance is

import Account_class

spec

;; these vars can only be changed externally

var ext self : Account

var ext d,n : Int

end-spec

prog

;; stads can be parameterized

stad Create[self] init[person] is

axiom name(self) = person

axiom balance(self) = 0

end-stad

stad Account[self,x] is

axiom balance(self) = x

end-stad

step Deposit[self,d]

: Create[self] -> Account[self,d]

balance(self) := d

end-step

step Change[self,n]

: Account[self,x]

-> Account[self,x+n]

balance(self) := balance(self) + n

end-step

end-prog

end-espec

In order to model transfer from one account to the

other, we can re�ne the common part of the two es-

pecs representing instances, and extend it beyond the

class template, to extract the suitable transitions. The

pushout of the two imports will create joint instantia-

tion of pairs of accounts, with the parallel changes of

both of them together.

espec Share_trans is

import Account_class

spec

var ext n : Int

end-spec

prog

step Change[self,n]

: Account[self,x]

-> Account[self,x+n]

balance(self) |-> balance(self) + n

end-step

end-prog

end-espec

refinement Send

: Share_trans -> Account_instance is

specmap

n |-> -n

end-specmap

end-refinement

refinement Receive

: Share_trans -> Account_instance

specmap

n |-> n

end-specmap

end-refinement

The two re�nements, Send and Receive, specify

that the amount withdrawn is the same as the amount

deposited. The pushout of Send and Receive, all under

the import of Account_class is isomorphic to:

espec Transfer is import Account_class

spec

var ext a, b : Account

var ext da, db, n : Int

end-spec

prog

stad Create[a,b]

init[person_a,person_b] is

name(a) = person_a

name(b) = person_b

balance(a) = 0

balance(b) = 0

end-stad

stad Account[a,b,x,y] is

balance(a) = x

balance(b) = y

end-stad

step Deposit[a,b,da,db]

: Create[a,b]

-> Account[a,b,da,db]

balance(a) := balance(a) + da

balance(b) := balance(b) + db

end-step

step Change[a,b,n]

: Account[a,b,x,y]

-> Account[a,b,x-n,y+n]

balance(a) := balance(a) - n

balance(b) := balance(b) + n

end-step

end-prog

end-espec

Transitions are essentially guarded rewrites, and

the transitions of the composed espec are superposi-

tions of the transitions of the constituent machines, as

noted by Fiadeiro [5] and others.

Although trivial, this example shows how the

pushout of especs composes behaviors in parallel: the

transfer from one Account_instance to another one

boils down to a parallel composition of subtracting

from one account, expressed by Send, and adding to

the other, captured by the re�nement Receive.

7 Concluding Remarks

Epoxi builds on concepts from Specware [11], overcom-

ing its bias towards generating functional code by sup-

porting behavioral speci�cations and generation of im-

perative code. Epoxi also builds on previous e�orts to

model behavior logically (e.g. [4, 6]) by de�ning a for-

mal notion of composition (via colimit) and re�nement

(via morphisms). Epoxi represents an advance on pre-

vious re�nement methods, such as VDM and B, in a

variety of ways. The categorical foundations support

controlled sharing of substructure, a uniform approach

to datatype re�nement, and greater automated support

for composition and re�nement.

We are working to extend the espec formalism in

several directions. First, especs naturally support the

assertion of preconditions, invariants, postconditions,

and safety constraints in general. However, stating live-

ness and fairness constraints is more diÆcult. Second,

while a diagram-like notation is convenient for some

situations, programming language notations extended

with assertions may be better for other situations. It

seems possible to translate from the latter back into the

spec-and-translation setting for the purposes of com-

position and re�nement. Third, in systems design it

is often necessary to specify and reason about timing

properties. Consequently, we are extending especs with

features of timed automata [1].

In the full version of this paper [9], we show how

especs support an architectural approach to system

design. Architectures can be formally represented as

parameterized especs where the parameter especs are

the interfaces for components and connectors. The in-

stantiation of components into the architecture is per-

formed by re�ning the interface especs to the compo-

nent especs and taking the colimit. The body of the

architecture espec characterizes the system-level struc-

ture and invariants.

Acknowledgments: This work was supported by

DARPA and the Air Force Research Lab in Rome, NY

under Contract F30602-00-C-0209. Thanks to Alessan-

dro Coglio for comments on this paper.

References

[1] Alur, R., and Dill, D. A theory of timed automata.
Theoretical Computer Science 126 (1994), 183{235.

[2] Barr, M., and Wells, C. Category Theory for Com-

puting Science. Prentice-Hall, Englewood Cli�s, NJ,
1990.

[3] Errington, L. Notes on diagrams and state. Tech.
rep., Kestrel Institute, 2000.

[4] Gurevich, Y. Evolving algebra 1993: Lipari guide.
In Speci�cation and Validation Methods, E. Boerger,
Ed. Oxford University Press, 1995, pp. 9{36.

[5] J.Fiadeiro, A.Lopes, and M.Wermelinger. A
mathematical semantics for architectural connectors.
Tech. rep., University of Lisbon, Campo Grande, Por-
tugal, 2001.

[6] Manna, Z., and Pnueli, A. The Temporal Logic

of Reactive and Concurrent Systems. Springer-Verlag,
New York, 1992.

[7] Pavlovic, D. Semantics of �rst order paramet-
ric speci�cations. In Formal Methods '99 (1999),
J. Woodcock and J. Wing, Eds., vol. 1708 of Lecture
Notes in Computer Science, Springer Verlag, pp. 155{
172.

[8] Pavlovic, D. Epoxi. Tech. rep., Kestrel Institute,
March 2001.

[9] Pavlovic, D., and Smith, D. Composition and
re�nement of behavioral speci�cations. Tech. rep.,
Kestrel Institute, September 2001.

[10] Shaw, M., and Garlan, D. Software Architecture:

Perspectives on an Emerging Discipline. Prentice-Hall,
NJ, 1996.

[11] Srinivas, Y. V., and J�ullig, R. Specware: Formal
support for composing software. In Proceedings of the

Conference on Mathematics of Program Construction,
B. Moeller, Ed. LNCS 947, Springer-Verlag, Berlin,
1995, pp. 399{422.

