
Composition by Colimit

and
Formal Software Development �

Douglas R. Smith

Kestrel Institute, Palo Alto, California 94304 USA

Abstract. Goguen emphasized long ago that colimits are how to com-
pose systems [7]. This paper corroborates and elaborates Goguen’s vision
by presenting a variety of situations in which colimits can be mechan-
ically applied to support software development by refinement. We il-
lustrate the use of colimits to support automated datatype refinement,
algorithm design, aspect weaving, and security policy enforcement.

1 Introduction

Goguen emphasized long ago that colimits are how one composes systems [7].
In particular, Burstall and Goguen focused on specifications as presentations
of theories and the composition of specifications by colimit in the CLEAR and
CAT system proposals [3, 11]. In a sense this paper serves to corroborate and
elaborate Goguen’s insight through its applicability to software development by
refinement of specifications.

Kestrel’s Specware system [29, 12] is a descendant of CLEAR and CAT that
uses the cocomplete category of specifications over higher-order logic. Specware
is used to support the refinement of specifications into correct code in various
target programming languages, including CommonLisp, C, and Java. The role
of category theory is to organize the larger-scale structure of specifications and
the refinement process. The objects of the category are specifications, diagrams
represent structured specifications, and morphisms represent inclusions, parame-
ters, and refinements. Specware uses a colimit algorithm to compose specifica-
tions and it uses pushouts to instantiate parameterized specifications (as in [8]).
Most of the detailed design work in software development is logical in nature and
is performed inside specifications (i.e. below the level of the category). No deep
results of category theory are used, but the structuring provided by the categor-
ical framework has been conceptually useful and has guided the implementation
of Specware. The Specware system has been used for a variety of applications
involving both high assurance (e.g. [4]) properties and high performance (e.g.
[1]).

� in Algebra, Meaning, and Computation: A Festschrift in Honor of Prof. Joseph
Goguen, Eds. K. Futatsugi, J.P. Jouannaud, and J. Meseguer, Springer-Verlag LNCS
4060, pp. 317-332, 2006.

2

The most basic and straightforward use of colimits in a category of specifica-
tions is to build large specifications out of smaller specifications [2]. We briefly
review the technicalities of this usage, but the main focus of the paper is on
how to use composition by colimit to construct refinements. In particular, we
discuss (1) how to represent design abstractions as specifications and specifica-
tion morphisms and how to apply a design abstraction by colimit, and (2) how
to express some kinds of policy requirements by automata and how to enforce
such policies by a suitable colimit. The concepts are illustrated by examples from
automated datatype refinement, algorithm design, aspect weaving, and security
policy enforcement.

2 Preliminaries

We briefly review the category of specifications over classical higher-order logics,
since all the examples and discussion build on it.

A specification (or spec) is the finite presentation of a theory. The signature
of a specification provides the vocabulary for describing objects, operations, and
properties in some domain of interest, and the axioms constrain the meaning
of the symbols. For example, the following specification for partial orders is
expressed in the MetaSlang specification language of Specware. It introduces a
type symbol E and an infix binary predicate on E, called le, which is constrained
by the usual axioms.

spec Partial-Order is
type E
op le : E, E → Boolean
axiom reflexivity is x le x
axiom transitivity is x le y ∧ y le z =⇒ x le z
axiom antisymmetry is x le y ∧ y le x =⇒ x = y

end-spec

A specification morphism translates the language of one specification into the
language of another specification, preserving the property of provability, so that
any theorem in the source specification remains a theorem under translation. In
Specware, a specification morphism m : T → T ′ is given by a map from the type
and operator symbols of the domain spec T to the symbols of the codomain spec
T ′. To be a specification morphism it is sufficient to show that every axiom of
T translates to a theorem of T ′. It then follows that a specification morphism
translates theorems of the domain specification to theorems of the codomain.

For example, a specification morphism from Partial-Order to Integer can be
presented by:

morphism Partial-Order-to-Integer : Partial-Order → Integer is
{E �→ Integer, le �→ ≤}

3

where Integer is a specification for the integers that includes the usual constants
(such as 0), comparison relations (such as lesser-or-equal ≤), functions (such as
addition), and so on.

Translation of an expression by a morphism is by straightforward application
of the symbol map, so, for example, the Partial-Order axiom ∀(x : E) x le x
translates to ∀(x : Integer) x ≤ x With a reasonable axiomatization of the
integers it is easy to verify that the three axioms of a partial order remain
provable in Integer theory after translation.

Specification morphisms compose in a straightforward way as the compo-
sition of finite maps. It is easily checked that specifications and specification
morphisms form a category SPEC. Colimits exist in SPEC and are easily com-

puted. Suppose that we want to compute the colimit of B A
i�� j ��C . First,

form the disjoint union of all sort and operator symbols of A, B, and C, then
define an equivalence relation on those symbols:

s ≈ t iff (i(s) = t ∨ i(t) = s ∨ j(s) = t ∨ j(t) = s).

The signature of the colimit (also known as pushout in this case) is the collection
of equivalence classes wrt ≈. The cocone morphisms take each symbol into its
equivalence class. The axioms of the colimit are obtained by translating and
collecting each axiom of A, B, and C. The colimit can be scalably computed in
near-linear time.

For example, suppose that we want to build up the theory of partial orders
by composing simpler theories.

spec BinRel is
type E
op le : E, E → Boolean
end-spec

−→

spec PreOrder is
import BinRel
axiom reflexivity is x le x
axiom transitivity is

x le y ∧ y le z =⇒ x le z
end-spec

⏐
⏐
�

spec Antisymmetry is
import BinRel
axiom antisymmetry is

x le y ∧ y le x =⇒ x = y
end-spec

The pushout of Antisymmetry ← BinRel → PreOrder is isomorphic to
the specification for Partial-Order given above. In detail: the morphisms are
{E �→ E, le �→ le} from BinRel to both PreOrder and Antisymmetry. The
equivalence classes are then {{E, E, E}, {le, le, le}}, so the colimit spec has one
type (which we rename E), and one operator (which we rename le). Further-
more, the axioms of BinRel, Antisymmetry, and PreOrder are each translated to
become the axioms of the colimit. Thus we have Partial-Order.

4

The universal property of the colimit means that there exists a unique speci-
fication morphism from the constructed Partial-Order specification to any other
specification that refines both PreOrder and Antisymmetry. Intuitively, Partial-
Order is the simplest specification that composes the logical content of PreOrder
and Antisymmetry.

Although the definitions above are given in higher-order logic, the concepts
presented below essentially assume a cocomplete category of specifications over
an institution [9].

For purposes of refinement, a loose semantics is natural. Semantics of a re-
finement morphism is given by a contravariant functor into CAT, the category
of small categories. That is, each spec denotes a category of models, and each
morphism denotes a functorial mapping that takes each codomain model into a
domain model. Particular semantics are enforced by applying appropriate refine-
ments and when performing the institution morphism from the spec language to
a programming language.

3 Composing and Refining Specifications

Kestrel’s work emphasizes automated tools for the refinement of specifications.
There are several reasons for taking this approach to software development:
(1) enhanced productivity through automated code generation, (2) enhanced
assurance due to the correct-by-construction characteristic of refinement-based
derivations, and (3) enhanced software quality and performance due to to auto-
mated application of codified best-practice design knowledge.

The first step in developing a new software application in Specware is build-
ing a domain specification and capturing the requirements of the application.
Composition by colimit plays a major role in building domain specifications. An
example from scheduling is shown in Figure 1. Generally, scheduling is about
the allocation of resources to tasks so as to satisfy constraints on timeliness,
capacity, cost, and so on. In the figure, specifications for Time and Quantity
are shared between Task (modeling scheduling tasks) and Resource (modeling
resources to carry out tasks). Quantity is used to model demand in Task and to
model capacity in Resource. A pushout is also used to instantiate a spec SET of
finite sets that is parameterized on a base type (called 1-Sort here). The actual
requirements are expressed by input/output constraints (pre/post-conditions)
on the scheduler (for more details, see [28]).

In a refinement setting, a formal specification of system requirements is re-
fined to code by incrementally adding design detail. Increments of implementa-
tion detail are expressed as morphisms between specifications (in an appropriate
category). There is an active community of researchers and practitioners explor-
ing the issues of building requirement specifications out of the (sometimes con-
flicting) agendas of various stakeholders. What has been missing in this picture
is a focus on how to construct refinements – are they mostly ad-hoc, or can they
be derived from reusable design abstractions? Most approaches to refinement in
the literature (e.g. VDM, Z, RAISE, B) rely on manual invention of refinements,

5

Reservation
= Resource×Task×Time

Resource

Time, Quantity

po

Task

Schedule
= Set(Reservation)

1-Sort

Set

Scheduler

po

Fig. 1. Scheduling Domain Specification

followed, if desired, by verification of the refinement conditions. Our approach,
implemented in KIDS and Specware/Designware, has hypothesized that most
code is derived from reusable design abstractions and that these can be codified
and mechanically applied. A key component of our research has been collecting
and formalizing principles of excellent design practice, as found in algorithm de-
sign textbooks and practice, system design patterns/architectures/frameworks,
and so on.

The purpose of this paper is to highlight the ways in which colimits, in
suitable categories, play a central role in composing these sources of information
with the evolving design in order to mechanically generate refinements. Since the
colimit is scalably computable in the categories of interest, it can play a central
role in a refinement-oriented mechanized system development environment.

4 Design by Classification

Design knowledge typically has two essential components: its content and a char-
acterization of situations in which the content applies. We represent these two
components as the codomain and domain of a morphism, respectively. That is,
abstract design knowledge about datatype refinement, algorithm design, soft-
ware architectures, program optimization rules, visualization displays, and so
on, can be expressed as refinements (i.e. morphisms). The codomain embodies

6

a design constraint – the effect is a reduction in the set of possible implementa-
tions. The domain of one such refinement represents the abstract structure that
is required in a user’s specification in order to apply the embodied design knowl-
edge. The codomain of the refinement contains new structures and definitions
that are composed with the user’s requirement specification.

A ��

��

Spec0

��
B �� Spec1

The figure to the left shows the application of a library refine-
ment A → B to a given specification Spec0. First the library
refinement is selected. The applicability of the refinement to
Spec0 is shown by constructing a classification arrow from A to
Spec0 which classifies Spec0 as having A-structure by making
explicit how Spec0 has at least the structure of A. Finally the
refinement is applied by computing the pushout. The colimit
algorithm generates both the refined specification (the apex
shown in the lower right) and the cocone morphisms, including
the refinement morphism Spec0 → Spec1. The creative work
lies in constructing the classification arrow [21, 22].

Furthermore we can organize the design theories into libraries with a taxonomic
structure – more general theories refine to more specialized theories. Mechanisms
for incrementally accessing and applying design theories from such a library as
discussed in [22].

The next two subsections elaborate these notions in the context of datatype
refinement and algorithm design respectively.

4.1 Datatype Refinement

Abstract data types (ADTs) allow us to think about data structures in terms of
their essential operations and properties. To work effectively with ADTs we must
add back in the implementation detail that is abstracted away in a, say, algebraic
presentation of an ADT. Refinements serve this purpose. Specifically a morphism
between an ADT theory and a (more concrete) datatype theory presents a way
to implement the ADT (or dually, a way to view the implementing datatype as
the ADT).

Some specific examples includes finite set theory mapping to lists or B-trees
or splay trees. Another example: finite sets over a small finite type mapping to
hash tables or bit vectors.

Each of these refinements/interpretations can be
represented and stored in a library. To apply a
datatype refinement we compute the following
pushout:

AbstractDT ��

��

Spec0

��
ConcreteDT �� Spec1

We sketch a simple example to illustrate the representation of abstract design
knowledge as morphisms. In particular, we can refine finite sets to bit vectors as
follows. Finite sets over the range 1..32 are partially specified by

7

spec FiniteSet is
type FSet
type Elt = 1..32 % range from 1 to 32
op {} : FSet % empty set
op with : FSet × Elt → FSet % add an element
op ∪ : FSet × FSet → FSet % union
op ∩ : FSet × FSet → FSet % intersection
. . .
axiom commutativity is ((S with a) with b) = ((S with b) with a)
axiom idempotence is ((S with a) with a) = (S with a)
. . .
end-spec

Bit vectors of length 32 are partially specified by

spec BitVector32 is
type BV32
type Index = 1..32
op zero : BV 32 % the zero bit vector
op set : BV 32× Index → BV 32 % set index bit to 1
op | : BV 32×BV 32 → BV 32 % bitwise OR
op & : BV 32×BV 32 → BV 32 % bitwise AND
op << : BV 32× Index → BV 32 % left shift
. . .
end-spec

A refinement of FiniteSet to BitVector32 is presented by the morphism

morphism FSet-to-BitVector32 is
{ FSet �→ BV32

Elt �→ Index
{} �→ zero
with �→ set
∪ �→ |
∩ �→ &
. . .

}
If we have a specification S that imports FSet, then taking a pushout of

FSet-to-BitVector32 with the import morphism FSet → S yields a refinement
of S in which finite sets are implemented as bit vectors.

As another example, in Specware, the splay tree refinement is the default
implementation given to sets due to its good performance profile. Programmers
might tempted to avoid working with splay trees since their implementation is
a little more complex than simpler representations of sets. A refinement set-
ting allows developers to work with appropriate abstractions and obtain good
performance.

8

4.2 Algorithm Design

Just as an algebraic presentation of a datatype aims to capture the abstract
essence of the type, an algorithm theory aims to capture the abstract essence of
a class of algorithms [27]. For example, consider the class of greedy algorithms
(which work to build a solution by iteratively adding the best available compo-
nent to the incremental solution, until no more components remain). The greedy
algorithm can be abstractly represented by a program scheme, which is a defin-
ition in a theory that contains partially specified function symbols. A sufficient
condition that the scheme generates an optimal solution is given by the matroid
property (which is comprised of four conditions; see e.g. [15]). We can represent
this package (sufficient structure plus program scheme) as a morphism, prove it
once, and store it in a library.

A pushout can be used to apply such an algorithm refinement to a particular
problem. For example, the problem of finding a minimum spanning tree can be
solved by applying the greedy algorithm theory, yielding Kruskal’s algorithm (or
Prim’s algorithm depending how on the classification arrow is constructed).

Matroid Conditions ��

��

MST

��
Greedy Scheme �� Kruskal Algorithm

This approach to automated algorithm design was first implemented in the
KIDS system [20] and more clearly in Specware/Designware [24, 23]. A series
of complex high-performance scheduling algorithms for Air Force applications
were developed using this approach in KIDS [28] and a domain-specific variant
of Designware called Planware [1].

5 Policy Enforcement

The previous two sections describe a means for applying abstract design knowl-
edge to generate algorithms. When we turn to system design, there are issues to
contend with that arise less obviously in algorithm design. In particular, cross-
cutting concerns are one source of the extra complexity that arises in system
design. A concern is cross-cutting if its manifestation cuts across the dominant
hierarchical structure of a program. Cross-cutting concerns explain a significant
fraction of the code volume and interdependencies of a system. The interdepen-
dencies complicate the understanding, development, and evolution of the system.

In this section, we illustrate two forms of cross-cutting concerns and how they
can be expressed and mechanically enforced. We call these concerns policies to
emphasize that (1) they are really requirements, and (2) they tend to reflect
non-functional concerns, such as auditing, security, and so on.

The following colimit shows the intention of our approach: to use a colimit
in a suitably defined category to enforce policies on a system design.

9

Shared Structure ��

��

System

��
Policy �� System with

Enforced Policy

One issue that arises in this context is knowing where the policy applies.
For example, a security policy must be applied pervasively in order to provide
assurance. In our approach, static analysis [5, 18] is used to find all occurrences
and to set up the cospan (i.e. the Shared Structure specification above).

5.1 AOP as Invariant Maintenance

A simple example of a cross-cutting concern is an error logging policy – the
requirement to log all errors in a system in a standard format. Error logging
necessitates the addition of code that is distributed throughout the system code,
even though the concept is easy to state in itself.

Aspect-oriented programming (AOP), as exemplified by AspectJ [13], pro-
vides a modular way to treat cross-cutting concerns. However, AspectJ aspects
are expressed at a programming language level which obscures their intention.
The reason for this, of course, is to lower the barriers to usage amongst the broad
Java programming community. In [25] we proposed some techniques for specify-
ing cross-cutting concerns as logical invariants to be maintained. For example, to
express an error-logging policy as an invariant, we assert that the error-log data
structure is equal to the list of all previous errors that have occurred during the
course of the computation. To formalize this invariant, we need to reify the his-
tory of the computation, purely for specification purposes [25]. The counterpart
to aspect weaving is (1) to use static analysis to find all code locations where the
invariant might be violated, and (2) to specify and synthesize code to reestab-
lish the invariant. For the error-logging example, static analysis would find all
potential code locations where an error might be thrown, and the composition
process would compose the throw with an update of the error-log data structure.

By expressing cross-cutting concerns as invariants, we capture their intention
more clearly and we can use algorithmic means (static analysis) to determine
the complete extent of their application, in contrast to the manual coding of join
points in AspectJ.

Our point here is that one of the key mechanisms underlying the enforce-
ment of an invariant is a suitable pushout. To see this most clearly, we switch
to a category of abstract state machines over a suitable specification language;
e.g. see especs in [16, 17]. Here the objects are state machines and the mor-
phisms/refinements represent the simulates relation between automata. An ab-
stract state is given by a specification (for especs we use the higher-order spec-
ifications of Specware). For our purposes here, an abstract transition will be

specified by a pre/post-condition pair: A
[Pre,Post] �������� B (we use dashed ar-

rows for transitions to distinguish them from morphisms in a diagram).

10

In a category of state machine, particularly especs, refinement means simu-
lation and colimit serves (1) to compose the corresponding state specifications
(the pushout of A and C is denoted A ⊕ C) and (2) to superpose the actions
on abstract transitions (the pushout of actions effectively conjoins their effects
so the composite action achieves both simultaneously). The following diagram
illustrates the composition of one step of the source system A ����� B with a
step of the policy C ����� D . The policy asserts that I is to hold invariantly
at states and the effect of composition is to add the invariance requirement to
the system.

• ����������

�����������������

������������������� •

�������������������

�����������������

A
[Pre,Post] ���������

��������������� B

����������������� C
[I,I] ���������

����������������� D

		�������������

A⊕ C
[Pre∧I,Post∧I]

�������� B ⊕D

Static analysis is used to find the association of system steps and policy steps,
then a pushout, as above, is used to compose the two. A further synthesis step
is needed in order to synthesize an action that achieves the composed action
specification [Pre ∧ I, Post ∧ I]. For a variety of detailed examples see [25].

5.2 Enforcing Automata-based Security Policies

The previous section described a simple kind of policy, based on invariant state
properties, and the composition and synthesis mechanisms that underlie enforce-
ment. A more general kind of policy can be specified by means of automata or
by temporal logic formulas.

As a concrete example, consider the following simple security policy which
is adapted from Schneider [19]. Whenever a process reads from a particular file
f , it is not allowed to send any messages. The policy states a particular kind of
information flow constraint. The policy can be expressed as a policy automaton:

����� ��������	
�����0

α: ¬read f/
��

�
	

β: read f/
����������� ��������	
�����1

γ: ¬send/
��

�
	

δ: send/abort
����������� ��������2

The transitions are labeled in the form name : event/action. The events are
expressed as source-code patterns that either succeed (with bindings of pattern
variables) or fail. If an action is omitted, then it is a no-op. This policy has only
has one prescription of an action to take in a particular context – in policy state
1, if a send is attempted, then abort the program. The effect of enforcement
will be to terminate any behaviors that do not implement the policy (a send
following a read of file f). For examples of the enforcement of automata-based
policies that prescribe behavior, see the error-handling policies in [26].

11

Colimits can be used to enforce policies specified by a policy automaton.
However, there are interesting issues that arise. The foremost is that the effect
of enforcing this policy is to sometimes cause the program to abort (terminate
abnormally) when the system would otherwise continue normally. There are two
problems here: (1) how to handle conflicting constraints on the system (here the
system may satisfy constraints that conflict with the policy), and (2) how to
define an appropriate notion of refinement (morphism) that allows termination
of behaviors.

One approach to handling conflicting requirements is to treat system require-
ments as having a linear priority order. The idea is that a system satisfies a prior-
ity ordering of constraints if whenever the system fails to satisfy one constraint
C, then it must satisfy some other higher-priority constraint. For example, it
is often the case in system code that safety and security constraints dominate
functional constraints. We make this approach more precise in the following.

Let 〈R,≺〉 be a linearly ordered set of temporal formulas [14], and S a pro-
gram. We say that a behavior b satisfies R if for each formula F in R, either S
satisfies F or it satisfies some other formula G ∈ R such that F ≺ G. S satisfies
R if every behavior of S satisfies R.

Technically, there is no extra expressive power in priority-ordered require-
ments. Consider the simplest situation in which there are just two requirements
A and B together with the order A ≺ B. An equivalent specification has the two
requirements A∨B and B without an order. Clearly this notion of satisfaction is
weak, since it admits programs that satisfy B but not A. While one could pursue
this to obtain a stronger theoretical definition of satisfaction (e.g. by considering
maximal satisfaction of dominated constraints), we take a pragmatic approach
that addresses the problem via the design process. That is, our approach will
be to perform design starting with the bottommost requirements of the order –
typically these are the basic functional constraints. Then, we iteratively select
dominating requirements in order and enforce them by colimit in the evolving
design. In this way, whenever we enforce a requirement, the composition process
will only override dominated constraints. The result is a design that will tend to
satisfy the base functionality requirements as much as possible, but with some
behaviors that accord with overriding policy constraints.

Mobile code provides a clear scenario in which this bottom-up design ap-
proach makes sense. Mobile code typically cannot be designed to anticipate all
environments that it might run in. One host environment may have local policies
that must be enforced, and it can do so by, say, composing the policies at the
byte-code level at upload time. This way, the local environment’s policies are
maintained even if it means disallowing behaviors of the mobile code that might
be acceptable in other environments.

Our point here is not to fully define a new approach to program satisfaction,
nor a new design methodology, but simply to show another context in which
composition by colimit provides basic support to system development.

The second problem mentioned above, a suitable notion of refinement that
allows behavior termination, can be addressed as follows. In the category of es-

12

pecs [16, 17], abstract states are given by specifications and abstract transitions
are modeled by suitable morphisms – a state machine is then a diagram over a
category of specs. Each abstract state naturally has the identity self-transition
which is the identity morphism on specs. Semantically, the behaviors of such an
espec includes arbitrary stuttering (no-op transitions that do not change state).
In the literature, behaviors that stutter are often ruled out, although they play
a crucial role in refinement. We propose to go farther and admit all such stutter-
ing behaviors, including behaviors in which the machine stutters forever on some
state. There are at least two reasons to adopt this rather loose semantics. First,
it allows us to model failure in the underlying computation substrate. Most for-
mal models of behavior assume a perfect computational model and ignore the
unreliability of the hardware/software platform on which software executes. Sec-
ond, it allows us to treat as refinement the notion of policy enforcement that
works by terminating bad behaviors. In both cases, the idea is that for any
behavior that successfully reaches a final/accepting state (or does so infinitely
often), the semantics also includes all prefixes of that behavior. Each proper
prefix corresponds to a computation that is terminated (due to failure of com-
putational service, or to policing action, etc.). As a consequence, we obtain the
conventional notion of trace-containment semantics for refinement. That is, every
behavior of the codomain machine (including abnormally terminated behaviors)
maps-to/simulates a behavior of the domain machine.

Enforcement of a policy automaton occurs in two stages. In the first stage,
static analysis is used to simulate the automaton by matching the event patterns
against the control-flow of the system source code. Recent progress has pro-
duced scalable low-order polynomial time algorithms for policy simulation [10, 6].
These algorithms work by simulating the policy forward through the source code,
recording the policy states and transitions in labels on the control-flow graph
of the source code. When matching a policy transition labeled event/action, if
the event pattern matches a source-code transition, then the policy transition
(instantiated with the bindings from the match) is associated with the source
transition. The algorithms terminate when a fixpoint is reached.

In effect, static analysis creates a refinement of the policy automaton that has
the same essential shape as the source code, thus enabling automatic composition
by colimit.

Consider for example the code

int c;
if c=0 then read f;
send m;
...

which is represented by a state machine in Figure 2. The figure also shows the
results of policy simulation/analysis – each state of the code is labeled with
the states of the policy automaton that it could possibly be in for some input,
and each transition is labeled with the set of possible policy transitions that it
simulates for some input.

13

•
���
�

•
c=0 � read f

�
�

c �=0�

��

�
�

•
send m���

�

•

{0}
{α}���

�

{0}

{γ}

��

�
�

�
{β}

�
�
�

{0, 1}
{β}���

�

{0}

Fig. 2. Results of Static Analysis

���
�
�

◦

�
�

���

��
�

���
�
�

����
��

��
��

◦
���
�
�

���
��

��
��

�

[true,s′=0]
���
�
�

◦
c=0 � read f

�
�

�
c �=0�

��

��
�

◦ ◦
[s=0,s′=1]

�
�

�
[s=0,s′=0]

��

��
�

◦
send m

���
�
� ◦

s=0� [true, true]
���
�
�

◦
���

��
��

��
�

����
��

��
��

◦

[true,s′=0]
���
�
�

◦
c=0 � [s=0, s′=1 ∧ read f]

�
�

�
c �=0� [s=0, s′=0]

��

��
�

◦
s=0�[true, true ∧ send m]

���
�
�

◦
Fig. 3. Colimit to Enforce Policy

14

Conceptually, the static analysis sets up a cospan in the category of especs
[16, 17]. Figure 3 shows both the cospan and the cocone. The static analysis
allows us to set up a refinement of the policy automaton (shown on the right
of the cospan) and the abstract shape that is common to the source code and
the policy instance. In the example, the key feature is the policy ambiguity that
results from the conditional: after the conditional, the system state is in either
policy state 0 or 1 depending on which branch was taken. Crucially then, the
send command is either (i) acceptable, if the policy state is 0, or (ii) forbidden
if the policy state is 1. The policy instance automaton reflects this by recording
the policy transitions that correspond to system transitions.

Computing the pushout has the essential effect of enforcing the security pol-
icy in the source code. Finally, program synthesis processes are applied to the
pushout specification and the result is translated back to the following source-
level code:

int c;
int s; /* state variable */
s := 0;
if c=0

then {read f || s := 1}
if s=0

then send m
else abort;

...

In the example, the composition results in the code aborting when c = 0.
The pushout object is a refinement of both the policy and the source code.

The approach outlined above applies to a given software design, and has the
effect of aborting behaviors that are forbidden by policy. while we can formulate
this process in terms of pushouts in an appropriate category, there are pros and
cons to this approach. It makes sense to use this approach with code of unknown
provenance that must be made to conform to local policies (e.g. mobile code or
services supplied over the Internet). However for bespoke code, the framework
gives the developer too much freedom – it doesn’t provide incentives for the
programmer to find ways to satisfy both the functional requirements as well
as safety and security policies. Our view is that good designers will develop an
architecture that supports for the kinds of policies that can be expected for the
system. The effect then of policy enforcement would be to add in the details of
the policy to the appropriate architectural mechanisms. A good example is access
control. There are standard architectures for access control [30] that prescribe the
mediation of a guard in any access to a resource that requires some protection.
The design pattern puts the requisite structure in place and the colimit composes
in the policy details.

15

6 Concluding Remarks

Our goal has been to show how composition by colimit can play a fundamental
role in software development by refinement. The benefits of these foundations
include enhanced productivity through automated code generation, enhanced
assurance due to the correct-by-construction characteristic of refinement-based
derivations, and potentially enhanced software quality and performance due to
to automated application of codified best-practice design knowledge.

Acknowledgments: This work was partially supported by the US Department
of Defense and by the Office of Naval Research under Grant N00014-04-1-0727.

References

1. Becker, M., Gilham, L., and Smith, D. R. Planware II: Synthesis of schedulers
for complex resource systems. Tech. rep., Kestrel Technology, 2003.

2. Burstall, R. M., and Goguen, J. A. Putting theories together to make spec-
ifications. In Proceedings of the Fifth International Joint Conference on Artificial
Intelligence (Cambridge, MA, August 22–25, 1977), IJCAI, pp. 1045–1058.

3. Burstall, R. M., and Goguen, J. A. The semantics of CLEAR, a specification
languge. In Proceedings, 1979 Copenhagen Winter School on Abstract Software
Specification, D. Bjorner, Ed. Springer LNCS 86, 1980.

4. Coglio, A. Toward automatic generation of provably correct Java Card applets. In
Proc. 5th ECOOP Workshop on Formal Techniques for Java-like Programs (July
2003).

5. Cousot, P., and Cousot, R. Abstract interpretation: a unified lattice model
for static analysis of programs by construction or approximation of fixpoints. In
Conference Record of the Fourth Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (1977), ACM, pp. 238–252.

6. Das, M., Lerner, S., and Seigle, M. ESP: Path-sensitive program verification
in polynomial time. In SIGPLAN 2002 Conference on Programming Language
Design and Implementation (PLDI’02) (2002).

7. Goguen, J. A. Categorical foundations for general systems theory. In Advances
in Cybernetics and Systems Research, F. Pichler and R. Trappl, Eds. Transcripta
Books, 1973, pp. 121–130.

8. Goguen, J. A. Parameterized programming. IEEE Transactions on Software
Engineering SE-10, 5 (September 1984), 528–543.

9. Goguen, J. A., and Burstall, R. M. Institutions: Abstract model theory for
computer science. Journal of the ACM 39, 1 (1992), 95–146.

10. Hallem, S., Chelf, B., Xie, Y., and Engler, D. A system and language
for building system-specific, static analyses. In SIGPLAN 2002 Conference on
Programming Language Design and Implementation (PLDI’02) (2002).

11. J. Goguen and R. Burstall. CAT: a system for the structured elaboration of
correct programs from structured specifications. Tech. Rep. CSL-118, SRI Inter-
national, 1988.

12. Kestrel Institute. Specware System and documentation, 2003.
http://www.specware.org/.

13. Kiczales, G., and et al. An Overview of AspectJ. In Proc. ECOOP, LNCS
2072, Springer-Verlag (2001), pp. 327–353.

16

14. Manna, Z., and Pnueli, A. The Temporal Logic of Reactive and Concurrent
Systems. Springer-Verlag, New York, 1992.

15. Papadimitriou, C. H., and Steiglitz, K. Combinatorial Optimization: Algo-
rithms and Complexity. Prentice Hall, Englewood Cliffs, NJ, 1982.

16. Pavlovic, D., and Smith, D. R. Composition and refinement of behavioral spec-
ifications. In Proceedings of Automated Software Engineering Conference (2001),
IEEE Computer Society Press, pp. 157–165.

17. Pavlovic, D., and Smith, D. R. Evolving specifications. Tech. rep., Kestrel
Institute, 2004.

18. Reps, T., Horwitz, S., and Sagiv, M. Precise interprocedural dataflow analysis
via graph reachability. In Conference Record of the Twenty-Second ACM Sympo-
sium on Principles of Programming Languages (1995), ACM, pp. 49–61.

19. Schneider, F. Enforceable security policies. ACM Transactions on Information
and System Security 3, 1 (February 2000), 30–50.

20. Smith, D. R. KIDS – a semi-automatic program development system. IEEE
Transactions on Software Engineering Special Issue on Formal Methods in Software
Engineering 16, 9 (1990), 1024–1043.

21. Smith, D. R. Constructing specification morphisms. Journal of Symbolic Compu-
tation, Special Issue on Automatic Programming 15, 5-6 (May-June 1993), 571–606.

22. Smith, D. R. Toward a classification approach to design. In Proceedings of Al-
gebraic Methodology and Software Technology (AMAST) (1996), vol. LNCS 1101,
Springer-Verlag, pp. 62–84.

23. Smith, D. R. Designware: Software development by refinement. In Proceedings
of the Eighth International Conference on Category Theory and Computer Science
(1999), M. Hoffman, D. Pavlovic, and P. Rosolini, Eds., pp. 355–370.

24. Smith, D. R. Mechanizing the development of software. In Calculational System
Design, Proceedings of the NATO Advanced Study Institute, M. Broy and R. Stein-
brueggen, Eds. IOS Press, Amsterdam, 1999, pp. 251–292.

25. Smith, D. R. A generative approach to aspect-oriented programming. In Pro-
ceedings of the Third International Conference on Generative Programming and
Component Engineering (2004), Springer-Verlag LNCS 3286, pp. 39–54.

26. Smith, D. R., and Havelund, K. Automatic enforcement of error-handling poli-
cies. Tech. rep., Kestrel Technology, September 2004.

27. Smith, D. R., and Lowry, M. R. Algorithm theories and design tactics. Science
of Computer Programming 14, 2-3 (October 1990), 305–321.

28. Smith, D. R., Parra, E. A., and Westfold, S. J. Synthesis of planning and
scheduling software. In Advanced Planning Technology (1996), A. Tate, Ed., AAAI
Press, Menlo Park, pp. 226–234.

29. Srinivas, Y. V., and Jüllig, R. Specware: Formal support for composing soft-
ware. In Proceedings of the Conference on Mathematics of Program Construction,
B. Moeller, Ed. LNCS 947, Springer-Verlag, Berlin, 1995, pp. 399–422.

30. The Open Group. Security design patterns. Tech. rep.,
http://www.opengroup.org/security/gsp.htm, 2004.

