
ITAS:
A Portable, Interactive Transportation Scheduling Tool

Using a Search Engine Generated from Formal Specifications

Mark H. Burstein
BBN Systems and Technologies

10 Moulton St.
Cambridge, MA 02138

Email: burstein@bbn.com

Douglas R. Smith
Kestrel Institute

3260 Hillview Avenue
Palo Alto, California 94304
Email: smith@kestrel.edu

Abstract

In a joint project, BBN and Kestrel Institute
have developed a prototype of a mixed-initiative
scheduling system called ITAS (In-Theater Airlift
Scheduler) for the U.S. Air Force, Pacific Com-
mand. The system was built in large part using
the KIDS (Kestrel Interactive Development Sys-
tem) program synthesis tool. In previous work
for the ARPA/Rome Laboratory Planning Ini-
tiative (ARPI), Kestrel has used their program
transformation technology to derive extremely
fast and accurate transportation schedulers from
formal specifications, as much as several orders
of magnitude faster than currently deployed sys-
tems. The development process can produce
highly efficient code along with a proof of the
code’s correctness.

This paper describes the current prototype ITAS
system and its scheduling algorithm, as a con-
crete example of a generated scheduling work-
ing on a real problem. We outline the gener-
ated search algorithm in order to promote and
facilitate comparison with other constraint-based
scheduling systems. The overall system includes
a database and interactive interface that allows
users to control shape of the schedule produced
in a number of ways. ITAS runs on a Macintosh
Powerbooktm notebook computer, for reasons of
portability.

Introduction

This report describes a prototype application of
Kestrel Institute’s research on the transforma-
tional development of high-performance transportation
schedulers.1 The system, ITAS, for In-Theater Trans-
portation Scheduler, is designed to assist human sched-
ulers of airplanes who work to produce daily flight

1This research was supported by ARPA/Rome Lab-
oratories under Contracts F30602-91-C-014 (BBN) and
F30602-91-C-0043 (Kestrel).

plans to move cargo and people within a specific the-
ater of operations. For example, after the Iniki Hur-
ricane in the Hawaiian Islands a few years ago, these
airlift schedulers sent planes from Honolulu and other
islands to the Hawaiian island of Kauai to deliver sup-
plies and relief workers to that area. This scenario is
not atypical, and was used as a working example as we
developed the system.

Previously, Kestrel had demonstrated the poten-
tial to produce extremely fast and accurate trans-
portation schedulers from formal specifications us-
ing the Kestrel Interactive Development System
(KIDS)(Smith September 1990). On test data for
strategic transportation plans provided by U.S. govern-
ment planners, the generated schedulers (called KTS
for Kestrel Transportation Scheduler) solved problems
with impressive speed. A typical problem, with 10,000
movement requirements, takes the derived scheduler 1
– 3 minutes to solve, compared with 2.5 hours for a de-
ployed feasibility estimator (JFAST) and 36 hours for
deployed schedulers (FLOGEN, ADANS). The com-
puted schedules use relatively few resources and satisfy
all specified constraints. The speed of this scheduler
was due to the synthesis of strong constraint checking
and constraint propagation code.

In 1994 Kestrel and BBN began to develop a sched-
uler to support PACAF (Pacific Air Force) at Hick-
ham AFB, Honolulu which is tasked with in-theater
scheduling of a fleet of 26 C-130 cargo aircraft in
the Pacific region. We developed (and are continu-
ing to evolve) a domain model of theater transporta-
tion scheduling. Several variants of a theater sched-
uler (called ITAS for In-Theater Airlift Scheduler) have
been developed to date, and more are planned. The
ITAS interface and was built on top of a commer-
cial database package (Microsoft FoxProtm) and in-
tegrated with the generated LISP-based scheduler by
BBN. ITAS runs on an Apple Powerbook laptop com-



puter. The laptop platform makes it attractive both
for field and command center operations. ITAS can
currently produce ATOs (Air Tasking Orders) based
on the schedules that it generates.

The current ITAS scheduler algorithm is another
in the KTS family of synthesized algorithms, using
a number of new and different constraints from the
previous, strategic (inter-theater) model. In this do-
main, the size of the problems is smaller (small tens
of movement requirements, planes and ports), and the
time horizon is shorter (typically, less than one week)
because the domain is much more reactive. However,
there are many more constraints that must be handled,
and users need very rapid response from the scheduler
in order to be able to iterate on the final schedule,
often in less than an hour. On relatively small but
realistic problems we have tested so far2 in ITAS’ in-
tended domain of application, the scheduler runs in 5
to 30 seconds on a Macintosh Powerbook 540. Rel-
atively little effort has been spent on optimizing the
code to date.

ITAS simultaneously schedules the following classes
of resources: (1) aircraft, (2) air crews and their duty
day cycles, (3) ground crews for unloading, and (4)
ramp space at ports. By its very dynamic nature, the
domain presents many special one-time issues that we
leave to the user to handle, as discussed later. Basi-
cally, ITAS as a system is designed to allow users con-
trol the “shape” of the final schedule by editing and
“seeding” the schedule in several ways, and to do daily
rescheduling, without losing this user input to the pro-
cess.

In this paper, we describe the current prototype of
ITAS. We discuss the constraints from the domain
that were handled, and some that have not, as yet,
been handled directly in the generated code. We at-
tempt to describe, in informal terms, the algorithm
that was produced using KIDS, in an attempt to make
clear where this style of scheduling algorithm gets its
great speed, and to promote comparison with other
constraint-based scheduling systems in the literature.
Finally, we briefly describe the nature of user interac-
tions with the scheduler, as they have evolved so far.

An Approach to Synthesizing

Schedulers

Kestrel’s approach to developing scheduling software
involves several stages. The first step is to develop
a formal model of the transportation scheduling do-
main, called a domain theory. Second, the constraints,

2Roughly speaking, 10 planes, 10 movement require-
ments, generating about 50 flights.

objectives, and preferences of a particular schedul-
ing problem are stated within a domain theory as a
problem specification. Finally, an executable sched-
uler is produced semi-automatically by applying a se-
quence of transformations to the problem specification.
The transformations embody programming knowledge
about algorithms, data structures, program optimiza-
tion techniques, etc. The result of the transformation
process is executable code that is consistent with the
given problem specification. Furthermore, the result-
ing code can be extremely efficient.

One of the benefits of a transformational approach
to scheduling is the synthesis of specialized constraint
management code. Previous systems for performing
scheduling in AI (e.g. (Fox & Smith 1984; Fox, Sadeh,
& Baykan 1989; Smith, Fox, & Ow 1986; Smith 1989))
and Operations Research (Applegate & Cook 1991;
Luenberger 1989) use constraint representations and
operations that are geared for a broad class of prob-
lems, such as constraint satisfaction problems or lin-
ear programs. In contrast, transformational techniques
can derive specialized representations for constraints
and related data, and also derive efficient specialized
code for constraint checking and constraint propaga-
tion.

Our approach tries to make the domain model and
scheduling problem explicit and clear, so that, ulti-
mately, users can build new schedulers of the same
general class by defining the constraints embodied in
their problem and generating a new, situation-specific,
scheduler. Basically, the idea is to rapidly develop a
situation-specific domain model and problem specifi-
cation using a knowledge-elicitation system, and then
to synthesize high-performance planning and schedul-
ing tools that are specialized to the current situation.
The majority of users’ interaction would be codify-
ing the domain theory and specification of the current
situation, to aid in synthesizing a customized plan-
ning/scheduling tool.

Our current scheduling theories have evolved over
months of effort into about 3500 lines of text. It cur-
rently takes about 90 minutes to transform our most
complex scheduling specification (for ITAS) into opti-
mized and compiled Common Lisp code for Sun work-
stations. Evolution of the scheduler is performed by
evolving the domain theory and specification, followed
by regeneration of code. The resulting code, after opti-
mizing transformations, is roughly 3000 lines of code in
the REFINE language (depending on how its format-
ted), which is transformed automatically into about
5200 lines of (largely unreadable) Common LISP code.



Characterizing the Application Domain

A domain theory for scheduling defines the basic con-
cepts of scheduling and the laws for reasoning about
the concepts. A scheduling domain model generally
consists of models of the activities to be scheduled,
the resources to be used by those activities, time (e.g.,
a time-interval calculus, the constraints on the use of
resources for activities (capacity constraints), and the
ordering of activities (precedence constraints), and the
utility of the produced schedule (e.g., minimize a cost
objective function).

Using the above concepts we can formulate a vari-
ety of scheduling problems. A reservation is a triple
consisting of an activity, a resource, and a time inter-
val. Generally, a schedule is a set of reservations that
satisfy a collection of constraints and optimize (or pro-
duce a reasonably good value of) the objective. Trans-
portation scheduling specializes this general notion of
scheduling: activities correspond to movement require-
ments and resources correspond to transportation as-
sets such as planes, ships, and trucks. For the ITAS
domain, the main assets are planes, but other resources
must also be managed including: air crews, ground
crews (that load and unload the planes), and parking
spaces at airports (for the port constraint called MOG
or maximum on ground number).

For ITAS and other transportation schedulers, the
activities are called movement requirements. ITAS
movement requirements include the following informa-
tion (All times are in seconds from time t0.):

POE : port 7→ PHIK
POD : port 7→ PHLI
ALD : time 7→ 0
EAD : time 7→ 86400
LAD : time 7→ 86400
Loads : integer 7→ 20
Load−type : aircraft-class 7→ C130E
PAX : integer 7→ 1500
Pallets : integer 7→ 50

Here, the Port of Embarkation (POE) and Port of
Debarkation (POD) are the origin and destination of
the cargo, respectively. PHIK and PHLI are ICAO
codes for Hickham AFB and Lihue Airport, respec-
tively. The ALD (available to load date), EAD (earliest
arrival date), LAD (latest arrival date) represent the
time bounds on a feasible schedule for the movement
requirement. The cargo itself is represented somewhat
differently from most strategic transportation mod-
els. For a problem at this level (smaller planes, local
scheduling), packing of the aircraft is a crucial issue,
and irregular size and shape loads must be considered.
We do not address the packing problem in this system,
so we instead rely on the user to specify irregular cargo

in full Loads for a specific kind of aircraft, and with a
particular configuration of the plane’s cargo area (in-
dicated by the Load-type). More regular cargo (PAX
and Pallets) may be loaded onto any aircraft that has
available space for that type of cargo.
The ITAS schedulers have emphasized efficient

search and rich constraint modeling. The current ver-
sion of ITAS simultaneously schedules the following
types of resources, each of which has a variety of con-
straints associated with it:

1. Aircraft are characterized by their capacities, both
passenger (PAX) and cargo (pallet) capacities, and
travel rate in knots. They also have minimum run-
way length requirements in order to be acceptable
for use at specific airports.

2. Air crews typically have 16 hour work days, fol-
lowed by 12 hours rest. They are not expected to
take off until one hour after they are called for duty.3

They also receive a day off after a short number of
days on duty. When only one crew is available for a
plane, the plane does not fly during crew rest peri-
ods.

3. Ground crews are scheduled for loading and un-
loading planes at each port.

4. Parking spaces at each port are used to model the
MOG (Maximum on Ground) constraint on ports
where this applies.

5. Airports are not treated as resources themselves,
but have restrictions like their maximum runway
length, and operating hours, and whether they are
in a combat zone that impact flights into and out of
those locations. They also organize other resources
(ground crews, parking spaces).

Ground crews and parking slots (MOG) at airports
are essentially aggregate resources in a naive descrip-
tion of the ITAS problem, but are scheduled as if they
were individual unit resources in the current system,
since KIDS cannot currently generate code that treats
these constraints in their aggregate form. This is an
area of ongoing research.

ITAS’ Scheduling Constraints

At present, twenty-three constraints characterize a fea-
sible schedule for ITAS4. The list below collapses the

3Thus far, we only handle one air crew permanently
assigned to each aircraft. This should be fixed by the time
of this publication.

4Some of these constraints (*’d) are not currently given
explicitly as part of the top level Problem Specification to



descriptions of some of these together5:

1. Consistent POE and POD* – The POE and POD
of each movement requirement on a given trip of a
resource must be the same as that flight’s origin and
destination respectively.

2. Consistent Load Type* – Each resource can handle
only loads for some movement requirements. For
example, a C-141 aircraft can only carry loads of
C-141 cargo.

3. Consistent PAX and Pallet Capacity* – For cargo in
movement requirements expressed as PAX (passen-
gers) or Pallets (pre-packaged cargo), the capacity
of each aircraft to carry that type of cargo cannot
be exceeded on a given flight. A flight containing a
full load can carry no additional PAX or Pallets.

4. Consistent Release Time – The start time of a move-
ment (the flight’s earliest departure time (EDT))
must not precede the release time (ALD) of all move-
ment requirements in the flight’s manifest, plus the
aircraft’s load time.

5. Consistent Due Time – The finish time of a move-
ment (the flight’s latest departure time + flight du-
ration + unload time) must not be later than the
Latest Arrival Date (LAD) of all movement require-
ments in the flight’s manifest.

6. Consistent Flight Separation – For flights of the same
aircraft, the earliest (latest) departure time plus the
flight duration and on-ground time at the destina-
tion must be less than the earliest (latest) departure
time of the aircraft’s next flight.

7. Consistent Air Crew Usage – Only use the given air
crews.

8. Consistent Air Crew Duty Day – For a sequence of
flights by one crew without a rest period, the earliest
(latest) departure time of the last flight, plus the last
flight’s duration and unload time, should be less than
the length of a duty day after the earliest (latest)
departure time of the first flight.

the KIDS system, but are implicit in theGlobal Search The-
ory, another part of the domain theory that is essentially
an abstract schema describing the branching structure for
the search control model to be employed in the generated
algorithm. These constraints were “rolled into” that struc-
ture for the sake of the efficiency of the generated code.
Future systems will make these constraints explicit again.

5The number of corresponding formal constraints is
noted in parenthesis. Typically, temporal constraints come
in pairs, one that is used to propagate the Earliest Depar-
ture Time (EDT) forward, and one that is used to propa-
gate the Latest Departure Time (LDT) backward through
the schedule.

9. Consistent Air Crew Transition – By similar formu-
lae, crews get a full 12 hours rest after a duty day
plus at least 3.25 hours preparation time before their
next flight.

10. Consistent Air Crew Qualifications – Crews must be
qualified for the aircraft they are assigned to, the
mission types to be flown, and must belong to the
unit that ‘owns’ the aircraft. (3 constraints)

11. Consistent Port Usage – Only schedule flights
into/out of the given ports.

12. Consistent Port Runway Length – Aircraft cannot
land or take off from airports whose maximum run-
way length is less than the aircraft’s minimum take-
off/landing runway length6.

13. Consistent Port MOG – The constraints here are
actually on the use of parking spaces, which are
assigned individually during search. Basically they
state that the earliest (latest) departure time of the
aircraft leaving a space must be before the earliest
(latest) arrival time of the next aircraft assigned to
that space.

14. Consistent Port Ground Crew – Similar to MOG,
ground crew reservations must be separated by the
corresponding load/unload time. For now, it is as-
sumed that there are a constant number of ground
crews available whenever a port is open.

15. Consistent Port Operating Hours – Ports may be
closed for take-offs/ landings for some period each
day (e.g., night time). (2 constraints)

16. Consistent Mission Type – The cargo in a flight man-
ifest must be from movement requirements with the
same mission type (e.g., normal land and unload vs.
airdrop).

17. Consistent Aircraft Usage – Only the given aircraft
are to be used.

18. Completeness – All movement requirements must be
scheduled.

Constraints in the domain theory are defined for-
mally by reference to data structures that are main-
tained during search, basically mappings of resources
(parking spaces, ground crews) to sequences of reser-
vations (tuples referencing the aircraft and flight in-
volved). For example, here is a (slightly simplified)

6This constraint could be made considerably more com-
plex if it were to take into account whether the plane was
loaded or not, its expected fuel level, and the different true
minimums for take-off and landing.



constraint on the LAD of a movement requirement:

function CONSISTENT-LAD
(sched : schedule) : boolean
= ∀(ac− indx : integer, f lt : integer,

mvr : movement-record , flt-indx : integer, lat : time)
(ac-indx ∈ domain(sched)
∧ flt-indx ∈ domain(sched(ac-index ).flight-sched)
∧ flt = sched(ac-index ).flight-sched(flt-indx)
∧ mvr ∈ flt.manifest
∧ lat = flt.latest-departure-time + flt.iflt-duration
=⇒
mvr.LAD ≥ (lat+ flt.unload-time)

This predicate expresses the constraint that every
scheduled movement-record arrives and is unloaded
before its latest arrival date.7 The generated code
checks this constraint and propagates any time bounds
changes that its enforcement causes.
Similarly, air crew constraints are defined by refer-

ence to a mapping from air crews to a data structure
containing the sequence of flights they are scheduled to
be on, plus other associated information. These data
structures are defined as part of the domain theory.
They are not generated automatically. Data structure
design and refinement is an explicit goal of the next
generation KIDS-like environment, Specware (Srinivas
& Jüllig 1994).

Preferential Constraints

A typical scheduling problem will involve some choices
best expressed as preferences or prioritizations for the
use of resources. Although some experiments have
been done with KIDS where its search was based in
part on a utility or cost function, the current ITAS
scheduler does not explicitly handle preferential con-
straints at all. Instead, at points where choices are
made about which resources to use, user-defined func-
tions order the choices. We have experimented with
a number of different ordering heuristics, to improve
the overall quality of the schedules produced, from the
user’s perspective.
There are functions (called variously ASSET-

ORDER, AIR-CREW-ORDER ...) that define the or-
der of consideration of each kind of resource:

Movement Requirements – E.g., sorted by their
LAD, EAD, ALD.
Assets (aircraft) – E.g., prefer locally available air-
craft.

7A schedule is defined as a sequence of aircraft (which
are data structures that contain their flight schedules, also
sequences). Thus sched(i) indexes the i

th aircraft, and
domain(sched) is the integers [1..k] if there are k aircraft
available.

Air Crews – E.g., prefer the most rested air crews
from the aircraft’s home unit.
Ground Crews – Prefer the earliest available crew.
Parking Spaces – Prefer the earliest available
space.

Synthesizing a Scheduler

There are two basic approaches to computing a sched-
ule: local and global. Local methods focus on indi-
vidual schedules and similarity relationships between
them. Once an initial schedule is obtained, it is itera-
tively improved by moving to neighboring structurally
similar schedules. Repair strategies (Zweben, Deale,
& Gargan 1990; Minton et al. 1990; Biefeld & Cooper
1990; Selman, Levesque, & Mitchell 1992), and fixed-
point iteration (Cai & Paige 1989), and linear program-
ming algorithms are examples of local methods.

Global methods focus on sets of schedules. A feasi-
ble or optimal schedule is found by repeatedly split-
ting an initial set of schedules into subsets until a
feasible or optimal schedule can be easily extracted.
Backtrack, heuristic search, and branch-and-bound
methods are all examples of global methods. We
used a global methods to generate the KTS family
of schedulers, including ITAS. Other projects taking
a global approach include ISIS (Fox & Smith 1984),
OPIS/DITOPS (Smith 1989), and MicroBoss (Sadeh
1991) (all at CMU).

Global search algorithms manipulate sets of candi-
date solutions. The principal operations are to ex-
tract candidate solutions from a set and to split a set
into subsets. Derived operations include various filters
which are used to eliminate sets containing no feasible
or optimal solutions. Starting from an initial set that
contains all solutions to the given problem instance,
these algorithms repeatedly extracts solutions, splits
sets, and eliminates sets via filters until no sets remain
to be split. The process is often described as a tree
(or DAG) search in which a node represents a set of
candidates and an arc represents the split relationship
between set and subset. The filters serve to prune off
branches of the tree that cannot lead to solutions.

In a simple global search theory of scheduling, sched-
ules are represented as maps from resources to se-
quences of trips, where each trip includes earliest-start-
time, latest-start-time, travel-time, port of embarka-
tion, port of debarkation, and a manifest describing
the cargo. This type of schedules has the invariant (or
subtype characteristic) that for each trip, the earliest-
start-time is no later than the latest-start-time. A par-
tial schedule is a schedule over a subset of the given
movement records. Thus the root denotes the set of
all candidate solutions found in the tree. This initial



(partial) schedule is just the empty schedule – a map
from the available resources to the empty sequence of
trips. A partial schedule is extended by first select-
ing a movement record mvr to schedule, then selecting
a resource r, and then a trip t on r (either an exist-
ing trip or a newly created one) – the triple 〈mvr, r, t〉
represents a possible refinement of the current partial
schedule in the search space. The alternative ways that
a partial schedule can be extended naturally gives rise
to the branching structure underlying global search al-
gorithms.
A global search algorithm checks for consistency of

the partial solution at each node it explores, pruning
those nodes where the test fails. More generally, neces-
sary conditions on the existence of feasible (or optimal)
solutions below a node in a branching structure under-
lie pruning in backtracking and the bounding and dom-
inance tests of branch-and-bound algorithms (Smith
1987).

Cutting Constraints and Temporal
Constraint Propagation

A key technical achievement of the Kestrel work was
discovering and implementing technology for generat-
ing efficient constraint propagation code. The speed
of the KTS schedulers derives from the extremely fast
checking and propagation of constraint information at
every node of the runtime search tree. Whereas some
knowledge-based approaches to scheduling will search
a tree at the rate of several nodes per second, some of
the synthesized schedulers search several hundred thou-
sand nodes per second.
The idea is to derive and utilize the necessary con-

ditions on feasibility of a candidate (partial) schedule.
These conditions are called cutting constraints. The
derived cutting constraints for a particular schedul-
ing problem are analyzed to produce code that iter-
atively fixes violated constraints (for the current KTS
schedulers, by tightening time bounds on reservations)
until the cutting constraints are satisfied. This itera-
tive process subsumes the well-known processes of con-
straint propagation in the AI literature and the notion
of cutting planes from the Operations Research litera-
ture(Smith & Westfold 1995).
Kestrel researchers developed a general mechanism

for deriving constraint propagation code and applied
it to scheduling. This model of constraint propagation
generalizes the concepts of cutting planes in the Oper-
ations Research literature (Nemhauser & Wolsey 1988)
and the forms of propagation studied in the constraint
satisfaction literature (e.g. (Hentenryck 1989)). 8 The

8For details of deriving pruning mechanisms for other
problems see (Smith 1987; September 1990; Smith & Lowry

use of fixed-point iteration for constraint propagation
is similar to Paige’s work on fixed-point iteration in
RAPTS (Cai & Paige 1989).

KIDS generates propagation code automatically
from a subset of the constraints given for a problem,
using information in the global search theory schema
as a guide. Stephen Westfold of Kestrel was responsi-
ble for the design and implementation of the propaga-
tion generation subsystem of KIDS (Smith, Parra, &
Westfold 1995). The constraint propagation code that
was generated for the original KTS scheduler is nearly
as fast as handwritten propagation code for the same
problem (cf. Appendix C in (Smith 1992)). The prop-
agation code for the current ITAS is many times more
complicated, and it would have been quite difficult to
generate it by hand.

The generated propagation code called at each node
during search operates much the way a temporal con-
straint system does, although the code is targeted to
the problem domain using specific knowledge of the
particular constraints handled, the choices being con-
sidered at that point by the scheduler, and a logical
analysis of the possible effects of tightening particu-
lar time bounds. The result is code tailored to the
specific scheduling problem addressed, based on the
constraints specified in the domain theory. The overall
effect is very efficient pruning of the search space. At
each node in the space, after each potential choice is
made by satisfying all relevant non-temporal necessary
constraints, the propagation code is run to see if the
schedule is still viable. If so, the system recurs on the
new refined state. Otherwise, a new choice is made.

The ITAS Scheduler Algorithm

This section provides a brief outline of the generated
scheduler’s algorithm, in order to convey a sense of how
the system works, and (hopefully) why it is fast. Due
to space limitations, we have greatly simplified and
summarized what goes on. The code itself is extremely
complex and barely readable, with few function breaks
and numerous generated intermediate variables.

In ITAS, a schedule is a list of all of the aircraft,
where each aircraft is an object that contains its (par-
tial) schedule. A sortie is essentially a short sequence
of flights that contains (at most) a positioning flight
to get to a POE, a POE-to-POD flight, and a recov-
ery flight away from the POD to a refueling or resting
station.

The top level function, KTS, just calls KTS-AUX,
which recursively searches the space of partial sched-
ules. KTS then tests to see if the result is defined and

1990; Smith 1991).



UNSCHED-MVRS is empty, in which case it extracts
a solution from the current search state.
The arguments to KTS-AUX constitute a state in

the search space:

1. MVRS: a sorted list of all original movement require-
ments

2. ASSETS: a list of all available aircraft for the prob-
lem

3. PORTS: a list of all of the ports in the problem

4. AIR-CREWS: a list of all air crews

5. PSCHED: a partially completed schedule

6. SCHED-MVRS: all of the movement requirements
that are already scheduled

7. UNSCHED-MVRS: all of the remaining unscheduled
movement requirements

8. AIR-CREW-MAP: a mapping of air crews to their
schedules

9. GND-CREW-MAP: a mapping of ground crews to
their schedules

10. GS-FLTS: flights remaining to be scheduled for the
current sortie

11. PRK-SLOT-MAP: a mapping of parking spots at
ports to their reservations

KTS-AUX for the ITAS problem splits the search
into four main branches, as defined by the global search
theory schema of the domain theory. The first two
branches consider refinements of the current partial
schedule for flights that are part of the current sortie.
A current sortie exists while a movement requirement
is being processed, but not all of the necessary flights
(positioning, cargo-moving, depositioning) have been
scheduled (so GS-FLTS is not empty). The third and
fourth branches consider the next movement require-
ment, and search to place as much of that requirement
as possible on an existing or new flight, respectively.
In the process, a new sortie is created.
Within each of the four main branches of KTS-

AUX, one of two versions of SPLIT&PROPAGATE
is called, to generate the proposed new state, and
run the propagation routines for each temporal con-
straint that might be violated at that point. If
SPLIT&PROPAGATE succeeds and returns a new
state, When KTS-AUX finds a possible a new state, it
calls SPLIT&PROPAGATE with these additional ar-
guments S-State to represent the currently considered
resources:

1. FLT : the currently considered flight, if any

2. POE-TO-POD-FLT: the load-carrying flight for this
move reqt., if known

3. AIR-CREW: the flight’s air crew

4. CURRENT-DUTY-DAY?: Boolean indicating to
search in the current (next) duty day

5. GROUND-CREW: the ground crew scheduled to un-
load the plane, if defined

6. GND-CREW-RES: the reservation for that crew, if
defined.

7. PARKING-SLOT: the parking slot to be used at the
destination, if defined

The branches, considered sequentially, are:

1. If GS-FLTS is not empty, consider all possible
ground crews and parking slots for

FLT = first(GS-FLTS)
and

MVR = first(UNSCHED-MVRS) ,
by calling SPLIT&PROPAGATE1 on each, but con-
sidering only flights in the current duty day of the
flight’s air crew.

2. If GS-FLTS is not empty, consider all possible
ground crews and parking slots for

FLT = first(GS-FLTS)
and

MVR = first(UNSCHED-MVRS) ,
by calling SPLIT&PROPAGATE1 on each, but con-
sidering only flights in the next duty day of the
flight’s air crew.

3. If GS-FLTS is empty, let
MVR = first(UNSCHED-MVRS) ,

and consider all cargo-carrying flights of air-
craft in the current S-State’s partial schedule
that have remaining capacity for MVR by calling
SPLIT&PROPAGATE2 on each.

4. If GS-FLTS is empty, let
MVR = first(UNSCHED-MVRS) ,

and consider all aircraft in ASSET-ORDER, call-
ing SPLIT&PROPAGATE2 on each, which creates
a flight sortie for that MVR, and tests that require-
ment’s LAD can be met.

5. (optional) If no feasible (partial) schedule is found,
relax the LAD of the last movement requirement.



Each SPLIT&PROPAGATE function contains a
version of the generated constraint checking and propa-
gation code for a different set of conditions, depending
on how the partial schedule has been changed. Es-
sentially, these functions take the constraints stated
in the problem description, in turn, and, if they are
temporal constraints, propagate their bounds either
forward or backward in time, depending on whether
the earliest (EDT) or latest departure time (LDT) of
a flight is referenced in the constraint. For example,
SPLIT&PROPAGATE1, which is used to schedule an
existing flight in GS-FLTS, does the following:

1. Check CONSISTENT-RUNWAY-LENGTH.

2. Check CONSISTENT-MISSION-TYPE.

3. Generate a state vector with reservations for the
Ground Crew, Air Crew, and Parking Slot assign-
ments for the flight

4. Propagate EDT, checking CONSISTENT-AIR-
CREW-DUTY-DAY-EDT

5. Propagate LDT, checking CONSISTENT-AIR-
CREW-DUTY-DAY-LDT

6. Propagate EDT, checking CONSISTENT-FLIGHT-
SEPARATION-EDT for all aircraft used in
PSCHED.

7. Propagate LDT, checking CONSISTENT-
FLIGHT-SEPARATION-LDT for all aircraft used
in PSCHED.

8. Propagate EDT, checking CONSISTENT-ALD for
all MVR in the manifest.

9. Propagate EDT, checking CONSISTENT-
GROUND-UNLOAD-CREW-EDT for all of the cur-
rent ground crews at the destination.

10. Propagate LDT, checking CONSISTENT-
GROUND-UNLOAD-CREW-LDT for all of the cur-
rent ground crews at the destination.

Each propagation of the EDT or LDT above is
based on recursively checking the corresponding con-
straints for CONSISTENT-FLIGHT-SEPARATION,
CONSISTENT-AIR-CREW-DUTY-DAY,
CONSISTENT-AIR-CREW-TRANSITION, and
CONSISTENT-MOG.
If the state is still defined (consistent) at the end of

all of this, the proposed state is accepted, the move-
ment requirement is marked scheduled and KTS-AUX
is called recursively.
SPLIT&PROPAGATE2 is similar, but somewhat

more complicated, since it generates a sortie of flights

for the next movement requirement, and finds an air-
craft and crew for that sortie.

Constraint Relaxation

Many scheduling problems are over-constrained. Over-
constrained problems are typically handled by relax-
ing the constraints. The usual method, known as La-
grangian Relaxation (Nemhauser & Wolsey 1988), is
to move constraints into the objective function. This
entails reformulating the constraint so that it yields a
quantitative measure of how well it has been satisfied.

Our current experimental approach is to relax the
input data just enough that a feasible solution ex-
ists (the optional branch 5 of KTS-AUX). This ap-
proach is available as an option in ITAS to avoid an
exhaustive search when no feasible solution may exist.
This mode relaxes the LAD (Latest Arrival Date) con-
straint, when the current search reaches an impasse,
rather than backing up. The relaxation takes place
only when there is no feasible solution to the problem
data. ITAS uses the difference between the arrival date
of a trip and the LAD of a movement requirement in
that trip as a measure of how much to relax the LAD.
The relaxation is such as to minimally delay the arrival
of the requirement to its POD.

System Design and User Interactions

Issues with ITAS

The target user community for ITAS needed a tool
that was fast, easy to use, flexible and portable. These
factors motivated us to develop the system on Macin-
toshes, so that it could be deployed on a Mac Power-
book notebook computer. Given the speed of the
scheduler, size of the problems to be faced, and the
short scheduling horizon, we expect that most prob-
lems will run in under a minute with the current sys-
tem. We used Microsoft FoxProtm as the primary
database and interface substrate, because it runs on
Macintoshes and it was simple to understand. For the
current prototype, data exchanges with the scheduler
(running in Macintosh Commonlisp) are done using a
simple combination of Applescript and file I/O. On our
current suite of test problems, it takes as long to do
the inter-module I/O as it does to build a schedule.
The interface uses Apple’s menu system and set

of data entry screens, organized around two types of
data: background data (for caches of locations (air-
ports), units, aircraft types and characteristics, fre-
quently used aircraft, etc.) and situation data, the cur-
rent collection of aircraft, crews, ports and movement
requirements for which a schedule is being built. The
primary graphical schedule display is a mouse sensi-
tive version of a schedule Gantt chart modeled after



what the airlift schedulers call their ‘Rainbow’ chart,
because the different types of aircraft are assigned dif-
ferent colors.

There is also a flight editor that enables users to
make modifications to the existing schedule before ex-
porting it, and to iterate on a solution with the sched-
uler in the loop. Users of this tool need to be able to
edit the schedules produced, when circumstances not
captured by the available constraints come up. We
needed to make it possible for parts of the schedule to
be specified directly by the user, and not revised by
the scheduler.

The ITAS domain is extremely reactive. The people
who now generate schedules by hand do so a day at a
time, since their information is often only good enough
to estimate what will be required three, or even two
days hence. Given a tool that will build schedules for
them, they will likely extend their planning horizon
(currently 10 days or less), at least for plan/resource
evaluation purposes, but for day to day operations,
they will continue to schedule only a few days at a
time, and do daily rescheduling, as needed.

In support of rescheduling, users can mark (or edit
then mark) flights in the existing current schedule as
‘Frozen’. ITAS-KTS takes as part of its input the
leading frozen edge of a schedule, and uses it only to
properly reflect resource availability, and so that those
flights and their itineraries are reflected in its output.
Because the ITAS-KTS scheduling algorithm generates
candidate flights in a time forward fashion, a frozen
flight necessarily means that all prior flights by that
aircraft are also frozen. Thus the current scheduler
does not give users as much flexibility to edit and then
rerun schedules as is found in some other global-search
based rescheduling systems whose search is not time
ordered (e.g., (Smith 1989)) or in systems using local
repair strategies(Zweben, Deale, & Gargan 1990). We
are planning to generate an ITAS scheduler that in-
serts flights in a schedule rather than adding them to
the end of schedule. The interesting issue is to evalu-
ate the resulting tradeoff between the slowdown due to
greatly increased search tree branching and the extra
flexibility gained during (re)scheduling.

Our users also wished to be able to lay out patterns
of flight itineraries for some sets of aircraft, based on
their paper process. For example, it is customary for
them, when scheduling a group of planes carrying loads
to the same destination, to stagger the departure times
to assure a uniform flow into an airport. We have not
yet been able to reproduce this style of output auto-
matically, but have provided a mechanism that allows
users to lay out itineraries (sequences of ports to visit)
for sets of aircraft, each departure offset by some spec-

ified time interval. Flights of this kind that are seen
by ITAS-KTS as having fixed earliest departure times,
but infinite latest departure times, so they can effec-
tively be “slid forward” in time to accommodate port
and ground crew constraints. A planned extension of
this capability is to provide these “flows” to the sched-
uler as patterns that can be used repeatedly in nor-
mal scheduling, especially where the distance is great
enough that an intermediate stop en route is required
when transporting some cargo. The current scheduler
does not support multi-leg trips between cargo sources
and destinations.

Conclusions

This project was conceived of as a short term effort to
demonstrate the potential and practical utility of au-
tomatically generated scheduling software. Given the
previously demonstrated speed of the algorithms pro-
duced and this demonstration that the technique can
be scaled up to realistic sets of constraints, we believe
that those conclusions are clearly justified. This pa-
per is an attempt to make clear how the current class
of generated schedulers work, why they are fast, and
what some of the tradeoffs were in terms of flexibility.
We believe that it will often be better to generate, and
make available through a single interface, a suite of
quick schedulers, tailored to different constraints, than
to have one scheduler that is slow on all problems.
The great advantage of the synthesis approach is

the ability to expose problem structure and exploit
it by transformationally deriving efficient problem-
specific code. In this case, the reuse of design knowl-
edge (global search, constraint propagation) made an
enormous difference in performance. Future direc-
tions include making it easier for domain experts to
specify their own constraints, and generate their own
problem-specific schedulers, and broadening the classes
of scheduling algorithms that can be generated, and
the types of constraints that can be handled. The next
generation of KIDS, Specware, will also address the
need for more automatic and controllable data struc-
ture design. We should note that a preliminary test
indicates that there is at least an order of magnitude
speedup still to be had, since the current scheduler uses
lists for all of its object data structures! Specware will
be able to use a variety of data types, and generate
code in other languages than LISP (e.g., C++).
On the interface side, we seek to exploit the great

speed of even the current class of schedulers by greatly
increasing the interactive nature of the scheduling task,
providing more automatic capabilities in the area of
resource analysis and comparative schedule analysis.



Acknowledgments – The authors would like to
thank the following people for their important contri-
butions to the ITAS effort: Don Roberts and John
Lemmer of Rome Laboratory; Stephen Westfold of
Kestrel Institute; and LtCol Chris Stuhldreher, Maj
Keith LaCrosse, and Cpt Rob Burgess of the PACAF
Airlift Operations Center.

References

Applegate, D., and Cook, W. 1991. A computational
study of the job-shop scheduling problem. ORSA
Journal on Computing 3(2):149–156.

Biefeld, E., and Cooper, L. 1990. Operations mission
planner. Technical Report JPL 90-16, Jet Propulsion
Laboratory.

Cai, J., and Paige, R. 1989. Program derivation by
fixed point computation. Science of Computer Pro-
gramming 11:197–261.

Fox, M. S., and Smith, S. F. 1984. ISIS – a knowledge-
based system for factory scheduling. Expert Systems
1(1):25–49.

Fox, M. S.; Sadeh, N.; and Baykan, C. 1989.
Constrained heuristic search. In Proceedings of the
Eleventh International Joint Conference on Artificial
Intelligence, 309–315.

Hentenryck, P. V. 1989. Constraint Satisfaction in
Logic Programming. Cambridge, MA: Massachusetts
Institute of Technology.

Luenberger, D. G. 1989. Linear and Nonlinear Pro-
gramming. Reading, MA: Addison-Wesley Publishing
Company, Inc.

Minton, S.; Johnson, M.; Philips, A. B.; and Laird, P.
1990. Solving large-scale constraint satisfaction and
scheduling problems using a heuristic repair method.
In Proceedings of the Eighth National Conferenceon
Artificial Intelligence, 290–295.

Nemhauser, G. L., and Wolsey, L. A. 1988. Integer
and Combinatorial Optimization. New York: John
Wiley & Sons, Inc.

Sadeh, N. 1991. Look-ahead techniques for micro-
opportunistic job shop scheduling. Technical Report
CMU-CS-91-102, Carenegie-Mellon University.

Selman, B.; Levesque, H.; and Mitchell, D. 1992. A
new method for solving hard satisfiability problems.
In Proceedings of the Tenth National Conferenceon
Artificial Intelligence, 440–446.

Smith, D. R. 1987. Structure and design of global
search algorithms. Technical Report KES.U.87.12,
Kestrel Institute.

Smith, D. R. September 1990. KIDS – a semi-
automatic program development system. IEEE
Transactions on Software Engineering Special Is-
sue on Formal Methods in Software Engineering
16(9):1024–1043.

Smith, D. R., and Lowry, M. R. 1990. Algorithm
theories and design tactics. Science of Computer Pro-
gramming 14(2-3):305–321.

Smith, D. R. 1991. KIDS: A knowledge-based soft-
ware development system. In Lowry, M., and McCart-
ney, R., eds., Automating Software Design. Menlo
Park: MIT Press. 483–514.

Smith, D. R. 1992. Transformational approach to
scheduling. Technical Report KES.U.92.2, Kestrel In-
stitute.

Smith, D. R., and Westfold, S. J. 1995. Synthe-
sis of constraint algorithms. In Saraswat, V., and
Hentenryck, P. V., eds., Principles and Practice of
Constraint Programming. Cambridge, MA: The MIT
Press.

Smith, D. R.; Parra, E. A.; and Westfold, S. J. 1995.
Synthesis of high-performance transportation sched-
ulers. Technical Report KES.U.95.6, Kestrel Insti-
tute.

Smith, S. F.; Fox, M. S.; and Ow, P. S. 1986. Con-
structing and maintaining detailed production plans:
Investigations into the development of knowledge-
based factory scheduling systems. AI Magazine
7(4):45–61.

Smith, S. F. 1989. The OPIS framework for modeling
manufacturing systems. Technical Report CMU-RI-
TR-89-30, The Robotics Institute, Carenegie-Mellon
University.

Srinivas, Y. V., and Jüllig, R. 1994. Specware:tm

formal support for composing software. Technical
Report KES.U.94.5, Kestrel Institute. To appear
in Proceedings of the Conference on Mathematics of
Program Construction, Kloster Irsee, Germany, July
1995.

Zweben, M.; Deale, M.; and Gargan, R. 1990. Any-
time rescheduling. In Proceedings of the Workshop on
Innovative Approaches to Planning, Scheduling and
Control, 215–219. San Diego, CA: DARPA.


