
Comprehension by Derivation

Douglas R. Smith
Kestrel Institute

3260 Hillview Avenue
Palo Alto, California 94304 USA

smith@kestrel.edu

Abstract

We argue that to comprehend a software system is to
have a handle on its requirements, specifications, and de-
sign decisions. These kinds of information support the
reuse of system code for a variety of purposes and sup-
port its ongoing extension, migration, and evolution. Our
work at Kestrel Institute has focused on ways to mecha-
nize the development and evolution of software from for-
mal specifications. By-products of such a process include
formal records of design decisions and proofs, as well as
executable code. In this approach, reuse can take place at
non-code levels, including domain theories, specifications,
and design knowledge. Evolution takes place by modify-
ing requirements, specifications, or design decisions, and
then reusing previous design structures. When restricted to
particular application domains, the generation of correct-
by-construction code from specifications can be completely
automatic.

1 Overview

A software system can be viewed as a composition of
information from a variety of sources, including

• the concepts of the application domain,

• the requirements on the system’s behavior,

• design knowledge about system architectures and in-
terfaces, protocols, algorithms, data structures, code
optimization techniques, and

• the run-time hardware/software/physical environment
in which the software will execute.

In current programming practice most, or all, of this
information is lost, becoming unavailable to support later
maintenance, migration, and evolution activities. Belated

attempts to reconstruct this information are likely to be ex-
pensive and approximate. Our thesis is that a more rational
design process that is centered around requirement specifi-
cations, and proceeds to code by mechanized application of
design refinements will improve not only the initial design
of a system, but also leave behind exactly the information
needed to rationally understand, migrate, and evolve the
code. Evolution, in our view, should take place at the spec-
ification level, not the code level. If requirements change,
then a modification is made to the specification and then
new code is generated. If a design change is desired (e.g. a
new algorithm or a new target platform), then a change to
the design refinements is made and new code is generated.

This paper reviews a mechanizable framework for repre-
senting these various sources of information, and for com-
posing them in the context of a refinement process. The
framework is founded on a category of specifications. Mor-
phisms are used to structure and parameterize specifica-
tions, and to refine them. Colimits are used to compose
specifications. Diagrams are used to express the structure
of large specifications, the refinement of specifications to
code, and the application of design knowledge to a specifi-
cation.

The framework features a collection of techniques for
constructing refinements based on formal representations
of programming knowledge. Abstract algorithmic con-
cepts, datatype refinements, program optimization rules,
software architectures, abstract user interfaces, policies, and
so on, are represented as diagrams of specifications and
morphisms. We arrange these diagrams into taxonomies,
which allow incremental access to and construction of re-
finements for particular requirement specifications. For ex-
ample, a user may specify a scheduling problem and select
a theory of global search algorithms from an algorithm li-
brary. The global search theory is used to construct a refine-
ment of the scheduling problem specification into a specifi-
cation containing a global search algorithm for the particu-
lar scheduling problem.

We particularly emphasize more recent work on au-
tomating the enforcement of user-specified policies on a
system design. A policy can be thought of as a modular
cross-cutting constraint that helps determine what to do at
decision points. Technically, enforcing a policy reduces the
nondeterminism in a system, thereby creating a refinement.
Policy enforcement can be thought of as a generalization
of aspect-oriented programming, where the policy is a kind
of aspect to be “woven” into the code. We describe two
classes of policies and the means for automating their en-
forcement: (1) AspectJ-aspects treated as logical invariants,
and (2) error-handling policies. In other work we have ex-
plored the enforcement of timing and resource constraints,
and access control policies.

The framework has been partially implemented in the
Specware [4] and Designware [8] systems. Specware pro-
vides basic support for composing specifications and refine-
ments, and generating code. Code generation in Specware
is supported by inter-logic morphisms that translate be-
tween the specification language/logic and the logic of
a particular programming language (e.g. CommonLisp
or C++). Specware is intended to be general-purpose
and has found use in industrial settings. Designware ex-
tends Specware with taxonomies of software design the-
ories and support for constructing refinements from them.
Recently Specware has been extended to support the spec-
ification and refinement of behavior and the generation
of imperative code. Various domain-specific generators
have been built on top of Specware, including the do-
mains of high-performance scheduling algorithms, Mat-
Lab/StateFlow compilation, and JavaCard applet genera-
tion.

2 Basic Concepts

A specification is a finite presentation of a theory. The
signature of a specification provides the vocabulary for de-
scribing objects, operations, and properties in some domain
of interest, and the axioms constrain the meaning of the
symbols. The theory of the domain is the closure of the
axioms under the rules of inference.

Example: Here is a specification for partial orders, us-
ing notation adapted from Specware. It introduces a sort E
and an infix binary predicate on E, called le, which is con-
strained by the usual axioms. Although Specware allows
higher-order specifications, first-order formulations are suf-
ficient in this paper.

spec Partial-Order is
sort E
op le : E,E → Boolean

axiom reflexivity is x le x
axiom transitivity is x le y ∧ y le z =⇒ x le z
axiom antisymmetry is x le y ∧ y le x =⇒ x = y

end-spec

The generic term expression will be used to refer to a
term, formula, or sentence.

A model of a specification is a structure of sets and total
functions that satisfy the axioms. However, for software
development purposes we have a less well-defined notion
of semantics in mind: each specification denotes a set of
possible implementations in some computational model.

A specification morphism translates the language of
one specification into the language of another specification
while preserving the property of provability, so that any the-
orem in the source specification remains a theorem under
translation.

A specification morphism m : T → T ′ is given by a map
from the sort and operator symbols of the domain spec T to
the symbols of the codomain spec T ′. To be a specification
morphism it is also required that every axiom of T trans-
lates to a theorem of T ′. It then follows that a specification
morphism translates theorems of the domain specification
to theorems of the codomain. An interpretation (between
theories) is a slightly generalized morphism that translates
symbols to expressions.

Example: A specification morphism from Partial-Order
to Integer can be expressed in the form

morphism Partial-Order-to-Integer is
{E �→ Integer, le �→ ≤}

Translation of an expression by a morphism is by straight-
forward application of the symbol map, so, for example, the
Partial-Order axiom x le x translates to the Integer for-
mula x ≤ x. The three axioms of a partial order remain
provable in Integer theory after translation.

Morphisms and interpretations are used in Specware
both to express part-whole relationships in a structured
specification and to express refinement between specifica-
tions.

When a morphism is used as a refinement, the intended
effect is to reduce the number of possible implementations
when passing from the domain spec to the codomain. In this
sense, a refinement can be viewed as embodying a particular
design decision or property that corresponds to the subset of
possible implementations of the domain spec which are also
possible implementations of the codomain.

3 Software Development by Refinement

S0

��
S1

��...

��
Sn

�� ��
��
��

Code

The development of correct-by-construction
code via a formal refinement process is
shown to the left. The refinement process
starts with a specification S0 of the require-
ments on a desired software artifact. Each
Si, i = 0, 1, ..., n represents a structured
specification and the arrows ⇓ are refine-
ments. The refinement from Si to Si+1 em-
bodies a design decision which cuts down
the number of possible implementations. Fi-
nally an inter-logic morphism translates a
low-level specification Sn to code in a pro-
gramming language. Semantically the effect
is to narrow down the set of possible imple-
mentations of Sn to just one, so specification
refinement can be viewed as a constructive
process for proving the existence of an im-
plementation of specification S0 (and prov-
ing its consistency).

Clearly, two key issues in supporting software develop-
ment by refinement are: (1) how to construct specifications,
and (2) how to construct refinements.

A specification-based development environment sup-
plies tools for creating new specifications and morphisms,
for structuring specs into diagrams, and for composing
specifications via importation, parameterization, and col-
imit. In addition, a software development environment
needs to support a large library of reusable specifications,
typically including specs for (1) common datatypes, such as
integer, sequences, finite sets, etc. and (2) common math-
ematical structures, such as partial orders, monoids, vec-
tor spaces, etc. In addition to these generic operations and
libraries, the system may support specialized construction
tools and libraries of domain-specific theories, such as re-
source theories, or generic theories about domains such as
satellite control or transportation.

A refinement-based development environment supplies
tools for creating new refinements. One of our innova-
tions is showing how a library of abstract refinements can
be applied to produce refinements for a given specification.
In previous work we developed abstract refinements that
embodied design knowledge about (1) algorithm design,
(2) datatype refinement, and (3) expression optimization.
Other types of design knowledge can be similarly expressed
and exploited, including interface design, software architec-
tures, domain-specific requirements capture, and others. In

addition to these generic operations and libraries, the sys-
tem may support specialized construction tools and libraries
of domain-specific refinements.

The key concept here is that abstract design knowl-
edge (e.g. about datatype refinement, algorithm design,
software architectures, program optimizations, visualiza-
tion displays, and so on) can be expressed as abstract re-
finements. The domain of one such refinement represents
the abstract structure that is required in a user’s specifica-
tion in order to apply the embodied design knowledge. The
refinement itself embodies a design constraint – the effect
is a reduction in the set of possible implementations. The
codomain of the refinement contains new structures and def-
initions that are composed with the user’s requirement spec-
ification.

A ��

��

S0

��
B �� S1

The figure to the left shows the applica-
tion of a library refinement A =⇒ B
to a given (structured) specification S0.
First the library refinement is selected.
The applicability of the refinement to
S0 is shown by constructing a classifi-
cation arrow from A to S0 which classi-
fies S0 as having A-structure by making
explicit how S0 has at least the structure
of A. Finally the refinement is applied
by computing the pushout in the cate-
gory of diagrams. The creative work
lies in constructing the classification ar-
row [6, 7].

4 Toward System Design by Refinement

The results described above were originally applied to
the development of functional programs. To support the
specification and development of complex systems, we felt
the need to specify behaviors via some notion of state ma-
chine [5]. The resulting formalism, called evolving spec-
ifications (or simply especs), is a category of behavioral
specifications that supports explicitly modeling the logical
structure and behavior of systems. The framework supports
precise, automatable operations for the composition of es-
pecs and their refinement. The espec framework is partially
implemented in the Epoxi system.

As described in the previous section, library refinements
of especs and refinement generators can be applied to refine
a system specification to code. In a current project, we are
generating idiomatic C and Java code from especs.

A key new issue emerges with the design of complex sys-
tems in which cross-cutting constraints play a more promi-
nent role than in small programs. A concern is cross-cutting

if its manifestation cuts across the dominant hierarchical
structure of a program. Aspect-Oriented Software Develop-
ment (AOSD) offers new insights and tools for the modular
development of systems with cross-cutting features [1, 3].
A simple example is an error logging policy – the require-
ment to log all errors in a system in a standard format. Error
logging necessitates the addition of code that is distributed
throughout the system code, even though the concept is easy
to state in itself. Cross-cutting concerns explain a signifi-
cant fraction of the code volume and interdependencies of a
system. The interdependencies complicate the understand-
ing, development, and evolution of the system.

Current tool support for AOSD is provided mainly in
the form of code-level constructs. We briefly present some
ideas on how cross-cutting constraints can be treated in a
mechanized specs-to-code refinement process (for more de-
tail, see [9]). Our approach is (1) to express the essential
intention of an aspect by a logical invariant, and (2) to gen-
erate code to maintain the invariant throughout the system.
The generated maintenance code corresponds to statically
woven advice in AspectJ, and could be expressed either di-
rectly as AspectJ aspects, or by direct generation and inser-
tion of maintenance code into the system. To state invariants
that express cross-cutting features often entails the need to
reify certain extra-computational values such as history or
the runtime call stack.

A simple example serves to introduce the technique:
maintaining an error log for a system. More precisely,
whenever an exception handler is invoked, we require that
an entry be made in an error log. To express this require-
ment, we first ask: what does the error log mean as a data
structure? Informally, the idea is that at any point in time t,
the error log records a list of all exceptions that have been
raised by the program up to time t. In order to formalize this
we need some way to discuss the history of the program at
any point in time.
Maintaining a history variable

The execution history of the program can be reified into
the state by means of a virtual variable (also called a shadow
or ghost variable). That is, imagine that with each action
taken by the program there is a concurrent action to update
a variable called hist that records the history up until the
current state

s0
act0

hist := hist::〈s0,act0,s1〉
�� s1

act1

hist := hist::〈s1,act1,s2〉
�� s2 · · ·

where state transitions are represented as triples of pre-
state, action, post-state. Obviously this would be an
expensive variable, but it is only needed for specification
purposes, and usually only a residue of it will appear in the
executable code.

Invariant
Given the history variable, the expression

map(action, hist) represents the sequence of actions
so far in the execution history, where action selects the
action part of a state transition. To express the invariant,
we need a test for whether an action represents an error;
i.e. whether it represents the invocation of an exception
handler. Let error?(act) be true when act is an exception,
so filter(error?,map(action, hist)) is the sequence of
error actions so far in the execution history.

We can now represent the semantics of the error log as
the invariant:

� errlog = filter(error?,map(action, hist))

i.e. in any state, the value of the variable errlog is the se-
quence of error actions that have occurred previously.

The idea is that the programmer asserts this formula as a
requirement on the code. It is a cross-cutting requirement
since exceptions can be raised anywhere in the code,
regardless of its structure.

Disruptive Code and Static Analysis
In order to enforce the invariance of the asserted formula,

we must find all actions in the code that could possibly dis-
rupt the invariant, and then generate new code for maintain-
ing the invariant in parallel with the disruptive action. The
set of all code points that could disrupt the invariant corre-
sponds to the AspectJ concept of code points that satisfy a
pointcut. The maintenance code that we generate for each
such disruptive code point corresponds to a point-specific
instance of the advice of an aspect.

Generally, the characterization of disruptive code is
based on the Liebniz or substitutivity rule:

x = x′ =⇒ I(x) = I(x′)

where x is the vector of state variables and I(x) is the in-
variant. The disruptive actions are necessarily those actions
in the code that might change the dependent variables of
the invariant. A static analyzer would be used to (1) find
all actions in the source code that could possibly change the
dependent variables of the invariant, and (2) when possible,
run inexpensive tests to determine if the invariant is actu-
ally violated by the action. For each potentially disruptive
action that the static analyzer finds, action-specific mainte-
nance code needs to be generated.

In our example, the dependent variable of the invariant
is hist, which is changed by every program action. The
error? predicate serves as an inexpensive test that an
action might violate the invariant. A static analyzer would
scan the code (i.e. the abstract syntax representation of the
code) looking for all actions that satisfy error?.

Specification and Derivation of Maintenance Code
Suppose that act is an action such that error?(act). In

order to preserve the invariant, we need to perform a main-
tenance action that satisfies

assume: errlog = filter(error?,map(action, hist))
achieve: errlog′ = filter(error?,map(action, hist′))

The postcondition can be simplified as follows:

errlog′ = filter(error?,map(action, hist′))

⇐⇒ {using the definition of hist}

errlog′ = filter(error?,map(action,
(hist :: 〈 , act, 〉)))

⇐⇒ {distributing map over :: }

errlog′ = filter(error?,map(action, hist) :: act)

⇐⇒ {distributing filter over ::,
using assumption that error?(act) }

errlog′ = filter(error?,map(action, hist)) :: act

⇐⇒ {using the precondition/invariant inductively }

errlog′ = errlog :: act

which is easily satisfied by the simple update

errlog := errlog :: act.

This maintenance action is to be performed in parallel with
act. Again, note that this generated maintenance code cor-
responds to an instance of an aspect’s advice that is appli-
cable where act occurs in the source code.

More generally, suppose that static analysis has identi-
fied an action act as potentially disruptive of invariant I(x).
If act satisfies the specification

assume : P (x)
achieve : Q(x, x′)

then the maintenance code maint can be formally specified
as

assume : P (x) ∧ I(x)
achieve : Q(x, x′) ∧ I(x′)

Code for maint often takes the form of a parallel composi-
tion

act||update

of the actions act and update. Implicit in this specification
is the need to preserve the effect of act while additionally
reestablishing the invariant I . If it is inconsistent to achieve
both, then the specification is unrealizable.

As stated earlier, a policy can be thought of as a mod-
ular cross-cutting constraint on a system that helps deter-
mine what to do at decision points. Technically, enforcing
a policy reduces the nondeterminism in a system, thereby
creating a refinement.

The work described in the previous subsection relies on a
simple form of policy that can be stated as a logical invariant
– a state property that must be maintained. More generally,
policies often have a more dynamic character and are better
specified by means of automata or temporal logic formu-
las. To illustrate behavioral policies and their enforcement
we briefly present some ideas on error-handling policies.
Empirical measures of the amount of code devoted to error-
handling in fielded systems vary from a few percent up to
two-thirds [2, 11], with the amount increasing with code
size and age. The more that a system is embedded and de-
pendent on proper data and interaction with other systems,
the more defensive it needs to be in order to prevent failures.

First, what is needed to specify an error-handling pol-
icy? Errors are the flip-side to normal behavior, so it seems
reasonable to specify error-handling policies in the context
of normal-case behavior. Our approach has been to express
policies as state machines that represent both the normal be-
havior of some aspect of a system together with the abnor-
malities that may arise. We call these state machines error-
handling policies (EHPs), or policies for short (for more
detail, see [10]).

For example, a simplified language-neutral EHP for file
management is depicted in Figure 1. Arrows are labeled
with guarded actions. Solid arrows correspond to normal
program control flow. Dotted arrows correspond to ab-
normal or exceptional control flow, expressing the action
taken when an operation throws an exception. For exam-
ple, if a FileNotFoundException is thrown during
an open operation then handler1 should be executed.
The handlers associated with exceptions are presented as
code templates to be instantiated at design-time by the pol-
icy enforcement mechanism. The arrows exiting the EHP
correspond to the possible outcomes of the behavior, both
normal-case passing of control and the throwing of excep-
tions. Certain states are safe, written with a double circle,
indicating a global obligation with respect to this EHP. In
this example, the enforcement algorithm is obliged to en-
sure that whenever the program is about to terminate while
in an unsafe state, it must close all open files. The figure
also represents erroneous actions, particularly, using a file
before opening it. The policy specifies that the use action
in the Start state should be replaced with the throw of an
exception. A Java-like syntax for expressing error-handling
policies is presented in [10].

The mechanism for enforcing policies has several stages.

Open Stop
open close

use

FileNotFoundException / handler1

IOException / handler2

use

handler3

Start

Error

Simplified Generic File Management Policy

The first stage is interprocedural value-flow analysis that
links program points to value creation, and computes the
value flow across statements and method calls. The goals
are (1) to identify policy instance creation sites by identi-
fying program points where the values are created for the
instance variables, (2) to compute alias sets, and (3) to de-
termine the scope of the value flow for the policy. This in-
formation is used to determine the scope of a policy instance
– the innermost block that encloses the value flow of the in-
stance bindings and to support policy simulation in the next
stage.

The second stage is a sound flow-sensitive interprocedu-
ral dataflow analysis that simulates the policy automata over
the Control Flow Graph (CFG) of the application code. The
result of policy simulation includes (1) a map from source
code program points to sets of policy states, (2) a map from
source code expressions and statements to sets of policy
transitions, (3) a map from program points and policy vari-
ables to source code expressions (used for pattern instan-
tiation), and (4) a summary of the state changes effected
by method calls. The value-flow analysis from the previ-
ous step is used to eliminate unnecessary work in this stage
by restricting the policy simulation to just those value flows
that may occur in each method call context. The analysis is
ambiguous if any program point has more than one policy
state associated with it, and it is unambiguous otherwise.

In the third stage, the policy is actually enforced by
inserting code fragments into the system source code at
relevant points. If the analysis from the previous stage
is ambiguous, then code transformations are run to try
to remove the ambiguity. If the result is unambiguous,
then error-handlers from the policy can be inserted di-
rectly. For example, if an read command is issued at

a code point that is labeled open, then enforcement will
ensure that both EOFExceptions and IOExceptions
are caught. If, on the other hand, the analysis is am-
biguous (e.g. multithreaded programs will almost always
be ambiguous wrt policy state), then the policy will be
enforced by runtime tracking of state - if static analy-
sis cannot reveal the policy state, then dynamic analysis
must be used. We perform runtime tracking by extend-
ing the relevant classes with a state variable that is up-
dated with each method call. Also, method overriding is
used to wrap error-handling code around the parent method.
For example, when applying the policy in Figure 1 to
DataInputStreams in Java, we generate the extended
class that is stated elliptically in Figure 2. Then every oc-
currence of class DataInputStream is replaced with
DataInputStreamTracking in the system source.

5 Summary

This paper has aimed to convey a sense of the possi-
bility of requirements-driven mechanized development of
code by refinement. We discussed how common kinds of
programming can be represented abstractly and formally,
and then mechanically applied to an intermediate specifica-
tion to produce refinement steps. We described in more de-
tail how two kinds of cross-cutting requirement constraints
can be formally specified and automatically enforced, again
generating refinements. Both techniques rely on scalable
static analysis to find all places in the system code that
they apply. The correctness of enforcement depends on the
soundness of the analysis; i.e. the absence of false nega-
tives, or missed instances.

The incremental refinement process produces code that

public class DataInputStreamTracking
extends DataInputStream {

public static final int Start = 1;
public static final int Open = 2;
public static final int Closed = 3;
int currentState = Start;
public String filename;

public DataInputStreamTracking
(String filename)

throws FileNotFoundException {
super(new FileInputStream(filename));
this.filename = filename;
this.currentState = Open;

}

public int readInteger()
throws IOException {

int x = 0;
switch(currentState){
case Start:

throw new Error(
"Attempt to read
from an unopen File");

case Open:
try{

x = super.readInt();
} catch (EOFException e){

throw new EOFException(
"File"
+ filename
+ "contains no data!");

} catch (IOException e){
throw new IOException(
"Cannot read from file "
+ filename);

}
break;

case Closed:
throw new Error(

"File "
+ filename
+ "already closed");

}
return x;

}
...

}

Extended Class with Runtime Tracking

is provably consistent with the initial specification. More-
over, a by-product of the development process is a detailed
design record along with the code, proofs, and top-level
specification. This is crucial information to support further
evolution and migration steps.
Acknowledgments: The research reported here has been
supported by the Office of Naval Research, the US Air
Force Research Lab, the Defense Advanced Research
Projects Agency, and the US Department of Defense.

References

[1] Aspect-Oriented Software Development, 2003.
http://www.aosd.net/.

[2] F. Cristian. Exception handling. In Dependability of Re-
silient Computers, pages 68–97. BSP Professional Books,
Blackwell Scientific Publications, 1989.

[3] T. Elrad, R. Filman, and A. Bader, editors. Communica-
tions of the ACM– Special Issue on Aspect-Oriented Pro-
gramming, volume 44(10). October 2001.

[4] Kestrel Institute. Specware System and documentation,
2003. http://www.specware.org/.

[5] D. Pavlovic and D. R. Smith. Composition and refinement of
behavioral specifications. In Proceedings of Sixteenth Inter-
national Conference on Automated Software Engineering,
pages 157–165. IEEE Computer Society Press, 2001.

[6] D. R. Smith. Constructing specification morphisms. Jour-
nal of Symbolic Computation, Special Issue on Automatic
Programming, 15(5-6):571–606, May-June 1993.

[7] D. R. Smith. Toward a classification approach to design.
In Proceedings of Algebraic Methodology and Software
Technology (AMAST), volume LNCS 1101, pages 62–84.
Springer-Verlag, 1996.

[8] D. R. Smith. Mechanizing the development of software. In
M. Broy and R. Steinbrueggen, editors, Calculational Sys-
tem Design, Proceedings of the NATO Advanced Study In-
stitute, pages 251–292. IOS Press, Amsterdam, 1999.

[9] D. R. Smith. A generative approach to aspect-oriented pro-
gramming. In Proceedings of the Third International Con-
ference on Generative Programming and Component Engi-
neering, pages 39–54. Springer-Verlag LNCS 3286, 2004.

[10] D. R. Smith and K. Havelund. Automatic enforcement of
error-handling policies. Technical report, Kestrel Technol-
ogy, September 2004.

[11] W. Weimer and G. C. Necula. Finding and preventing run-
time error handling mistakes. In 19th Annual ACM Con-
ference on Object-Oriented Programming, Systems, Lan-
guages, and Applications (OOPSLA ’04), Oct. 2004.

