
in Knowledge Engineering Reviews, 2001

Synthesis of EÆcient Constraint Satisfaction Programs

Stephen J. Westfold and Douglas R. Smith

Kestrel Institute

3260 Hillview Avenue

Palo Alto, California 94304

fwestfold,smithg@kestrel.edu
January 16, 2001

Abstract

In this paper we describe the framework we have developed in KIDS (Kestrel Interactive Devel-

opment System) for generating eÆcient Constraint Satisfaction Programs. We have used KIDS

to synthesize global search scheduling programs that have proved to be dramatically faster than

other programs running the same data. We focus on the underlying ideas that lead to this eÆ-

ciency. The key to the eÆciency is the reduction of the size of the search space by an e�ective

representation of sets of possible solutions (solution spaces) that allows eÆcient constraint prop-

agation and pruning at the level of solution spaces. Moving to a solution space representation

involves a problem reformulation. Having found a solution to the reformulated problem, an ex-

traction phase extracts solutions to the original problem. We show how constraints from the

original problem can be automatically reformulated and specialized in order to derive eÆcient

propagation code automatically. Our solution methods exploit the semilattice structure of our

solution spaces.

Keywords: constraint propagation, global search, disjunctive constraints, semilattice, program synthesis

1 Introduction

Software synthesis is the process of transforming a formal problem speci�cation into software that is eÆcient

and correct by construction. We have used KIDS (Kestrel Interactive Development System) over the last ten

years to synthesize very eÆcient programs for a variety of scheduling problems [16, 17, 12]. The eÆciency of

these schedulers system is based on the synthesis of specialized constraint management code for achieving

arc-consistency. Previous systems for performing scheduling in AI (e.g. [7, 6, 19, 18]) and Operations

Research [1, 10] use constraint representations and operations that are geared for a broad class of problems,

such as constraint satisfaction problems or linear programs. In contrast, synthesis techniques can derive

specialized representations for constraints and related data, and also derive eÆcient specialized code for

constraint checking and constraint propagation. Synthesis technology allows us to specialize the code by

exploiting both problem-independent knowledge (theory of linear programming, �nite domains, etc.) as well

as problem-speci�c information obtained from the problem speci�cation.

In this paper we focus on the underlying ideas that lead to the eÆciency of our synthesized scheduling

programs and explore their generality. Our constraint satisfaction algorithms fall into the class of global search

algorithms. We have explored this class in more depth elsewhere [15, 17]. Here we focus on a formulation

that uses points in a semilattice to represent solution spaces. This semilattice framework naturally allows for

heterogeneous variables (variables of di�erent types), multiple constraints on each variable, indexed variables,

conditional constraints and a dynamic set of variables.

1

split

..

.

cut

cut

cut

split

fixpoint of the cutting process

prune off subspace
(contains no feasible
solutions)

feasible
solutions

Figure 1: Pruning and Constraint Propagation

The basic idea of global search is to represent and manipulate sets of candidate solutions or solution spaces.

The principal operations are to extract candidate solutions from a solution space and to split a space into

subspaces. Derived operations include (1) �lters which are used to eliminate spaces containing no feasible or

optimal solutions, and (2) cutting constraints that are used to eliminate non-feasible elements from a space of

candidate solutions. Global search algorithms work as follows: starting from an initial space that contains all

solutions to the given problem instance, the algorithm repeatedly splits spaces into subspaces|re�nements

of the space| eliminates spaces via �lters, and contracts spaces by propagating cutting constraints until

no spaces remain to be split. The process is often described as a tree (or DAG) search in which a node

represents a solution space and an arc represents the split relationship between space and subspace. The

�lters and constraint propagators serve to prune o� branches of the tree that cannot lead to solutions. See

Figure 1 which illustrates the working of pruning and constraint propagation on solution spaces.

The key to the eÆciency of global search algorithms is the reduction of the size of the search space by an

e�ective representation of solution spaces that allows constraint propagation and pruning at the level of

solution spaces rather than individual concrete solutions.

There is a certain amount of freedom in the formulation of solution spaces. We have found that it is desirable

to choose a formulation with a (meet) semilattice structure1. A solution space is represented by a point in

the semilattice which is the greatest lower bound of the solution space. This structure gives you the property

that a solution space for one constraint can be combined with the solution space of another constraint (using

the meet operation|t) to produce the solution space for the conjunction of the two constraints.

Rehof and Mogensen have shown that satis�ability of sets of de�nite inequality constraints involving mono-

tone functions in a �nite meet semilattice can be decided by a linear-time algorithm [14] using a �xpoint

iteration. Their notion of de�nite inequality generalizes the logical notion of Horn clauses from the two-point

boolean lattice of the truth values to arbitrary �nite semilattices. One indication of the power of this class is

1This is not a limiting restriction as it is always possible to convert an arbitrary domain into a lattice by lifting: adding a

bottom element.

2

that arc consistency implies global consistency. We refer to the Rehof and Mogensen algorithm as algorithm

RM. In CSP terms, a de�nite inequality problem has the desireable property that arc-consistency implies

globally consistency. The RM algorithm is a (hyper)arc-consistency algorithm.

Our work can be viewed as adding disjunctive constraints to their framework2. The disjuncts are handled

primarily by a search that incrementally generates conjunctive problems that are solved eÆciently using

essentially the algorithm RM.

2 Framework

We use the language of �rst-order predicate calculus for speci�cation. A binary relation on a set S is a subset

of the product S � S. A function f from a set A to a set B, written f : A ! B, is a subset of A � B such

that for each a � A there is exactly one b � B with (a; b) � f . In this case we write f(a) = b. A de�nitions of

f is presented as follows:

de�nition f (x) = e

where e is an expression that may involve the variable x. If the domain of f is itself a product then f applied

to the tuple (a; b) is written f(a; b).

De�nition. A binary relation v de�ned on a set S is a partial order in the set S if the following conditions

hold:

8(x) x v x (reexivity)

8(x ; y) (x v y ^ y v x) x = y) (antisymmetry)

8(x ; y ; z) (x v y ^ y v z) x v z) (transitivity)

A function f is monotone with respect to the partial order if 8(x; y) (x v y) f(x) v f(y)).

De�nition. Let v be a partial order on S and T a subset of S. An element p in S is a least upper bound of

T if 8(x) (x � T) x v p) and 8(y) (y � S ^ 8(x) (x � T) x v y)) p v y). Similarly an element p in S is a

greatest lower bound of T if 8(x) (x � T) p v x) and 8(y) (y � S ^ 8(x) (x � T) y v x)) y v p).

De�nition. A set S with partial order v is a meet semilattice i� every pair a; b in S has a least upper

bound. a t b (or t(a; b)) is de�ned to be the least upper bound of fa; bg. Similary, it is a join semilattice i�

every pair a; b in S has a greatest lower bound, and a u b is de�ned to be this greatest lower bound. It is a

lattice if it is both a meet semilattice and a join semilattice.

We refer to meet and join semilattices using the structures (S;v;t) and (S;v;u) and full lattices using the

structure (S;v;t;u). Example lattices are (Integer ;�;max ;min), (Set ;�;[;\), and the boolean lattice

(ftrue; falseg;);_;^).

Two semilattices (S1;v1;t1) and (S2;v2;t2) can be combined to make a product semilattice (S1�S2;vp;tp)
where

de�nition x vp y = (x :1 v1 y :1 ^ x :2 v2 y :2)

de�nition x tp y = (x :1 t1 y :1 ; x :2 t2 y :2)

A semilattice (S;v;t) or (S;v;u) may have top (>) and/or bottom (?) elements de�ned as follows:

2Our work was independent of that of Rehof and Mogensen and focused on the disjunctive aspects of the problem and the

synthesis of constraint-solving codes.

3

8(x) (x � S) x v >)
8(x) (x � S) ? v x)

The computational signi�cance of the meet semilattice structure is that it allows two constraints on a variable

X of the form c1 v X and c2 v X , where c1 and c2 are constants in a lattice, to be replaced by the equivalent

single constraint c3 v X where c3 = c1 t c2.

We follow the de�nitions of Rehof and Mogensen [14] in introducing the concept of de�nite inequalities.

De�nition. An inequality is called de�nite if it has the form � v A, where A is an atom (a constant or a

variable) and � is a term whose functions are all monotone.

Rehof and Mogensen showed that satis�ability of a set (conjunction) of de�nite inequalities can be decided in

linear time for a meet semilattice domain. For the two-point boolean lattice this is exactly the satis�ability

of propositional Horn clauses (HornSAT) problem (since Horn clauses have the form P1 ^ : : : ^ Pn) Q,

which is the inequality P1 u : : : u Pn v Q in the boolean lattice).

The problem we are considering in this paper is solving sets (conjunctions) of disjunctions of de�nite in-

equalities over meet semilattices. This problem is NP-complete with propositional satis�ability (SAT) as an

instance.

Although the problem formulation allows any number of variables, only one is necessary, as we can replace n

variables by a single variable whose value is the n-tuple of the values of the n variables. The domain of the

single variable is the product semilattice of the n semilattices of the domains of the variables. This allows

heterogenous problems, where the variable domains are di�erent, to be handled in our framework. Similarly,

dynamic problems, where the number of variables constrained can increase during problem solving, can be

handled via semilattice structure on dynamic maps and sequences.

For example, consider the heterogeneous problem with two semilattices (S1;v1;t1) and (S2;v2;t2), and
functions f1 : S1�S2 ! S1 and f2 : S1�S2 ! S2, with the following two constraints on the variables A1 : S1

and A2 : S2.

f1 (A1 ; A2) v1 A1

f2 (A1 ; A2) v2 A2

These are equivalent to

f1 (A:1 ; A:2) v1 A:1

f2 (A:1 ; A:2) v2 A:2

where A = (A1; A2).

The transformed constraint set is not yet in de�nite form because the right-hand sides are not A but they

can be transformed using the following equivalence for a product semilattice (S1 � S2;vp;tp):

� vi A:i , tuple-shadow(A; i ; �) vp A

where tuple-shadow(tp; i; x) is the tuple tp with the ith component replaced by x.

The transformed constraint set in de�nite form is

tuple-shadow(A; 1 ; f1 (A:1 ; A:2)) vp A

tuple-shadow(A; 2 ; f2 (A:1 ; A:2)) vp A

In the examples below we use the component forms of inequalities as they are simpler.

A na��ve method for solving our problem of a conjunction of disjunctions of de�nite inequalities is to distribute

conjunction over disjunction to get a disjunction of conjunctions. Algorithm RM can be used to solve each

conjunction of de�nite inequalities independently and the derived solution sets can then be unioned together

to create the total solution. However, this is very ineÆcient in general.

4

We now describe a global search algorithm for this problem that exploits the incremental nature of algorithm

RM: the solution to a de�nite constraint set S can be used instead of ? as the starting point for the

�xpoint iteration to �nd the solution to S with an extra de�nite constraint. Each node in the global

search tree consists of a solution to a conjunctive problem plus the set of remaining disjunctions. The

top node consists of the solution to the empty problem, ? of the semilattice, and the initial problem as a

set of disjunctions. Children nodes are incrementally re�ned from their parent by choosing one remaining

disjunction and creating a child node for each disjunct by adding the disjunct to the conjunctive problem

solved by the parent and iterating to a �xpoint using algorithm RM.

Constraint propagation is used to eagerly reduce the size of remaining disjunct sets, pruning the space when a

disjunct set becomes empty and incorporating the remaining disjunct of a unary disjunction into the current

conjunctive problem. We add a > to the semilattice and all its components to represent the space becoming

empty which means failure in the search tree. Whenever propagation leads to any component becoming >,
then the whole space becomes > and the branch can be pruned.

We do not discuss the choice of which disjunct set to expand and what order to explore disjuncts, as

conventional considerations such as disjunct set size are applicable. In the large scheduling problems we

have focused on, there are a large number of very large disjunct sets, so it is desirable to represent them

procedurally rather than explicitly.

In the rest of the paper we illustrate the process of deriving a global search algorithm by applying it to an

example. The steps are:

1. Specify problem to be solved.

2. Derive reformulation into disjunctions of de�nite inequalities.

3. Generate code for splitting solution spaces.

4. Generate constraint propagation code.

5. Generate code for extracting solutions for the original problem.

All steps after the problem speci�cation are performed automatically by the KIDS system.

3 Simple Scheduling Example

We describe a simple transportation scheduling problem that includes essential features found in our real

scheduling problems.3

The input is a set of MVRs, where an MVR is a MoVement Requirement|a description of cargo that has

to be moved. In this simple version an MVR includes information about when the cargo is available to be

moved (release-time) and by when it must arrive (due-time).

We have a single transportation resource to be scheduled (e.g. a plane), so a schedule is a single sequence

of trips. Each trip has a start time and a set of MVRs it has been assigned to ful�ll: sched(i):trip-start is

the start time of the ith trip in schedule sched, and sched(i):trip-MVRs is the manifest of the ith trip in

sched|the MVRs assigned to that trip.

Figure 2 gives an example of a scheduling problem and a solution schedule. The release-times and due-times

of the �ve MVRs (labelled for convenient reference a, b, c, d and e) to be scheduled are plotted above the time

axis (the vertical axis has no meaning) and a solution schedule consisting of three trips is plotted beneath

3The problem is simpli�ed to the extent that it is not NP-complete. Adding capacity bounds would be suÆcient to make

�nding a feasible solution NP-complete.

5

it. Trips 1 and 2 start at the earliest possible time (given their manifests) whereas trip 3 starts somewhat

later than the earliest possible time. There are many similar solution schedules with slight shifts in the start

times.

MVRs
b

a

r

b

b

r

b

c

r

b

d

r

b

e

r

-

Time

sched . /
Trip 1

. /
Trip 2

. /
Trip 3

trip-MVRs fa; bg fc; dg feg

Legend: b release-time
r due-time
. trip-start
/ �nish of trip (trip-start + duration)

Figure 2: Scheduling Problem and Solution

The speci�cation of valid schedules is

de�nition valid-schedules(MVRs) =

fsched j all-MVRs-scheduled(MVRs ; sched)

^MVRs-ready(sched)

^MVRs-due(sched)

^ trip-separations(sched)g

Every MVR has to be scheduled on some trip4.

de�nition all-MVRs-scheduled(MVRs ; sched) =

8(m : MVR)

(m �MVRs

) 9(i) (i � f1::size(sched)g ^m � sched(i):trip-MVRs))

A trip cannot start until after the release dates of all the MVRs assigned to it.

de�nition MVRs-ready(sched) =

8(i : Integer ; m : MVR)

(i � f1::size(sched)g ^m � sched(i):trip-MVRs

) release-time(m) � sched(i):trip-start)

A trip must complete before all the due dates of the MVRs assigned to it.

4This constraint does not preclude an MVR from appearing on more than one trip, but the derived algorithm does not try

to make a constraint true if it already is true, so it does not put an MVR on another trip if it is already on one.

6

de�nition MVRs-due(sched) =

8(i : Integer ; m : MVR)

(i � f1::size(sched)g ^m � sched(i):trip-MVRs

) due-time(m)� duration � sched(i):trip-start)

Typically the duration is a function of the properties of a trip, but this has little e�ect on the derivations in

this paper so we make it a constant for simplicity.

A trip cannot begin until the previous trip has ended.

de�nition trip-separations(sched) =

8(i : Integer)
(i � f1::size(sched)�1g
) sched(i):trip-start + duration � sched(i+1):trip-start)

Again, typically there is a gap between the end of one trip and the beginning of the next, but our derivations

only depend on the lack of overlap among trips.

4 Reformulation of Constraints

The scheduling constraints are not disjunctive de�nite inequalities as speci�ed. The most fundamental

problem is that they give both upper and lower bounds on the trip-start component of trips. In other words,

the full lattice structure of time is being used. We address this problem by considering the lattice as two

semilattices, one for increasing time and the other for decreasing time. We introduce components for greatest

lower bound (earliest-trip-start) and least upper bound (latest-trip-start). These are related to trip-start:

x :earliest-trip-start � x :trip-start � x :latest-trip-start

From these bounds, we can infer versions of the constraints that have the form of de�nite inequalities, giving

us a reformulated problem.

Figure 3 shows the reformulated version of the problem given in Figure 2 with its solution. The Figure 2

solution can be extracted by taking the earliest start and �nish times of the �rst two trips and a slightly later

time for the third trip. The earliest-trip-start of trips 1 and 2 is the same as the release-time of MVRs b and

d respectively, because of the MVRs-ready constraint. The earliest-trip-start of trip 3 is the same as the

earliest �nish time of trip 2 which is later than the release-time of MVR e because of the trip-separations

constraint. Similarly, the latest trip �nish time of trips 2 and 3 is the same as the due-time of MVRs c and

e respectively, because of the MVRs-due constraint, and the latest trip �nish time of trip 1 is the same as

the latest-trip-start of trip 2 because of the trip-separations constraint. The latest-trip-start of a trip is

its latest trip �nish less duration.

The reformulated problem has only one solution for a given assignment of MVRs to trip-MVRS. All solutions

to the original problem can be extracted from the solution to the reformulated problem. Not all values selected

from the ranges are compatible, for example choosing the latest-trip-start for trip 1 and the earliest-trip-start

for trip 2 is incompatible with the trip-separations constraint. However, there is at least one solution for

any trip-start chosen from the range of earliest-trip-start and latest-trip-start.

Here is a simpli�ed treatment of the inference for the de�nition of MVRs-ready. Ignoring the antecedent

and incorporating the bounds on trip-start, we essentially have

8(i : Integer ; m : MVR)

(sched(i):earliest-trip-start � sched(i):trip-start

) release-time(m) � sched(i):trip-start)

then using the general law

7

MVRs
b

a

r

b

b

r

b

c

r

b

d

r

b

e

r

-

Time

sched

h i ()

Trip 1
h i ()

Trip 2
h i ()

Trip 3

fa; bg

fc; dg

feg

Legend: b release-time
r due-time

h earliest-trip-start

i latest-trip-start

(earliest trip �nish (earliest-trip-start + duration)

) latest trip �nish (latest-trip-start + duration)

Figure 3: Reformulated Scheduling Problem Solution

8(z)(a � z) b � z) = b � a

we obtain the equivalent expression

8(i : Integer ; m : MVR) release-time(m) � sched(i):earliest-trip-start

Using a generalized version of this key step, MVRs-ready and MVRs-due are easily reformulated to the

equivalent de�nite inequalities

de�nition MVRs-ready0(sched) =

8(i : Integer ; m : MVR)

(i � f1::size(sched)g ^m � sched(i):trip-MVRs

) release-time(m) � sched(i):earliest-trip-start)

de�nition MVRs-due0(sched) =

8(i : Integer ; m : MVR)

(i � f1::size(sched)g ^m � sched(i):trip-MVRs

) due-time(m)� duration � sched(i):latest-trip-start)

The constraint trip-separations is reformulated in a similar manner except that we obtain two constraints

because it can be used to get lower bounds on sched(i+1):trip-start and upper bounds on sched(i):trip-start.

Again ignoring the antecedent and incorporating the bounds, we essentially have

8(i : Integer ; m : MVR) 8(sched : schedule)

(sched(i):earliest-trip-start � sched(i):trip-start � sched(i):latest-trip-start

) sched(i):trip-start + duration � sched(i+1):trip-start)

8

then we can use monotonicity of � on either occurrence of trip-start. Here we apply monotonicity to the

�rst occurrence:

8(i : Integer ; m : MVR) 8(sched : schedule)

(sched(i):earliest-trip-start � sched(i):trip-start

) sched(i):trip-start + duration � sched(i+1):trip-start)

=) (monotonicity)

8(i : Integer ; m : MVR) 8(sched : schedule)

(sched(i):earliest-trip-start � sched(i):trip-start

) sched(i):earliest-trip-start + duration � sched(i+1):trip-start)

() (using the law 8(z)(z � a) z � b) = a � b)

8(i : Integer ; m : MVR)

sched(i):earliest-trip-start + duration � sched(i+1):earliest-trip-start)

The �nal result is shown below, after we do some normalization, introducing a variable t for the � expression

of the de�nite inequality. This reduces the cases that need to be considered when deriving specialized

constraints (as described in the next section).

de�nition trip-separations-ets(sched) =

8(i : Integer ; t : Time)

(i � f1::size(sched)�1g ^ t = sched(i):earliest-trip-start + duration

) t � sched(i+1):earliest-trip-start)

An analogous derivation stemming from application of monotonicity to the second occurrence of trip-start

results in

de�nition trip-separations-lts(sched) =

8(i : Integer ; t : Time)

(i � f1::size(sched)�1g ^ t = sched(i+1):latest-trip-start� duration

) t � sched(i):latest-trip-start)

5 Generating Splitting Code

The all-MVRs-scheduled constraint provides the disjunction that leads to the global search splitting.

8(m : MVR)

(m �MVRs

) 9(i) (i � f1::size(sched)g ^m � sched(i):trip-MVRs))

This is not in the form of a set of disjunctions of de�nite inequalities. However, it is equivalent to the form

^

m �MV Rs

_

i � f1::size(sched)g

fmg � sched(i):trip-MVRs

which is an indexed conjunction of disjunctions of de�nite inequalities in the meet semilattice of sets with

union as meet for the trip-MVRs component of a trip.

Thus for every MVR there is a disjunction consisting of the MVR being on any one of the trips of the

schedule. However, the number of trips is not known in advance. At each point in the elaboration of the

search tree, the MVR could be added to an existing trip or a new trip could be created and the MVR added

9

to it. Thus there are two kinds of incremental re�nement to the solution space: adding an MVR to a trip

and adding a new empty trip (to which we then add an MVR).

These two basic re�nements can be expressed:

sched
0(i):trip-MVRs = sched(i):trip-MVRs [fmg

sched
0 = append(sched ; trip?) (append-new-trip)

where sched is the solution space of schedules before the re�nement, sched0 is the solution space of schedules

after the re�nement, and trip? is the empty trip, the bottom of the semilattice of trips5.

To use these re�nements it is convenient to have them in the form A0 = f(A). The second is already in this

form; the �rst can be converted to

sched
0 = seq-shadow(sched ; i ; (update-trip-MVRs)

tuple-shadow(sched(i); trip-MVRs;

sched(i):trip-MVRs [fmg))

where seq-shadow(S; i; x) is equal to sequence S except that at index i its value is x.

6 Specialized Constraint Propagation Code

The constraints are still not in the form of de�nite inequalities. Apart from all-MVRs-scheduled they

have the form

8(x) (p(A; x)) x v A):

However this is equivalent to either of the forms

reduce(t; fx j p(A; x)g) v A

^

x j p(A;x)

x v A

which are de�nite inequalities provided that p is monotonic, which is the case for our examples.

Our derivation of propagation code works with the quanti�ed implication form, the propagation being

forward inference. After every re�nement one could re-evaluate all the bounds from scratch but for eÆciency

it is desirable to specialize the constraint to the particular re�nement. We exploit the properties that the

constraint was true in the previous solution space and that we have just made an incremental re�nement of

this space.

We generate a procedure for each di�erent kind of incremental re�nement to the solution space (such as

append-new-trip and update-trip-MVRs) and include in each procedure constraint checking and prop-

agation code that is specialized to the particular incremental re�nement. For example, when appending a

new trip to the end of the sequence of trips, the earliest start time of the new trip may be dependent on the

earliest start time of the previous trip, whereas the latest start time of the new trip may a�ect the latest

start time of the previous trip. Our concern in this section is how to derive such dependencies automatically.

First we describe an abstract version of the derivations. In the next subsection we give a detailed derivation

of specializing a particular constraint, and then we give brief derivations of specialization of the other

constraints.

Consider an incremental re�nement to A by some function g:

5For completeness it is necessary to also consider the new trip being inserted into the sequence, but to reduce the search

space we just consider the append case. As we schedule MVRs in order of due date, this incompleteness has not proved to be

a problem in practice.

10

A
0 = g(A) (so A v A

0)

and a de�nite constraint C on A given by

C (A) = 8(x) (p(A; x)) x v A)

We assume that the constraint C is true for the initial space A and we want it to be true in the re�ned space

A0. C(A) is true if for all x, p(A; x) is false or x v A is true. In the latter case we have simply that x v A0

by transitivity, so we can use A as an initial approximation of A0. To �nd additional values of x that belong

in A0 we assume the former case: we simplify C(A0) under the assumption that p(A; x) is false. We call this

simpli�ed C(A0) the residual constraint for C given the re�nement.

For the common case where p is a conjunction, this does not work well in practice because the negation

is a disjunction which is diÆcult to use in simpli�cation. Instead we treat each conjunct separately and

combine the results as follows: if p(A; x) = (p1(A; x) ^ p2(A; x)) and the residuals for p1(A; x) and p2(A; x)

are h1(A; x) and h2(A; x) respectively then the full residual constraint is

8(x) (h1 (A; x) ^ p2 (A
0; x)) x v A

0)

^ 8(x) (p1 (A
0; x) ^ h2 (A; x)) x v A

0)

If a constraint is una�ected by the re�nement then its residual is false .

6.1 Specializing MVRs-ready0

We now use this derivation scheme to derive the residual constraint for MVRs-ready0:

8(i : Integer ; m : MVR)

(i � f1::size(sched)g ^m � sched(i):trip-MVRs

) release-time(m) � sched(i):earliest-trip-start)

given the update-trip-MVRs re�nement

sched
0 = seq-shadow(sched ; ic ; (update-trip-MVRs0)

tuple-shadow(sched(ic); trip-MVRs;

sched(ic):trip-MVRs [fmcg))

The variables are subscripted with a c to avoid name conict in the derivation and to emphasize that in this

context they have already been bound to particular values.

The residual for the conjunct i � f1::size(sched)g is false because size(sched0) simpli�es to size(sched) as

seq-shadow does not a�ect the size of the sequence.

Now we focus on the second conjunct, m � sched0(i):trip-MVRs simplifying it under the assumption:

m � sched(i):trip-MVRs = false (negation-assumption)

We require the following rules:

seq-shadow(S ; i ; x)(j) = if i = j then x else S (j) (seq-shadow-application)

tuple-shadow(x ; f ; y):f = y (tuple-shadow-deref)

(if x then y else false) = (x ^ y) (if-then-else-false)

The simpli�cation goes:

11

m � sched 0(i):trip-MVRs

fsubstitute update-trip-MVRs0g
= m � seq-shadow(sched ; ic ; tuple-shadow(sched(ic); trip-MVRs; sched(ic):trip-MVRs [fmcg))

(i):trip-MVRs

fseq-shadow-applicationg
= m � (if i = ic then tuple-shadow(sched(ic); trip-MVRs; sched(ic):trip-MVRs [fmcg)

else sched(i)):trip-MVRs

fmove if to top-level then use tuple-shadow-derefg
= if i = ic then m � sched(ic):trip-MVRs [fmcg

else m � sched(i):trip-MVRs

fnegation-assumption and if-then-else-falseg
= (i = ic ^m � sched(ic):trip-MVRs [fmcg)
fdistribute � over [g

= (i = ic ^ (m � sched(ic):trip-MVRs _m � fmcg))
fnegation-assumption and simpli�cationg

= (i = ic ^m = mc)

The full residual constraint becomes, after simpli�cation:

release-time(mc) � sched
0(ic):earliest-trip-start

The proceduralization of this residual is

if :release-time(mc) � sched
0(ic):earliest-trip-start

then sched(ic):earliest-trip-start release-time(mc)

Thus we have a third incremental re�nement given by the equation

sched
0 = seq-shadow(sched ; ic ; (update-earliest-start)

tuple-shadow(sched(ic); earliest-trip-start; tc))

where the re�nement has been abstracted by introducing the variable tc for release-time(mc).

6.2 Specializing trip-separations-ets

Now we consider specializing the trip-separations-ets constraint.

8(i : Integer ; t : Time)

(i � f1::size(sched)�1g ^ t = sched(i):earliest-trip-start + duration

) t � sched(i+1):earliest-trip-start)

It is only a�ected by append-new-trip and update-earliest-start.

Consider append-new-trip. The residual for the �rst conjunct, i � f1::size(sched)�1g is i = size(sched).

The full residual constraint becomes, after simpli�cation:

sched(size(sched)):earliest-trip-start + duration

� sched
0(size(sched)+1):earliest-trip-start

The residual for the second conjunct, t = sched(i):earliest-trip-start+ duration, is i = size(sched)+1 ^ t =

trip?:earliest-trip-start+duration, but the full residual constraint simpli�es to false because the �rst conjunct

becomes i � f1::size(sched)g which is inconsistent with i = size(sched) + 1.

The residual from the �rst conjunct has the same form as update-earliest-start so we can reuse the same

re�nement procedure, although passing di�erent arguments.

Now we consider the e�ect of update-earliest-start on trip-separations-ets.

12

The residual for the �rst conjunct is false because the size of the schedule is una�ected. The residual for the

second conjunct is i = ic ^ t = tc + duration. The full residual constraint becomes, after simpli�cation:

ic < size(sched)

) tc + duration � sched
0(ic+1):earliest-trip-start)

Again, except for the conditional, this has the same form as update-earliest-start so the same procedure

can be used. The complete re�nement procedure for update-earliest-start is as follows:

function update-earliest-start(ic ; tc ; sched) =

if tc � sched(ic):earliest-trip-start

then sched % Old bound is tighter

else if :tc � sched(ic):latest-trip-start

then > % Fail because earliest is after latest

else % Perform update and propagate

let (sched 0 = seq-shadow(sched ; ic ; tuple-shadow(sched(ic); earliest-trip-start; tc)))

if ic < size(sched)

then update-earliest-start(ic + 1; tc + duration; sched 0)

else sched
0

The specialization of trip-separations-lts is similar to that of trip-separations-ets.

6.3 Summary of Generated Propagation Code

The basic search routine generates new subspaces by calls to append-new-trip and update-trip-MVRs.

The former has a call to update-earliest-start which initializes the earliest-start of the new trip based

on the earliest start of the previous trip. update-trip-MVRs has calls to update-earliest-start and

update-latest-start based respectively on the release-time and due-time of the MVR being added. update-

earliest-start is a linear recursion that propagates a change to the earliest-start of a trip to earliest-starts of

subsequent trips until one does not need to be updated because the separation is already adequate. update-

latest-start is similar, but propagates from the latest-start of a trip to latest-starts of previous trips until

one does not need to be updated.

This propagation code is very eÆcient, performing very few unnecessary tests. It is also space-eÆcient as the

constraints are represented procedurally, and the solution spaces are represented intensionally by bounds.

We have used a depth-�rst propagation control-structure because the dependency structure for this problem

is a tree. In general, a breadth-�rst control structure is necessary to avoid unnecessary work when the

constraint interactions are more complicated.

7 Extracting a Solution

For this problem the extraction process is straightforward. The only issue is extracting valid trip-starts

given earliest- and latest-trip-starts. One cannot arbitrarily choose values from the intervals to get a valid

schedule. For example, choosing the latest-trip-start from one trip and the earliest-trip-start from the next

trip will likely violate the trip-separation constraint. Always choosing the earliest-trip-starts or always

choosing the latest-trip-starts gives a valid schedule. A more exible strategy is to choose a trip-start

between the earliest- and latest-trip-starts for some trip, then call the procedures update-earliest-start

and update-latest-start with the chosen value, so that the consequences of the choice are propagated.

Then this choose-and-propagate process can be repeated for other trips until a trip-start has been chosen

for each trip.

In general, it is possible that there is no valid solution to the original problem within a non-empty valid sub-

space (one that satis�es the transformed problem). If a single solution is required then one must enumerate

13

valid subspaces until one is found that has at least one extractible solutions. If all solutions are required then

all valid subspaces must be enumerated. If a minimal cost solution is required then a similar enumeration

is necessary except we can add the constraint that the cost of a solution has to be less than the cost of the

current best solution.

8 Related Work

Mackworth [11] gives a characterization of constraint-satisfaction problems in relation to various logical

representation and reasoning systems such as Horn First-Order Predicate Calculus and Constraint Logic

Programs. Our system does not �t within his framework. Our work, along with that of Rehof and Mogensen,

suggests the addition of an extra dimension to the framework in which the boolean lattice is generalized to

an arbitrary lattice.

Our problem reformulation of replacing trip-start by upper and lower bounds on trip-start is similar to work

that uses interval techniques [22, 2, 8]. Our framework can be seen as a generalization of these approaches

to work with arbitrary kinds of bounds.

Our model of constraint propagation generalizes the concepts of cutting planes in the Operations Research

literature [13] and the forms of propagation studied in the constraint satisfaction literature (e.g. [21]). Our

use of �xed-point iteration for constraint propagation is similar to Paige's work on �xed-point iteration in

RAPTS [4]. The main di�erences are (1) RAPTS expects the user to supply the monotone function as part

of the initial speci�cation whereas we derive it from a more abstract statement of the problem; (2) RAPTS

instantiates a straightforward iteration scheme and then performs optimizations. Such an approach would

be too ineÆcient for scheduling applications, so we use dependence analysis to generate code that is speci�c

to the constraint system at hand. RAPTS uses �nite di�erencing in order to make the iteration incremental.

We have incorporated this into our framework and used it in more complex scheduling problems.

9 Discussion and Further Work

The main focus of our work has been on the synthesis of high-performance constraint-solving codes { some

of the schedulers that we have synthesized using KIDS run several orders of magnitude faster than manually

written schedulers for the same problem. We believe that the speed is due to the specialized representation

of constraints and the ability to optimize the propagation codes at design time. We have used KIDS to

synthesize a variety of scheduling applications including ITAS (a theater airlift scheduler) [12] and the

CAMPS Mission Planner [5] which plans strategic airlift missions for the Air Mobility Command at Scott

AFB. The speed of the generated scheduling algorithm has allowed us to tackle very complex constraint

systems. For example, the CAMPS Mission Planner involves the routine scheduling of thousands of airlift

missions, and the simultaneous handling of many classes of resource: aircraft and their con�gurations, crews

and their duty days, fuel, parking capacity at ports, working and throughput capacity at ports, runway

events, and others. Aircraft, crews and ports each have many capacity and usage constraints that must

be modeled. Every time a scheduling decision is made, it is propagated through the constraint network to

decide if it entails any inconsistency. The Mission Planner is scheduled to begin operations in 2001.

We have described our work as a generalization of various frameworks. These frameworks have been devel-

oped in more depth than ours so there are many opportunities to see how ideas developed in these frameworks

can be carried over. Our focus has been mainly on scheduling algorithms. We have looked briey at problems

such as integer linear programming, but not suÆciently to make a good estimate of their potential compared

to other methods. Working from such a model is unlikely to give the best results as these models capture

information in a very limited lattice structure. Frequently problems must be reformulated to get them into

the form required by these general methods. Working from the original problem we may be able to capture

14

more of its structure in lattices and so get a smaller search space. On the other hand, it may be possible to

recover lattice structure information from analysis of an integer linear programming problem speci�cation.

Our framework is not directly applicable to incremental rescheduling if constraints are deleted as well as

added. A possible way to handle the removal of a constraint is to follow dependencies of the deleted

constraints to see which values may have depended on them. These values can be relaxed so that the space

is large enough to �nd a solution when the new constraints are added.

We are interested in �nding problems that have more lattice structure that our approach can exploit. Graph-

plan [3] has aroused much interest in the Planning community because of its speed and its new approach

to planning. Kambhampati, Lambrecht and Parker give an analysis of Graphplan, describing it as using

a disjunctive representation of plans for which there is an e�ective global search procedure along with a

non-trivial extraction phase [9]. It would be illuminating if a derivation were possible along the lines given in

this paper (see for example [20]). It would also be useful to examine other programs that solve an abstracted

version of a problem before extracting concrete solutions.

Acknowledgements: This research was supported in part by DARPA and Air Force Rome Laboratories

under Contracts F30602-91-C-0043, F30602-95-C-0247, and F30602-97-C-0154.

References

[1] Applegate, D., and Cook, W. A computational study of the job-shop scheduling problem. ORSA

Journal on Computing 3, 2 (Spring 1991), 149{156.

[2] Benhamou, F., McAllester, D., and Van Hentenryck, P. Clp(intervals) revisited. Tech. Rep.

CS-94-18, Department of Computer Science, Brown University, Apr. 1994.

[3] Blum, A., and Furst, M. Fast planning through planning graph analysis. Arti�cial Intelligence 90,

1 (January 1997), 281{300.

[4] Cai, J., and Paige, R. Program derivation by �xed point computation. Science of Computer Pro-

gramming 11 (1989), 197{261.

[5] Emerson, T., and Burstein, M. Development of a constraint-based airlift scheduler by program

synthesis from formal speci�cations. In Proceedings of the Fourteenth Automated Software Engineering

Conference (October 1999), IEEE Computer Society Press.

[6] Fox, M. S., Sadeh, N., and Baykan, C. Constrained heuristic search. In Proceedings of the Eleventh

International Joint Conference on Arti�cial Intelligence (Detroit, MI, August 20{25, 1989), pp. 309{315.

[7] Fox, M. S., and Smith, S. F. ISIS { a knowledge-based system for factory scheduling. Expert Systems

1, 1 (July 1984), 25{49.

[8] Hyvnen, E. Constraint reasoning based on interval arithmetic. the tolerance propagation approach.

Arti�cial Intelligence 58 (1992), 71{112. Also in: Freuder, E., Mackworth, A., (Eds.), Constraint-Based

Reasoning, MIT Press, Cambridge, USA, 1994.

[9] Kambhampati, S., Lambrecht, E., and Parker, E. Understanding and extending graphplan. In

Proceedings of the 4th European Conference on Planning (Toulouse, France, September 1997).

[10] Luenberger, D. G. Linear and Nonlinear Programming. Addison-Wesley Publishing Company, Inc.,

Reading, MA, 1989.

[11] Mackworth, A. K. The logic of constraint satisfaction. Arti�cial Intelligence 58 (1992), 3{20.

[12] M.H.Burstein, and Smith, D. ITAS: A portable interactive transportation scheduling tool using a

search engine generated from formal speci�cations. In Proceedings of the Third International Conference

on Arti�cial Intelligence Planning System (AIPS-96) (Edinburgh, UK, May 1996).

15

[13] Nemhauser, G. L., and Wolsey, L. A. Integer and Combinatorial Optimization. John Wiley &

Sons, Inc., New York, 1988.

[14] Rehof, J., and Mogenson, T. Tractable constraints in �nite semilattices. Science of Computer

Programming 35 (1999), 191{221.

[15] Smith, D. R. Structure and design of global search algorithms. Tech. Rep. KES.U.87.12, Kestrel

Institute, November 1987.

[16] Smith, D. R., Parra, E. A., and Westfold, S. J. Synthesis of planning and scheduling software.

In Advanced Planning Technology (1996), A. Tate, Ed., AAAI Press, Menlo Park, pp. 226{234.

[17] Smith, D. R., and Westfold, S. J. Synthesis of constraint algorithms. In Principles and Practice of

Constraint Programming, V. Saraswat and P. Van Hentenryck, Eds. The MIT Press, Cambridge, MA,

1995.

[18] Smith, S. F. The OPIS framework for modeling manufacturing systems. Tech. Rep. CMU-RI-TR-89-30,

The Robotics Institute, Carnegie-Mellon University, December 1989.

[19] Smith, S. F., Fox, M. S., and Ow, P. S. Constructing and maintaining detailed production plans:

Investigations into the development of knowledge-based factory scheduling systems. AI Magazine 7, 4

(Fall 1986), 45{61.

[20] Srivastiva, B., and Kambhampati, S. Synthesizing customizable plan-

ners from speci�cations. Journal of A.I. Research 8 (1998), 93{128.

http://www.cs.washington.edu/research/jair/volume8/srivastava98a.ps.

[21] Van Hentenryck, P. Constraint Satisfaction in Logic Programming. Massachusetts Institute of

Technology, Cambridge, MA, 1989.

[22] Van Hentenryck, P., McAllester, D., and Kapur, D. Solving polynomial systems using a

branch and prune approach. SIAM Journal of Numerical Analysis (1995).

16

