
to appear in Calculational System Design, Proceedings of the International Summer
School Marktoberdorf, Ed. M. Broy, NATO ASI Series, IOS Press, Amsterdam, 1999.

Mechanizing the Development of Software

Douglas R. Smith
Kestrel Institute

3260 Hillview Avenue
Palo Alto, California 94304

20 December 1998

Abstract. This paper presents a mechanizable framework for software development by
refinement. The framework is based on a category of specifications. The key idea is rep-
resenting knowledge about programming concepts, such as algorithm design, datatype
refinement, and expression simplification, by means of taxonomies of specifications and
morphisms. Examples are drawn from working systems Specware, Designware, and Plan-
ware.

1

Contents

1. Overview 3

2. Basic Concepts 4

2.1. Specifications . 4
2.2. Morphisms . 5
2.3. The Category of Specs . 6
2.4. Diagrams . 8

2.4.1. The Structuring of Specifications 8
2.4.2. Refinement and Diagrams . 9

2.5. Logic Morphisms and Code Generation 10

3. Software Development by Refinement 10

3.1. Constructing Specifications . 10
3.2. Constructing Refinements . 11
3.3. Development of Sorting Algorithms . 11

3.3.1. Sorting: Algorithm Design . 12
3.3.2. Sorting: Datatype Refinement . 21
3.3.3. Sorting: Expression Optimization 23
3.3.4. Sorting: Summary . 26

4. Domain-Specific Software Development 29

4.1. Constructing a Requirement Specification 29
4.2. Datatype Refinement and Problem Reformulation 32

5. Scaling up 33

5.1. Design by Classification: Taxonomies of Refinements 34
5.2. Tactics . 37

6. Summary 38

References 39

A Containers, Bags, and Sequences 40

B Specification for Sorting 48

2

1. Overview

A software system can be viewed as a composition of information from a variety of
sources, including

• the application domain,

• the requirements on the system’s behavior,

• software design knowledge about system architectures, algorithms, data structures,
code optimization techniques, and

• the run-time hardware/software/physical environment in which the software will
execute.

This paper presents a mechanizable framework for representing these various sources of
information, and for composing them in the context of a refinement process. The frame-
work is founded on a category of specifications. Morphisms are used to structure and
parameterize specifications, and to refine them. Colimits are used to compose specifica-
tions. Diagrams are used to express the structure of large specifications, the refinement
of specifications to code, and the application of design knowledge to a specification.

The framework features a collection of techniques for constructing refinements based
on formal representations of programming knowledge. Abstract algorithmic concepts,
datatype refinements, program optimization rules, software architectures, abstract user
interfaces, and so on, are represented as diagrams of specifications and morphisms. We
arrange these diagrams into taxonomies, which allow incremental access to and construc-
tion of refinements for particular requirement specifications. For example, a user may
specify a scheduling problem and select a theory of global search algorithms from an
algorithm library. The global search theory is used to construct a refinement of the
scheduling problem specification into a specification containing a global search algorithm
for the particular scheduling problem.

The framework is partially implemented in the research systems Specware, Design-
ware, and Planware. Specware provides basic support for composing specifications and
refinements, and generating code. Code generation in Specware is supported by inter-
logic morphisms that translate between the specification language/logic and the logic of
a particular programming language (e.g. CommonLisp or C++). Specware is intended
to be general-purpose and has found use in industrial settings. Designware extends
Specware with taxonomies of software design theories and support for constructing re-
finements from them. Planware provides highly automated support for requirements
acquisition and synthesis of high-performance scheduling algorithms.

The remainder of this paper covers basic concepts and the key ideas of our approach to
software development by refinement, in particular the concept of design by classification
[9]. A simple example is carried through algorithm design, datatype refinement, and
expression simplification. We also discuss the application of these techniques to domain-
specific refinement in Planware [1].

This paper assumes a rudimentary knowledge of logic and category theory, although
details about the categories of interest are introduced and motivated by examples.

3

spec Container is
sorts E, Container
op empty :→ Container
op singleton : E → Container
op join : Container, Container→ Container
constructors {empty, singleton, join} construct Container

axiom ∀(x : Container)(x join empty = x ∧ empty join x = x)
op in : E,Container→ Boolean
definition of in is

axiom x in empty = false
axiom x in singleton(y) = (x = y)
axiom x in U join V = (x in U ∨ x in V)

end-definition
end-spec

Figure 1: Specification for Containers

2. Basic Concepts

2.1. Specifications

A specification is the finite presentation of a theory. The signature of a specification
provides the vocabulary for describing objects, operations, and properties in some domain
of interest, and the axioms constrain the meaning of the symbols. The theory of the
domain is the closure of the axioms under the rules of inference.

Example: Here is a specification for partial orders, using notation adapted from
Specware. It introduces a sort E and an infix binary predicate on E, called le, which is
constrained by the usual axioms. Although Specware allows higher-order specifications,
first-order formulations are sufficient in this paper.

spec Partial-Order is
sort E
op le : E,E → Boolean
axiom reflexivity is x le x
axiom transitivity is x le y ∧ y le z =⇒ x le z
axiom antisymmetry is x le y ∧ y le x =⇒ x = z

end-spec

Example: Containers are constructed by a binary join operator and they represent
finite collections of elements of some sort E. The specification shown in Figure 1 includes
a definition by means of axioms. Operators are required to be total. The constructor
clause asserts that the operators {empty, singleton, join} construct the sort Container,
providing the basis for induction on Container.

The generic term expression will be used to refer to a term, formula, or sentence.

4

A model of a specification is a structure of sets and total functions that satisfy the
axioms. However, for software development purposes we have a less well-defined notion of
semantics in mind: each specification denotes a set of possible implementations in some
computational model. Currently we regard these as functional programs. A denotational
semantics maps these into classical models.

2.2. Morphisms

A specification morphism translates the language of one specification into the language
of another specification, preserving the property of provability, so that any theorem in
the source specification remains a theorem under translation.

A specification morphism m : T → T ′ is given by a map from the sort and oper-
ator symbols of the domain spec T to the symbols of the codomain spec T ′. To be a
specification morphism it is also required that every axiom of T translates to a theorem
of T ′. It then follows that a specification morphism translates theorems of the domain
specification to theorems of the codomain.

Example: A specification morphism from Partial-Order to Integer is:

morphism Partial-Order-to-Integer is
{E 7→ Integer, le 7→ ≤}

Translation of an expression by a morphism is by straightforward application of the
symbol map, so, for example, the Partial-Order axiom x le x translates to x ≤ x. The
three axioms of a partial order remain provable in Integer theory after translation.

Example: A parameterized specification can be treated as a morphism. The specifi-
cation Bag in Appendix A can be parameterized on a spec Triv with a single sort:

spec Triv is
sort E

end-spec

via the morphism

morphism Bag-Parameterization is
{E 7→ E}

The semantics of a specification morphism is given by a contravariant functor Mod
that maps each specification to a category of models and each specification morphism
m : T → T ′ to a reduct functor |m : Mod(T ′)→ Mod(T).

Morphisms come in a variety of flavors; here we only use two. An extension or import
is an inclusion between specs.

Example: We can build up the theory of partial orders by importing the theory of
preorders. The import morphism is {E 7→ E, le 7→ le}.

spec PreOrder
sort E
op le : E,E → Boolean

5

axiom reflexivity is x le x
axiom transitivity is x le y ∧ y le z =⇒ x le z

end-spec

spec Partial-Order
import PreOrder
axiom antisymmetry is x le y ∧ y le x =⇒ x = z

end-spec

A definitional extension, written A d //B , is an import morphism in which any new
symbol in B also has an axiom that defines it. Definitions have implicit axioms for
existence and uniqueness. Semantically, a definitional extension has the property that
each model of the domain has a unique expansion to a model of the codomain.

Example: Container can be formulated as a definitional extension of Pre-Container:

spec Pre-Container is
sorts E, Container
op empty :→ Container
op singleton : E → Container
op join : Container, Container→ Container
constructors {empty, singleton, join} construct Container
axiom ∀(x : Container)(x join empty = x ∧ empty join x = x)

end-spec

spec Container is
imports Pre-Container
definition of in is

axiom x in empty = false
axiom x in singleton(y) = (x = y)
axiom x in U join V = (x in U ∨ x in V)

end-definition
end-spec

2.3. The Category of Specs

Specification morphisms compose in a straightforward way as the composition of finite
maps. It is easily checked that specifications and specification morphisms form a category
SPEC. Colimits exist in SPEC and are easily computed. Suppose that we want to

compute the colimit of B Aioo j //C . First, form the disjoint union of all sort and
operator symbols of A, B, and C , then define an equivalence relation on those symbols:

s ≈ t iff (i(s) = t ∨ i(t) = s ∨ j(s) = t ∨ j(t) = s).

The signature of the colimit (also known as pushout in this case) is the collection of
equivalence classes wrt ≈. The cocone morphisms take each symbol into its equivalence

6

class. The axioms of the colimit are obtained by translating and collecting each axiom
of A, B, and C .

Example: Suppose that we want to build up the theory of partial orders by composing
simpler theories.

spec BinRel is
sort E
op le : E,E → Boolean
end-spec

−→

spec PreOrder is
import BinRel
axiom reflexivity is x le x
axiom transitivity is

x le y ∧ y le z =⇒ x le z
end-spec

y

spec Antisymmetry is
import BinRel
axiom antisymmetry is

x le y ∧ y le x =⇒ x = z
end-spec

The pushout of Antisymmetry← BinRel→ PreOrder is isomorphic to the specifi-
cation for Partial-Order in Section 2.1. In detail: the morphisms are {E 7→ E, le 7→ le}
from BinRel to both PreOrder and Antisymmetry. The equivalence classes are then
{{E,E,E}, {le, le, le}}, so the colimit spec has one sort (which we rename E), and
one operator (which we rename le). Furthermore, the axioms of BinRel, Antisymmetry,
and PreOrder are each translated to become the axioms of the colimit. Thus we have
Partial-Order.

In the category of specifications, colimit acts as a kind of union operator: the pushout
collects the symbols of Antisymmetry and PreOrder where the morphisms from BinRel in-
dicate which symbols are shared. The colimit has the universal property that it computes
the simplest such specification.

Example: The pushout operation is also used to instantiate the parameter in a pa-
rameterized specification. The binding of argument to parameter is represented by a
morphism. To form a specification for bags of integers, we compute the pushout of
Bag ← Triv → Integer, where Bag ← Triv is {E 7→ E}, and Triv → Integer is
{E 7→ Integer}.

Example: A specification for sequences can be built up from Container, also via
pushouts. We can regard Container as parameterized on a binary operator

spec BinOp is
sort E
op bop : E,E → E

end-spec

morphism Container-Parameterization : BinOp→ Container is
{E 7→ E, bop 7→ join}

and we can define a refinement arrow that extends a binary operator to a semigroup:

7

spec Associativity is
import BinOp
axiom Associativity is ((x join y) join z) = (x join (y join z))

end-spec

The pushout of Associativity ← BinOp → Container, produces a collection specifica-
tion with an associative join operator, which is Proto-Seq, the core of sequence theory in
Appendix A.

2.4. Diagrams

Roughly, a diagram is a graph morphism to a category, usually the category of specifi-
cations in this paper. For example, the pushout described above started with a diagram
comprised of two arrows:

BinRel //

��

PreOrder

Antisymmetry

and computing the pushout of that diagram produces another diagram:

BinRel //

��

PreOrder

��
Antisymmetry // Partial-Order

A diagram commutes if the composition of arrows along two paths with the same start
and finish node yields equal arrows.

2.4.1. The Structuring of Specifications

Colimits can be used to construct a large specification from a diagram of specs and mor-
phisms. The morphisms express various relationships between specifications, including
sharing of structure, inclusion of structure, and parametric structure. Several examples
will appear later.

Example: The finest-grain way to compose Partial-Order is via the colimit of

BinRel

vv♠♠♠
♠♠
♠♠
♠♠
♠♠
♠

��))❙❙
❙❙

❙❙
❙❙

❙❙
❙❙

❙❙

Reflexivity Transitivity Antisymmetry

Example: Appendix B gives a structured specification for sorting bags over a linear
order.

8

2.4.2. Refinement and Diagrams

As described above, specification morphisms can be used to help structure a specification,
but they can also be used to refine a specification. When a morphism is used as a
refinement, the intended effect is to reduce the number of possible implementations when
passing from the domain spec to the codomain. In this sense, a refinement can be viewed
as embodying a particular design decision or property that corresponds to the subset of
possible implementations of the domain spec which are also possible implementations of
the codomain.

Often in software refinement we want to preserve and extend the structure of a struc-
tured specification (versus flattening it out via colimit). When a specification is struc-
tured as a diagram, then the corresponding notion of structured refinement is a diagram
morphism. A diagram morphism M from diagram D to diagram E consists of a set
of specification morphisms, one from each node/spec in D to a node in E such that
certain squares commute (a functor underlies each diagram and a natural transforma-
tion underlies each diagram morphism). We use the notation D =⇒ E for diagram
morphisms.

Example: A datatype refinement that refines bags to sequences can be presented as
the diagram morphism BtoS : BAG =⇒ BAG-AS-SEQ:

Bag

BtoSBag

��

Triv

BtoSTriv

��

oo BAG

BtoS

��
Seq // Bag-as-Seq T rivookk BAG-AS-SEQ

where the domain and codomain of BtoS are shown in boxes, and the (one) square
commutes. Here Bag-as-Seq is a definitional extension of Seq that provides an image
for Bag theory. Specs for Bag, Seq and Bag-as-Seq and details of the refinement can be
found in Appendix A. The interesting content is in spec morphism BtoSBag:

morphism BtoSBag : Bag→ Bag-as-Seq is
{Bag 7→ Bag-as-Seq,
empty-bag 7→ bag-empty,
empty-bag? 7→ bag-empty?,
nonempty? 7→ bag-nonempty?,
singleton-bag 7→ bag-singleton,
singleton-bag? 7→ bag-singleton?,
nonsingleton-bag? 7→ bag-nonsingleton?,
in 7→ bag-in,
bag-union 7→ bag-union,
bag-wfgt 7→ bag-wfgt ,
size 7→ bag-size}

Diagram morphisms compose in a straightforward way based on spec morphism com-
position. It is easily checked that diagrams and diagram morphisms form a category.
Colimits in this category can be computed using colimits in SPEC. In the sequel we will
generally use the term refinement to mean a diagram morphism.

9

2.5. Logic Morphisms and Code Generation

Inter-logic morphisms [2] are used to translate specifications from the specification logic
to the logic of a programming language. See [10] for more details. They are also use-
ful for translating between the specification logic and the logic supported by various
theorem-provers and analysis tools. They are also useful for translating between the
theory libraries of various systems.

3. Software Development by Refinement

S0

��
S1

��
S2

��...

��
Sn

���O
�O
�O

Code

The development of correct-by-construction code via
a formal refinement process is shown to the left. The
refinement process starts with a specification S0 of
the requirements on a desired software artifact. Each
Si, i = 0, 1, ..., n represents a structured specification
(diagram) and the arrows ⇓ are refinements (represented
as diagram morphisms). The refinement from S i to Si+1

embodies a design decision which cuts down the number
of possible implementations. Finally an inter-logic
morphism translates a low-level specification Sn to code
in a programming language. Semantically the effect is
to narrow down the set of possible implementations of
Sn to just one, so specification refinement can be viewed
as a constructive process for proving the existence of
an implementation of specification S0 (and proving its
consistency).

Clearly, two key issues in supporting software development by refinement are: (1)
how to construct specifications, and (2) how to construct refinements. Most of the sequel
treats mechanizable techniques for constructing refinements.

3.1. Constructing Specifications

A specification-based development environment supplies tools for creating new specifica-
tions and morphisms, for structuring specs into diagrams, and for composing specifica-
tions via importation, parameterization, and colimit. In addition, a software development
environment needs to support a large library of reusable specifications, typically includ-
ing specs for (1) common datatypes, such as integer, sequences, finite sets, etc. and (2)
common mathematical structures, such as partial orders, monoids, vector spaces, etc. In
addition to these generic operations and libraries, the system may support specialized
construction tools and libraries of domain-specific theories, such as resource theories, or
generic theories about domains such as satellite control or transportation.

10

3.2. Constructing Refinements

A refinement-based development environment supplies tools for creating new refinements.
One of our innovations is showing how a library of abstract/reusable/generic refinements
can be applied to produce refinements for a given specification. In this paper we focus
mainly on refinements that embody design knowledge about (1) algorithm design, (2)
datatype refinement, and (3) expression optimization. We believe that other types of
design knowledge can be similarly expressed and exploited, including interface design,
software architectures, domain-specific requirements capture (see Section 4. on Planware),
and others. In addition to these generic operations and libraries, the system may support
specialized construction tools and libraries of domain-specific refinements.

The key concept of this work is the following: abstract design knowledge about
datatype refinement, algorithm design, software architectures, program optimization
rules, visualization displays, and so on, can be expressed as refinements (i.e. diagram
morphisms). The domain of one such refinement represents the abstract structure that
is required in a user’s specification in order to apply the embodied design knowledge.
The refinement itself embodies a design constraint – the effect is a reduction in the set of
possible implementations. The codomain of the refinement contains new structures and
definitions that are composed with the user’s requirement specification.

A +3

��

S0

��
B +3 S1

The figure to the left shows the application of a library refine-
ment A =⇒ B to a given (structured) specification S0. First
the library refinement is selected. The applicability of the re-
finement to S0 is shown by constructing a classification arrow
from A to S0 which classifies S0 as having A-structure by mak-
ing explicit how S0 has at least the structure of A. Finally the
refinement is applied by computing the pushout in the category
of diagrams. The creative work lies in constructing the classifi-
cation arrow [7, 9].

3.3. Development of Sorting Algorithms

Our goal in this section is to show a simple example that refines a requirement spec to
code by applying (1) an algorithm design refinement, (2) a datatype refinement, and (3)
an expression optimization refinement. We step through the refinement of a specification
for sorting a bag over an arbitrary linear order. A full specification for the import to
Sorting is given in Appendix B.

spec Sorting is
import Bag-Seq-over-LinOrd
op sorted? : Bag, Seq→ Boolean
def sorted?(x, z) = (ordered?(z) ∧ x = seq-to-bag(z))
op sorting : Bag→ Seq
axiom sorted?(x, sorting(x))

end-spec

The following diagram serves as a roadmap of the design steps covered in the next
three subsections. First a divide-and-conquer refinement is applied, then a datatype

11

refinement (bags implemented as sequences), then an expression simplification refinement
is applied, and so on. The squares represent the application of library refinements and
the main line of refinement descends directly from Sorting.

Divide-and-Conquer-0-1-2 +3

��

Sorting

��
Divide-and-Conquer-0-1-2-scheme +3 Sorting-Alg1

��

BAGks

��
New-Expression +3

��

Sorting-Alg2

��

BAG-AS-SEQks

Equational-Simplification +3 Sorting-Alg3

��...

3.3.1. Sorting: Algorithm Design

Before algorithm design can be applying we must have a well-defined problem to solve.
Problem-Theory in Figure 2 expresses the abstract structure of a problem: given input
datum x : D, find a feasible solution z : R satisfying the problem requirement constraint:
O(x, z). We call the input datum x a problem instance; note that Problem-Theory is
intended to specify a function.

Suppose that the user first decides to apply a generic refinement for divide-and-
conquer algorithms.

empty-seq ✤ sort //
❴

empty-seq−1

��

empty-seq

〈〉 ✤
id // 〈〉

❴

empty-seq
OO

singleton-seq(e) ✤ sort //
❴

singleton-seq−1

��

singleton-seq(e)

e ✤ id // e
❴

singleton-seq
OO

x0
✤ sorting //

❴

concat−1

��

z0

〈x1, x2〉
✤ sorting×sorting // 〈z1, z2〉

❴

merge

OO

The principle of divide-and-conquer
is to solve small problem instances
by some direct means, and to solve
larger problem instances by decompos-
ing them, solving the pieces, and com-
posing the resulting solutions. The fig-
ure to the left shows a mergesort as
generalized kind of divide-and-conquer
with three cases. The bottommost
square shows the familiar divide-and-
conquer case: the input x0 is decom-
posed into two subproblem instances,
x1 and x2, which are solved to produce
z1 and z2, which are in turn composed
to form solution z0. The decomposi-
tion operator here is loosely specified
as the inverse of a constructor, concat.

The first two cases also have the decompose-solve-compose pattern where the decom-
position operator is the inverse of a constructor. The datum 〈〉 is the 0-tuple and it is
treated as the output of the inverse of a constant constructor; 〈〉 is the sole element of

12

the empty product sort, denoted Unit. The first two cases differ from the third in that
the input decomposes into a subproblem that is easily solved, by the identity function
on the appropriate sort.

The domain spec of a simple divide-and-conquer refinement is given in Figure 2 that
abstracts from the mergesort example. It supposes three cases (indexed by 0, 1, and
2), each based on the signature of a constructor, similar to a homomorphism between
algebras with three constructors. The abstraction lies in treating each operator in the
example as a problem theory. Subscripted O’s denote problem requirement constraints;
e.g. ODecompose−i specifies the decomposition operator in case i, and so on. The discrimi-
nator pi represents the condition under which ODecompose−i can decompose an input. The
Soundness-2 axiom relates O, ODecompose2 , and OCompose2 . It asserts that if (1) nonprim-
itive problem instance x0 can decompose into two subproblem instances x1 and x2, (2)
subproblem instances x1 and x2 have feasible solutions z1 and z2 respectively, (3) z1 and
z2 can compose to form z0, then z0 is a feasible solution to input x0. Similar comments
hold for the other Soundness axioms. The operator > is a well-founded order on D to
assure termination (axioms are omitted for simplicity).

A general scheme for problem reduction theories (including divide-and-conquer) is
given in [6]. The idea is to have a different first-order divide-and-conquer theory for each
possible abstract constructor signature.

The codomain spec of the divide-and-conquer refinement (Figure 3) contains a schematic
definition for the top-level divide-and-conquer functions and schematic requirement spec-
ifications for subalgorithms C0, C1, and C2. Given any morphism from Divide-and-
Conquer-0-1-2 and functions that satisfy the requirement specifications for the subal-
gorithms, the corresponding instance of the divide-and-conquer function satisfies its re-
quirement specification [4].

There is one complication which needs explaining. Specware requires that all func-
tions be total and deterministic; each operation in a spec has implicit axioms for existence
and uniqueness of solutions. This simplifies the logic of Specware, but complicates the
treatment of nondeterministic functions which arise naturally in refinement, due to the
levels of abstraction. Consider, for example, an operation that decomposes a bag b into
an element a and the remainder of the bag b′; i.e. an inverse of insert-bag(a, b′). If the
bags are ultimately implemented as lists, then it is natural to use first and rest to per-
form the decomposition. However consider two equal bags {1,1,2}= {2,1,1}. If {1,1,2} is
represented by [1,1,2] then it will decompose into 1 and {1,2}. If {2,1,1} is represented
by [2,1,1], then it will decompose into 2 and {1,1}. Hence the decomposition is not
functional on bags, even though it is functional on lists.

There are various approaches to this problem. We observe however that any extra
work required to make a naturally nondeterministic operator into a deterministic one
is often unnecessary from the programming point of view, when the nondeterminism is
of the don’t-care variety – any solution will do, so any extra work to force one unique
solution is a constraint posed by the programming system rather than by the software
requirements. One solution to this problem is to treat operations that may need to be
nondeterministic via existential quantification. In place of decomposition operators in
Figure 3we have existentially quantified requirement constraints .

The development of a divide-and-conquer algorithm for sorting begins with the con-

13

spec Problem-Theory is
sorts D,R
op O : D,R→ Boolean

end-spec

spec Divide-and-Conquer-0-1-2 is
import DRO
sort E
op F : D→ R
op > : D,D → Boolean
axioms > is a well-founded order ...

op p0 : D→ Boolean
op ODecompose0 : D,Unit→ Boolean
op OCompose0 : R,Unit→ Boolean
axiom Soundness-0 is

ODecompose0(x, 〈〉) ∧ OCompose0(z, 〈〉) =⇒ O(x, z)
axiom discriminator-of -Decompose0 is

p0(x) =⇒ ODecompose0(x, 〈〉)

op p1 : D→ Boolean
op ODecompose1 : D,E → Boolean
op OCompose1 : R,E → Boolean
axiom Soundness-1 is

ODecompose1(x, e) ∧ OCompose1(z, e) =⇒ O(x, z)
axiom discriminator-of -Decompose1 is

p1(x) =⇒ ∃(e) ODecompose1(x, e)

op p2 : D→ Boolean
op ODecompose2 : D,D,D → Boolean
op OCompose2 : R,R,R→ Boolean
axiom Soundness-2 is

ODecompose2(x0, x1, x2) ∧ O(x1, z1) ∧ O(x2, z2) ∧ OCompose2(z0, z1, z2)
=⇒ O(x0, z0)

axiom discriminator-of -Decompose2 is
p2(x) =⇒ ∃(x1, x2) ODecompose2(x, x1, x2) ∧ x > x1 ∧ x > x2

axiom ∀(x : D) p0(x) xor p1(x) xor p2(x)
end-spec

Figure 2: A Simple Divide-and-Conquer Algorithm Theory

14

spec Divide-and-Conquer-0-1-2-scheme is
import Divide-and-Conquer-0-1-2
op C0 :→ R
axiom OCompose0(C0, 〈〉)

op C1 : E → R
axiom OCompose1(C1(e), e)

op C2 : R,R→ R
axiom OCompose2(C2(x1, x2), x1, x2)

definition of F is
axiom p0(x) =⇒ ODecompose0(x, 〈〉) ∧ F (x) = C0

axiom p1(x) =⇒ ∃(e)(ODecompose1(x, e) ∧ F (x) = C1(e))
axiom p2(x) =⇒ ∃(x1, x2)(ODecompose2(x, x1, x2)

∧ F (x) = C2(F (x1), F (x2)))
end-definition
theorem O(x, F (x))

end-spec

Figure 3: Parameterized Divide-and-Conquer Algorithm

struction of a morphism from Problem-Theory to Sorting theory:

D 7→ Bag
R 7→ Seq
O 7→ sorted?

Since the morphism from Problem-Theory to Divide-and-Conquer is an inclusion, we can
use straightforward propagation to obtain translations for the components of Problem-
Theory in Divide-and-Conquer:

D 7→ Bag
R 7→ Seq
O 7→ sorted?
F 7→ ?
E 7→ ?
> 7→ ?
p0 7→ ?

ODecompose0 7→ ?
OCompose0 7→ ?

. . .

To complete the classification arrow we attempt to translate the remaining operators into
expressions of Sorting. Alternative translations give rise to different sorting algorithms.
There are several ways to proceed. One approach is based on the choice of a set of

15

standard decomposition operators from a library. The tactic then uses unskolemization
on the soundness axioms to derive specifications for the composition operators. This
approach allows the derivation of insertion sort, mergesort, and various parallel sorting
algorithms [4, 8]. A dual approach is to choose a set of standard composition operators
from a library and use the soundness axioms to derive the decomposition operators
(leading to selections sort, heapsort, and quicksort). We present the first approach in
detail, then sketch the second.

Suppose that we choose the constructor set {empty-bag, singleton-bag, bag-union} as
the basis for the decomposition relation on the input domain Bag. This gives us the
partial signature morphism

D 7→ Bag
R 7→ Seq
O 7→ sorted?
F 7→ sorting
E 7→ E
> 7→ bag-wfgt
p0 7→ empty-bag?

ODecompose0 7→ λ(x) x = empty-bag
OCompose0 7→ ?

p1 7→ singleton-bag?
ODecompose1 7→ λ(x, e) x = singleton-bag(e)
OCompose1 7→ ?

p2 7→ nonsingleton-bag?
ODecompose2 7→ λ(x0, x1, x2) x0 = bag-union(x1, x2)
OCompose2 7→ ?

The soundness axiom

∀(x0, x1, x2 : D) ∀(z0, z1, z2 : R)
(ODecompose2(x0, x1, x2) ∧ O(x1, z1) ∧ O(x2, z2) ∧ OCompose2(z0, z1, z2)

=⇒ O(x0, z0))

cannot be translated into Sorting because OCompose2 has no translation yet. However,
a technique called unskolemization allows us to use inference tools to deduce a suit-
able translation for OCompose2 [7]. Unskolemizing operator symbol OCompose2 replaces the
occurrence of OCompose2 by a fresh existentially quantified variable in the scope of the
quantifiers for z0, z1, z2:

∀(z0, z1, z2 : R) ∃(y : Boolean) ∀(x0, x1, x2 : D)
(ODecompose2(x0, x1, x2) ∧ O(x1, z1) ∧ O(x2, z2) ∧ y =⇒ O(x0, z0)).

This formula has the same satisfiability properties as the original and it can be translated
to Sorting via the partial morphism yielding:

∀(z0, z1, z2 : Seq) ∃(y : Boolean) ∀(x0, x1, x2 : Bag)
(x0 = bag-union(x1, x2) ∧ sorted?(x1, z1) ∧ sorted?(x2, z2) ∧ y
=⇒ sorted?(x0, z0))

16

A straightforward proof of this formula in Sorting finds a witness for y which results in
a translation for OCompose2:

sorted?(x0, z0)
= by def of sorted?

ordered(z0) ∧ x0 = seq-to-bag(z0)
= by assumption x0 = bag-union(x1, x2)

ordered(z0) ∧ bag-union(x1, x2) = seq-to-bag(z0)
= by assumption xi = seq-to-bag(zi), i = 1, 2

ordered(z0) ∧ bag-union(seq-to-bag(z1), seq-to-bag(z2)) = seq-to-bag(z0).

which can then unify with the assumption y, which must be a term over variables z0, z1, z2.
More generally, we pick up as part of the witness any assumptions that are expressed
over the variables z0, z1, z2, in this case yielding

OCompose2 7→

λ (z0, z1, z2) ordered(z1) ∧ ordered(z2)
=⇒ ordered(z0)
∧ bag-union(seq-to-bag(z1), seq-to-bag(z2)) = seq-to-bag(z0).

This is, of course, a specification for a merge operation. If we take this as the translation
of OCompose2, then we know that the Soundness-2 axiom translates to a theorem in Sorting
by construction.

The remaining steps in constructing this classification arrow are similar. We un-
skolemize OCompose1 in Soundness-1 and then derive a witness:

sorted?(x, z)
= by def of sorted?

ordered(z) ∧ x = seq-to-bag(z)
= using assumption x = singleton-bag(e)

ordered(z) ∧ singleton-bag(e) = seq-to-bag(z)
= Bag-and-Seq-Conv axiom

ordered(z) ∧ seq-to-bag(singleton-seq(e)) = seq-to-bag(z)
⇐= Leibnitz: equality is a congruence

ordered(z) ∧ singleton-seq(e) = z
= simplifying using ordered(singleton-seq(e)) = true

singleton-seq(e) = z.

yielding the translation

OCompose1 7→ λ(z, e) singleton-seq(e) = z.

We can unskolemize OCompose0 in Soundness-0 and then derive a witness:

sorted?(x, z)
= def of sorted?

ordered(z) ∧ x = seq-to-bag(z)
= assumption x = empty-bag

17

ordered(z) ∧ empty-bag = seq-to-bag(z)
= Bag-and-Seq-Conv axiom

ordered(z) ∧ seq-to-bag(empty-seq) = seq-to-bag(z)
⇐= Leibnitz: equality is a congruence

ordered(z) ∧ empty-seq = z
= simplifying using Sorting axiom ordered(empty-seq) = true

empty-seq = z.

yielding the translation

OCompose0 7→ λ(z) empty-seq = z.

The classification arrow is now complete:

D 7→ Bag
R 7→ Seq
O 7→ sorted?
F 7→ sorting
E 7→ E
> 7→ bag-wfgt
p0 7→ empty-bag?

ODecompose0 7→ λ(x) x = empty-bag
OCompose0 7→ λ(z) z = empty-seq

p1 7→ singleton-bag?
ODecompose1 7→ λ(x, e) x = singleton-bag(e)
OCompose1 7→ λ(z, e) z = singleton-seq(e)

p2 7→ nonsingleton-bag?
ODecompose2 7→ λ(x0, x1, x2) x0 = bag-union(x1, x2)
OCompose2 7→ λ (z0, z1, z2) ordered(z1) ∧ ordered(z2) =⇒ ordered(z0)

∧ seq-to-bag(z0) = bag-union(seq-to-bag(z1), seq-to-bag(z2))

Note that we have a classification arrow that translates a symbol to an expression (rather
than a symbol). This commonly occurring situation is treated by extending the codomain
diagram with definitional extensions as necessary. In the sequel we will assume this
treatment whenver the need for a symbol-to-expression translation arises.

We can compute the pushout

Divide-and-Conquer-0-1-2 +3

��

Sorting

��
Divide-and-Conquer-0-1-2-scheme +3 Sorting-Alg1

to obtain a refinement of Sorting that contains a definition for a mergesort algorithm,
shown in Figure 4.

Example – sketch of a derivation for Quicksort:

18

spec Sorting-Alg1 is
import Bag-Seq-over-LinOrd

op sorted? : Bag, Seq→ Boolean
definition sorted?(x, z) = (ordered?(z) ∧ x = seq-to-bag(z))

op sorting : Bag→ Seq
theorem sorted?(x, sorting(x))
definition of sorting is

axiom empty-bag?(x) =⇒ (x = empty-bag ∧ sorting(x) = C0)
axiom singleton-bag?(x) =⇒ ∃(e)(x = singleton-bag(e) ∧ sorting(x) = C1(e))
axiom nonsingleton-bag?(x)

=⇒ ∃(x1, x2)(x = bag-union(x1, x2)
∧ sorting(x) = C2(sorting(x1), sorting(x2)))

end-definition

op C0 :→ Seq
axiom C0 = empty-seq

op C1 : E → Seq
axiom C1(e) = singleton(e)

op C2 : Seq, Seq→ Seq
axiom ordered?(z1) ∧ ordered?(z2)

=⇒ (ordered?(C2(z1, z2))
∧ seq-to-bag(C2(z1, z2)) = bag-union(seq-to-bag(z1), seq-to-bag(z2)))

end-spec

Figure 4: Divide-and-Conquer Sorting Algorithm

19

The derivation of a variant of quicksort is dual to the derivation for mergesort: rather
than select a simple set of constructors as the basis for the decomposition operations, we
select a simple set of constructors as a basis for the composition operators. In particular
if we return to the stage of filling in the partial morphism

D 7→ Bag
R 7→ Seq
O 7→ sorted?
F 7→ sorting
E 7→ E
> 7→ bag-wfgt
p0 7→ ?

ODecompose0 7→ ?
OCompose0 7→ ?

. . .

and we choose the set of sequence constructors {empty-seq, singleton-seq, concat} as a
basis for composition, we get

D 7→ Bag
R 7→ Seq
O 7→ sorted?
F 7→ sorting
E 7→ E
> 7→ bag-wfgt
p0 7→ ?

ODecompose0 7→ ?
OCompose0 7→ λ(z) z = empty-seq

p1 7→ ?
ODecompose1 7→ ?
OCompose1 7→ λ(z, e) z = singleton-seq(e)

p2 7→ ?
ODecompose2 7→ ?
OCompose2 7→ λ(z0, z1, z2) z0 = concat(z1, z2)

Now we use the Soundness axioms to deduce translations for the decomposition
requirement constraints. The most interesting case is unskolemizing operator symbol
ODecompose2 in axiom Soundness-2:

∀(x0, x1, x2 : D) ∃(y : Boolean) ∀(z0, z1, z2 : R)
(y ∧ O(x1, z1) ∧ O(x2, z2) ∧ OCompose2(z0, z1, z2)
=⇒ O(x0, z0)).

This formula can be translated via the partial morphism yielding:

∀(x0, x1, x2 : Bag) ∃(y : Boolean) ∀(z0, z1, z2 : Seq)
(y ∧ sorted?(x1, z1) ∧ sorted?(x2, z2) ∧ z0 = concat(z1, z2)
=⇒ sorted?(x0, z0))

20

A straightforward proof of this formula in Sorting:

sorted?(x0, z0)
= by def of sorted?

ordered(z0) ∧ x0 = seq-to-bag(z0)
= by assumption z0 = concat(z1, z2)

ordered(concat(z1, z2)) ∧ x0 = seq-to-bag(concat(z1, z2))
= distributing using axioms from Sorting and Bag-and-Seq-Conv

ordered(z1) ∧ all-le(z1, z2) ∧ ordered(z2)
∧ x0 = bag-union(seq-to-bag(z1), seq-to-bag(z2))

= simplifying using seq-to-bag(zi) = xi, i = 1, 2
all-le(x1, x2) ∧ x0 = bag-union(x1, x2)

results in a translation for ODecompose2:

ODecompose2 7→ λ(x0, x1, x2) all-le(x1, x2) ∧ x0 = bag-union(x1, x2)

That is, each element of bag x1 is less-than-or-equal to each element of bag x2 and x0

decomposes into two exhaustive subbags of itself. This is, of course, a specification for
a partition operation in a quicksort. If we take this as the translation of ODecompose2,
then we know that the soundness axiom translates to a theorem in Sorting-theory by
construction. The other two cases are similar to the base cases in mergesort.

The divide-and-conquer theory allows a pleasing derivational symmetry between al-
gorithms with simple decomposition operations and complex composition operations and
dually, algorithms with simple composition operations and complex decomposition oper-
ations.

3.3.2. Sorting: Datatype Refinement

BAG +3

��

Sorting

BAG-AS-SEQ

Next, suppose that the user decides to bring the
mergesort algorithm closer to implementation by
refining bags into sequences. This datatype re-
finement was discussed in Section 2.4.2. and it is
presented in detail in Appendix A. The classifi-
cation arrow from BAG to Sorting is essentially
an inclusion, comprised of the identity morphisms
from BAG specs to corresponding specs in the di-
agram of the Sorting spec.

The classification arrow together with the pushout is shown in Figure 5. The two cocone
arrows in the figure are shown with dashes to help distinguish them. Also, to save space
the figure abbreviates Bag-as-Seq to BaS.

The pushout gives us a refinement of Sorting, shown in Figure 6. The effect on the
mergesort definition arises mainly from the translations of the BtoSBag morphism in Sec-
tion 2.4.2.. Note that not all bag operators are directly in the image of the classification
arrow. In particular, the operators all-le and seq-to-bag are extensions to bag theory
added during the construction of sorting theory. The fact that they are defined however

21

TRIV

SEQ
BAG

BAG+SEQ

LINEAR-ORDER

BAG+SEQ-CONV

BAG+SEQ-LinOrd

BAG+SEQ-over-LinOrd

TRIV

SEQ
BaS

BaS+SEQ

LINEAR-ORDER

BaS+SEQ-CONV

BaS+SEQ-LinOrd

BaS+SEQ-over-LinOrd

TRIV

BaS

TRIV

BAG

SEQ SEQ

SORTING

BaS-SORTING

Figure 5: Refining Bags to Seqs in Sorting

means that the pushout will translate the definitions too, so they remain defined after
translation. If some of the auxiliary sorts or operators on the datatype are not in the
image of the classification arrow, then the pushout will simply translate whatever con-
straints there are on such sorts and operators. If the constraints are definitions, then
the translation will be definitional, otherwise the symbols will be constrained but not
necessarily uniquely, and further refinement will be required later.

This datatype refinement mainly serves to bring the spec closer to the programming
language level. Other datatype refinements have a more dramatic effect by refining to
a complicated data structure that efficiently implements the more abstract type. The
same machinery applies. Leverage on the programming task will be most apparent when
a relatively small domain specification refines to a relatively large codomain spec – the
extra bits of information in the codomain are added to the user’s spec essentially for
free once the classification arrow has been constructed. Some examples would include
Boolean expressions refining to BDDs, and sets over a fixed finite universe refining to bit
vectors or hash tables, and finite relations refining to B-trees.

22

spec Sorting-Alg2 is
import Bag-as-Seq-Seq-over-LinOrd
op sorted? : Bag-as-Seq, Seq→ Boolean
def sorted?(x, z) = (ordered?(z) ∧ x = seq-to-bag(z))

op sorting : Bag-as-Seq → Seq
theorem sorted?(x, sorting(x))
definition of sorting is

axiom bag-empty?(x) =⇒ (x = bag-empty ∧ sorting(x) = C0)
axiom bag-singleton?(x) =⇒ ∃(e)(x = bag-singleton(e) ∧ sorting(x) = C1(e))
axiom bag-nonsingleton?(x)

=⇒ ∃(x1, x2)(x = bag-union(x1, x2)
∧ sorting(x0) = C2(sorting(x1), sorting(x2)))

end-definition

op C0 :→ Seq
axiom C0 = empty-seq

op C1 : E → Seq
axiom C1(e) = singleton(e)

op C2 : Seq, Seq→ Seq
axiom ordered?(z1) ∧ ordered?(z2)

=⇒ (ordered?(C2(z1, z2))
∧ seq-to-bag(C2(z1, z2)) = bag-union(seq-to-bag(z1), seq-to-bag(z2)))

end-spec

Figure 6: Sorting Algorithm after Datatype Refinement

3.3.3. Sorting: Expression Optimization

After performing algorithm design and datatype refinement, there are often opportuni-
ties for optimizing various subexpressions. Transformation rules and optimization tac-
tics, such as equational rewriting, context-dependent simplification [5], finite differencing
[3], partial evaluation, and other more specialized techniques can result in dramatic im-
provements in the complexity of the final implementation. We show how at least some
optimization techniques can be captured as refinements, and can be applied in the same
manner as refinements that express algorithm design and datatype refinement knowledge.

The general approach to representing expression optimization techniques is a two
stage process: first, an equation is deduced with the expression-to-be-simplified on the
left-hand-side, and second, the spec S is reformulated to exploit the new theorem. The
applicable metatheorem here is: if spec S1 has theorem e1 = e2 and S2 is the same
spec as S1 except that some occurrences of e1 are replaced by e2, then S1 and S2 are
isomorphic specifications. The metatheorem justifies a substitution operator on specs

23

that creates a spec and the isomorphism between them.
Equational rewriting is a basic optimization technique that uses equational inference

in the user’s spec to deduce an equal term. However, to determine which side is simpler
requires a metric. The approach used in KIDS [5] and in Specware/Designware is to
assign a weight to each operator, measuring the complexity of an expression by summing
the weights of each operator occurrence.

Here is a refinement to express equational simplification:

spec Expression is
sorts D,Q
op expr : D→ Q

end-spec

spec New-Expression is
import Expression
op new-expr : D→ Q
axiom expr(x) = new-expr(x)

end-spec

spec Equational-Simplification is
import New-Expression
theorem expr(x) = new-expr(x)

end-spec

Equational--Simplification (ES) is a degenerate case of our approach to representing
expression optimization techniques. The presence of the theorem in ES is required in
order that it be included in the pushout spec when the refinement is applied.

Context-dependent simplification is a generalization of equational simplification. Sup-
pose that we wish to simplify expression expr in some context C within spec S. To
simplify expr, we want to use not only the equations and other theorems of the spec S,
but also whatever contextual properties hold when expr is evaluated. For example, when
simplifying the else-branch of a conditional, we can assume the negation of the test of
the conditional.

spec Expression-and-Context is
import Expression
op C : D→ Boolean
op new-expr : D → Q
axiom C(x) =⇒ expr(x) = new-expr(x)
end-spec

spec Context-Dependent-Simplification is
import Expression-and-Context
theorem C(x) =⇒ expr(x) = new-expr(x)

end-spec

24

Finite Differencing [3] is a less basic optimization and it has nondegenerate structure
in the codomain of its represention as a refinement. The idea in finite differencing is
to replace an expensive expression in a loop by incremental computation, making use
of some extra variables. The following refinement expresses the correspondence between
these concepts and the symbols in the refinement: e is the expensive expression, which
may occur in the definition of operator f ; h is the body of the definition of f . g is a
new operator which is an abstraction of f with an extra parameter c that is maintained
to satisfy the invariant c = e(x). The theorem asserts equality between f and g when
g is invoked with an argument that satisfies the invariant. After developing the classi-
fication arrow and pushing out, the substitution (meta)operator replaces occurrences of
f with g. To realize the implicit incremental benefits of this change, context-dependent
simplification must be applied to exploit the local invariant c = e(x).

spec Expression-and-Function is
import Expression
sort R
op f : D→ R
op h : D → R
def f(x) = h(x)
end-spec

spec Abstracted-Op is
import Expression-and-Function
sort DQ = (D,Q | λ(x, c) c = e(x))
op g : DQ → R
def g(x, c) = h(x)
theorem f(x) = g(x, e(x))

end-spec

We show how the equational simplification refinementworks by simplifying the clauses
of the definition of sorting in Sorting-Alg2. The simplification often serves a larger goal.
Following algorithm design there are usually opportunities to simplify expressions due
to the juxtaposition of subexpressions from different sources that have been assembled
by means of a definitional scheme. More pertinent here, when datatype refinement is
performed and the codomain has a constructed sort, then simplification can reexpress
definitions in terms of the base sorts of the construction. The definitional axioms of
sorting in Sorting-Alg2 are expressed in terms of a quotient sort construction

sort-axiom Bag-as-Seq = Seq/perm?
Simplification will have the effect of reexpressing the axioms in terms of sequences, using
coercion functions.

We show the simplification of the singleton case since it most clearly exemplifies the
essential reasoning pattern. The classification arrow can be partially filled in once a user
has selected an expression to simplify:

25

D 7→ Unit
Q 7→ Boolean

expr 7→ ∀(x : Bag-as-Seq)(bag-singleton?(x) =⇒
∃(e)(x = bag-singleton(e) ∧ sorting(x) = C1(e)))

new-expr 7→ ?

To obtain a translation for new-expr, we unskolemize it in the New-Expression axiom,
then translate the result and find a witness in Sorting theory as shown in Figure 7. The
proof draws on axioms from Bag-as-Seq and Seq and the quantifier change theorems:

(∀(x : D/ ≡) A(x)) = (∀(y : D) A(q(y))) where q = quotient(≡)

(∀(x : D|p?) A(r(x))) = (∀(y : D)(p?(y) =⇒ A(y))) where r = relax(p?)

The completed the classification arrow is:

D 7→ Unit
Q 7→ Boolean

expr 7→ ∀(x : Bag-as-Seq)(bag-singleton?(x) =⇒
∃(e)(x = bag-singleton(e) ∧ sorting(x) = C1(e)))

C 7→ λ(x) singleton-seq?(x)
new-expr 7→ ∀(y : Seq) singleton-seq?(y) =⇒ sorting(q(y)) = y

The effect of computing the pushout of the refinement and the classification arrow is to
add the theorem asserting equality of these two expressions in context. We then apply a
substitution (meta)operator that creates an isomorphic spec. After simplifying all three
axioms of sorting, these refinements have the effect shown in Figure 8. The special form
restrict coerces a value to a subsort, provided that the subsort predicate holds in context.
Sorting-Alg4, also shown in Figure 8 shows the effect of aggregating the clauses of the
sorting definition into a conditional using another refinement.

3.3.4. Sorting: Summary

One remaining step is to design a definition for C2. This spec can be refined either by
applying divide-and-conquer to create one of several possible simple merge operators: the
straightforward one is the usual linear time sequential merge [4]; an alternate derivation
yields the log time parallel merge underlying Batcher’s Sort [8]. Another way to synthe-
size a definition for C2 is to reduce it to “legacy code”; that is, an existing library routine
that can satisfy the C2 requirement specification. This reduction process uses a general
mechanism called connections betweeen theories [7].

The code generation process uses library refinements from the specification language
to a programing language (currently in Specware these are CommonLISP and C++).

26

∀(x : Bag-as-Seq)(bag-singleton?(x)
=⇒ ∃(e)(x = bag-singleton(e) ∧ sorting(x) = C1(e)))

= quantifier change via q : Seq→ Bag-as-Seq = quotient(perm?)

∀(y : Seq)(bag-singleton?(q(y))
=⇒ ∃(e)(q(y) = bag-singleton(e) ∧ sorting(q(y)) = C1(e)))

= simplifying, using the defs of bag-singleton? and bag-singleton

∀(y : Seq)(singleton-seq?(y)
=⇒ ∃(e)(q(y) = q(singleton-seq(e)) ∧ sorting(q(y)) = C1(e)))

= quantifier change via the subsort coercion
r1 : 1-Seq → Seq = relax(singleton-seq?)

∀(z : 1-Seq)∃(e)(q(r1(z)) = q(singleton-seq(e)) ∧ sorting(q(r1(z))) = C1(e))

= unifying with q(r1(w)) = q(singleton-seq(singleton-seq-inv(w)))
which is inferred from the inverse axiom

r1(w) = singleton-seq(singleton-seq-inv(w))

∀(z : 1-Seq) sorting(q(r1(z))) = C1(singleton-seq-inv(z))

= unfolding the def of C1

∀(z : 1-Seq) sorting(q(r1(z))) = singleton-seq(singleton-seq-inv(z))

= simplifying, again using the inverse axiom

∀(z : 1-Seq) sorting(q(r1(z))) = r1(z)

= quantifier change in reverse, using subsort coercion r1 : 1-Seq → Seq

∀(y : Seq) singleton-seq?(y) =⇒ sorting(q(y)) = y

Figure 7: Simplification of a sorting axiom

27

spec Sorting-Alg3 is
import Bag-as-Seq-Seq-over-LinOrd
...
op sorting : Bag-as-Seq→ Seq
theorem sorted?(x, sorting(x))
definition of sorting is

axiom empty-seq?(x) =⇒ sorting(q(x)) = x
axiom singleton-seq?(x) =⇒ sorting(q(x)) = x
axiom nonsingleton-seq?(x) =⇒

let (x1 = q(left-split(restrict(x))),
x2 = q(right-split(restrict(x))))

sorting(q(x)) = C2(sorting(x1), sorting(x2)))
end-definition
...

end-spec

spec Sorting-Alg4 is
import Bag-as-Seq-Seq-over-LinOrd
...
op sorting : Bag-as-Seq→ Seq
theorem sorted?(x, sorting(x))
def sorting(q(x)) =

(if empty-seq?(x) then x
elseif singleton-seq?(x) then x
else (let (x1 = q(left-split(restrict(x))),

x2 = q(right-split(restrict(x))))
C2(sorting(x1), sorting(x2)))

...
end-spec

Figure 8: Sorting Algorithm after Simplifications

28

4. Domain-Specific Software Development

The sorting example shows how to exploit domain-independent design knowledge that
is uniformly represented by refinements. In this section the Planware system provides
examples of using refinements to represent domain-specific design knowledge.

Planware [1] is a synthesis system that is specialized to the production of scheduling
algorithms. It extends Specware/Designware with libraries of theories and refinements
about scheduling and with a specialized tactic for controlling the application of such
design knowledge. Planware applies library refinements to transform information from
the user into a formal requirement specification, which is typically thousands of line of
specification text. The refinement to code via algorithm design, datatype refinement,
and expression optimization is completely automatic.

4.1. Constructing a Requirement Specification

Planware provides an answer to the question of how to help automate the acquisition
of requirements from the user and to assemble a formal requirement specification for
the user. The key idea is to focus on a narrow well-defined class of programs and to
prebuild an abstract specification that covers the class. Interaction with the user is only
required in order to obtain the refinement from the abstract spec to a specification of the
requirements of the user’s particular problem.

The scheduling problem in general is to compute a set of reservations on a given set
of resources in order to accomplish a given set of tasks subject to certain constraints.
Optionally we may want to optimize an objective function. A sketch of an abstract
scheduling specification follows, where the import Scheduling-Import combines specifi-
cations for Time, Quantity, Task, Resource, Reservation, Set-of-Task, Set-of-Resource,
Set-of-Reservation:

spec Task
sort Task

end-spec

spec Resource
sort Resource

end-spec

spec Abstract-Scheduling is
imports Scheduling-Import
sorts Reservation = Resource, T ask, T ime

Schedule = Set-of -Reservation
op scheduler : Set-of -Task, Set-of -Resource→ Schedule

op all-tasks-scheduled? : Set-of -Task, Schedule→ Boolean
def all-tasks-scheduled?(tasks, schedule)

= ∀(tsk)(tsk in tasks = ∃!(rsvn)(rsvn in schedule ∧ task(rsvn) = tsk))
axiom all-tasks-scheduled?(tasks, scheduler(tasks, resources))

29

Resource

uu❦❦❦❦
❦❦
❦❦
❦❦
❦❦
❦❦
❦

**❱❱❱
❱❱❱

❱❱❱
❱❱❱

❱❱❱
❱❱❱

Consumable Asynchronously Reusable

��
Synchronously Reusable

��tt❤❤❤❤
❤❤❤

❤❤❤
❤❤❤

❤❤
❤❤❤

Transportation ExactCapacity

��
UnitCapacity

Figure 9: Taxonomy of Resource Theories

op only-given-resources-used? : Set-of -Resource, Schedule→ Boolean
def only-given-resources-used?(resources, schedule)

= ∀(rsvn)(rsvn in schedule =⇒ resource(rsvn) in resources)
axiom only-given-resources-used?(resources, scheduler(tasks, resources))

end-spec

This specifies an abstract scheduler whose input is a set of tasks (each with unspecified
structure) and a set of resources (each with unspecified structure). Two generic problem
constraints are imposed on the output of the Scheduler operator: all-tasks-scheduled?
asserts that it must schedule all (and only) the input tasks, and only-given-resources-used?
asserts that it uses only the supplied resources. So, for example, if the input is 100 cargo
items to fly on 10 aircraft, then the schedule generated by Scheduler must schedule all
100 items (and no more) and use only the 10 given aircraft.

We briefly describe two domain-specific refinements that are applied to refine this
abstract scheduling spec to a spec for a particular problem, such as a transportation
problem, a power plant maintenance problem, or a processor scheduling problem.

Figure 9 depicts a taxonomy of resource theories that covers many commonly oc-
curring types of resources. Abstract Resource theory refines into Consumable resources
(e.g. fuel, crew duty time) and Reusable resources (e.g. aircraft, trucks, parking lots,
printers). Reusable resources further refine into Synchronously Reusable resources (e.g.
ships, aircraft) where all reservations of a resource instance must be synchronized (e.g.
passenger reservations on a particular airline flight are all for the same start and fin-
ish time). Synchronously Reusable resources further refine into Transportation resources
(which have spatial translation between starting and ending points), and Unit Capacity
resources, which can handle at most one reservation at a time.

The axiomatic formulation has several benefits over an object-oriented classification
hierarchy. Both provide the signature of the relevant operations on the resource. A spec-
ification for a resource type also provides the axiomatic characterization of all properties

30

spec Semilattice-Structured-Attribute is
sorts Task, Attr-sort
op attribute : Task→ Attr-sort
op rsvn-attr : Reservation→ Attr-sort
op le : Attr-sort, Attr-sort→ Boolean
axioms ... le is a bounded semilattice ...

end-spec

spec Create-Constraint-from-Task-Attribute is
import Semilattice-structured-attribute
op consistent-attr : Schedule→ Boolean
def consistent-attr(sched) =

∀(rsvn, tsk)(rsvn ∈ sched ∧ tsk in tasks(rsvn)
=⇒ attr(tsk) le rsvn-attr(rsvn))

axiom consistent-attr(scheduler(tasks, resources))
end-spec

Figure 10: Refinement for Constructing Requirement Constraints on a Scheduler

shared by instances of the resource class. Furthermore, important theorems that provide
the basis for important algorithmic concepts can be recorded in the resource spec.

To particularize the abstract scheduling specification, Planware requests the user to
select a resource theory from the taxonomy. The composed arrow from Resource theory
to the selected theory is the arrow used for refinement.

In the next step, the user interacts with a spreadsheet-like interface that simultane-
ously gathers information about task attributes and how they are ordered as a semilattice
– this information is critical for algorithm design later. We skip the details of this pro-
cess in order to focus on how task attributes are lifted into requirement constraints on
Scheduler (see [1]). As an example, consider the release-time attribute on Task which
we suppose the user has selected as a lower bound on the start-time attribute which is
required on reservations of a transportation resource. A domain-specific refinement is
used to create problem requirement constraints is shown in Figure 10:

The codomain of the refinement creates a new predicate which is asserted as a re-
quirement constraint on Scheduler. The axiom asserts that the scheduler must produce
an output that satisfies this new constraint. From context, Planware automatically con-
structs the classification arrow:

Task 7→ Task
Attr-sort 7→ T ime
attribute 7→ release-time
rsvn-attr 7→ start-time

le 7→ ≤

The pushout then automatically adds the new structure, including the requirement con-
straint on Scheduler, to the Scheduling specification:

31

spec Abstract-Scheduling1 is
imports Scheduling-Import
sorts Reservation = Resource, T ask, T ime

Schedule = Set-of -Reservation
op scheduler : Set-of -Task, set-of -Resource→ Schedule

op all-tasks-scheduled? : Set-of -Task, Schedule→ Boolean
def all-tasks-scheduled?(tasks, schedule)

= ∀(tsk)(tsk in tasks = ∃!(rsvn)(rsvn in schedule ∧ task(rsvn) = tsk))
axiom all-tasks-scheduled?(tasks, scheduler(tasks, resources))

op only-given-resources-used? : Set-of -Resource, Schedule→ Boolean
def only-given-resources-used?(resources, schedule)

= ∀(rsvn)(rsvn in schedule =⇒ resource(rsvn) in resources)
axiom only-given-resources-used?(resources, Scheduler(tasks, resources))

op rsvn-start-time : Reservation→ T ime
op consistent-start-time : Schedule→ Boolean
def consistent-start-time(sched) =

∀(rsvn, tsk)(rsvn in sched ∧ tsk in tasks(rsvn)
=⇒ release-time(tsk) ≤ rsvn-start-time(rsvn))

axiom consistent-start-time(scheduler(tasks, resources))
end-spec

This new requirement constraint on the scheduler asserts that the actual start time
of a reservation must be no earlier than the release date of any task in the reservation.
Applying this domain-specific yet abstract refinement to all attributes of Task gathered
from dialog with the user allows Planware to automatically generate the requirements
constraints on Scheduler (without the user having to know, see, or write advanced math-
ematics).

4.2. Datatype Refinement and Problem Reformulation

Datatype refinement plays several important roles in Planware. We briefly mention one
use at the problem formulation stage that is critical to the development of good algorithms
at a later stage.

Set(Resource× Task × T ime)

��
Map(Resource, Set(Resource× Task × T ime))

��
Map(Resource, Ordered-Seq(Resource× Task × T ime))

At the most abstract level in Planware, a schedule is presented as a set of reservations

32

(which in turn are effectively tuples). This abstraction is well-suited for gathering and
formalizing user requirements, but quite poor if implemented in a straightforward or
naive way (e.g. as lists). Planware exploits refinements shown above, where the second
refinement exploits the linear ordering of time to refine a set to a sorted sequence (ordered
by increasing time). The effect is to refine schedule-as-a-relation into schedule-as-a-Gantt-
chart (or time-function) – a common representation in scheduling algorithms. The main
benefit is that several of the output constraints on the scheduler function now simplify
tremendously. Put another way, the refined data structures satisfy some of the constraints
implicitly, they are built-in, so they need not be explicit.

A clear example of this phenomenon arises in the k-queens problem. A straightfor-
ward specification of this problem would define a k×k bit matrix to represent placement
of queens on a k × k chessboard. In this representation we have four constraints to sat-
isfy: no-two-queens-per-row, no-two-queens-per-column, no-two-queens-per-ascending-
diagonal, no-two-queens-per-descending-diagonal. The constraint that there is at most
one queen per column allows us to refine the bit matrix to a sequence where the ith entry
represents the row number of the queen in that column, if there is one. The effect is to
cut down the space of possible solutions by building in the constraint no-two-queens-per-
column. Furthermore, the specification of the queens problem can be condensed since
the no-two-queens-per-column constraint simplifies away in the refined representation.

This phenomenon points out another benefit of a refinement approach: it supports
users in exploring alternative formulations of their problem. A complicated (i.e. lots
of information) but efficient (i.e. tighter representation of the problem so that there’s
less junk in the search space) representation can be derived from a simpler, more un-
derstandable formulation. Oftentimes in current software development approaches the
inertia of the lots-of-bits formulation may discourage users from backing up and rethink-
ing/reformulating their approach. The refinement approach encourages a carefully staged
design process wherein the user first expresses the most abstract essential requirements
on the desired software, and only then begins to explore decisions about formulation,
algorithms, architectures, data structures, and so on.

5. Scaling up

The process of refining specification S0 described above has three basic steps:

1. select a refinement A =⇒ B from a library,

2. construct a classification arrow A =⇒ S0, and

3. compute the pushout S1 of B ⇐= A =⇒ S0.

The resulting refinement is the cocone arrow S0 =⇒ S1. This basic refinement process
is repeated until the relevant sorts and operators of the spec have sufficiently explicit
definitions that they can be easily translated to a programming language, and then
compiled.

In this section we address the issue of how this basic process can be further developed
in order to scale up as the size and complexity of the library of specs and refinements

33

Container

��
Proto-Seq

�� %%▲▲
▲▲

▲▲
▲▲

▲▲

Proto-Bag

��xxrrr
rr
rr
rr
r

Seq

Bag Proto-Set

ww♣♣♣
♣♣
♣♣
♣♣
♣♣

�� ''◆◆
◆◆

◆◆
◆◆

◆◆
◆

...

Figure 11: Taxonomy of Container Datatypes

Expression

tt❤❤❤❤
❤❤
❤❤❤

❤❤❤
❤❤❤

❤❤❤

�� ++❲❲❲❲
❲❲❲

❲❲❲
❲❲❲

❲❲❲
❲❲❲

❲

New-Expression Expression-and-Context Expression-and-Function

Figure 12: Taxonomy of Expression Optimization Refinements

grows. The first key idea is to organize libraries of specs and refinements into taxonomies.
The second key idea is to support tactics at two levels: theory-specific tactics for con-
structing classification arrows, and task-specific tactics that compose common sequences
of the basic refinement process into a larger refinement step.

5.1. Design by Classification: Taxonomies of Refinements

A productive software development environment will have a large library of reusable
refinements, letting the user (or a tactic) select refinements and decide where to apply
them. The need arises for a way to organize such a library, to support access, and
to support efficient construction of classification arrows. A library of refinements can be
organized into taxonomies where refinements are indexed on the nodes of the taxonomies,
and the nodes include the domains of various refinements in the library. The taxonomic
links are refinements, indicating how one refinement applies in a stronger setting than
another.

Figure 11 sketches a taxonomy of abstract datatypes for collections. Details are given
in Appendix A. The arrows between nodes express the refinement relationship; e.g. the
morphism from Proto-Seq to Proto-Bag is an extension with the axiom of commutativity
applied to the join constructor of Proto-Seqs. Datatype refinements are indexed by the
specifications in the taxonomy; e.g. a refinement from (finite) bags to (finite) sequences
is indexed at the node specifying (finite) bag theory. Figure 12 shows the beginnings of

34

a taxonomy of expression optimization refinements that includes the ones presented in
Section 3.3.3.. Figure 13 shows a taxonomy of algorithm design theories. The refinements
indexed at each node correspond to (families of) program schemes. The algorithm theory
associated with a scheme is sufficient to prove the consistency of any instance of the
scheme.

Nodes that are deeper in a taxonomy correspond to specifications that have more
structure than those at shallower levels. Generally, we wish to select refinements that are
indexed as deeply in the taxonomy as possible, since the maximal amount of structure in
the requirement specification will be exploited. In the algorithm taxonomy, the deeper
the node, the more structure that can be exploited in the problem, and the more problem-
solving power that can be brought to bear. Roughly speaking, narrowly scoped but faster
algorithms are deeper in the taxonomy, whereas widely applicable general algorithms are
at shallower nodes.

Two problems arise in using a library of refinements: (1) selecting an appropriate
refinement, and (2) constructing a classification arrow. If we organize a library of refine-
ments into a taxonomy, then the following ladder construction process provides incre-
mental access to applicable refinements, and simultaneously, incremental construction of
classification arrows.

A0

I0 +3

��

Spec0

��
A1

I1 +3

��

Spec1

��
A2

I2 +3

��

Spec2

��...

��

...

��
An

In +3 Specn

The process of incrementally constructing a refine-
ment is illustrated in the ladder construction dia-
gram to the left. The left side of the ladder is a
path in a taxonomy starting at the root. The lad-
der is constructed a rung at a time from the top
down. The initial interpretation from A0 to Spec0 is
often simple to construct. The rungs of the ladder
are constructed by a constraint solving process that
involves user choices, the propagation of consistency
constraints, calculation of colimits, and constructive
theorem proving [7, 9]. Generally, the rung construc-
tion is stronger than a colimit – even though a co-
cone is being constructed. The intent in contructing
Ii : Ai

+3Speci is that Speci has sufficient defined
symbols to serve as the codomain. In other words,
the implicitly defined symbols in Ai are translated to
explicitly defined symbols in Speci.

An
In +3

��

Specn

��
Bn

+3 Specn+1

Once we have constructed a classification arrow
An =⇒ Specn and selected a refinement An =⇒
Bn that is indexed at node An in the taxonomy, then
constructing a refinement of Spec0 is straightforward:
compute the pushout, yielding Specn+1, then com-
pose arrows down the right side of the ladder and
the pushout square to obtain Spec0 =⇒ Specn+1 as
the final constructed refinement.

Again, rung construction is not simply a matter of computing a colimit. For example,

35

Problem Theory

(D→ R|O)

generate-and-test

Constraint Satisfaction
(R=set of maps)

Global Structure
(R = set+recursive partition)

global search

binary search

backtrack

branch-and-bound

Local Structure
(R=set+relation)

genetic algorithms

Problem Reduction

Structure

Divide-and-Conquer
divide-and-conquer

Complement

Reduction
sieves

Problem Reduction

Generators
dynamic programming

branch-and-bound

game tree search

Local Structure
(R=set+binary relation)

local search

steepest ascent

simulated annealing

tabu search

Local Poset Structure
(R=poset)

Monotone Deflationary

Function
fixpoint iteration

Local Semilattice Structure
(R=semilattice)

genetic algorithms

Linear

Programming
simplex

interior point

primal-dual

Network Flow
Ford-Fulkerson

specialized simplex

Integer

Linear

Programming
0-1 methods

branch-and-bound

Transportation
NW-algorithm

Assignment Problem
Hungarian method

GS-CSP
(R = set+recursively partitioned

set of maps)

GS-Horn-CSP
(Definite constraints)

constraint propagation

Figure 13: Taxonomy of Algorithm Theories

36

there are at least two distinct arrows from Divide-and-Conquer to Sorting, correspond-
ing to a mergesort and a quicksort – these are distinct cocones and there is no universal
sorting algorithm corresponding to the colimit. However, applying the refinement that
we select at a node in the taxonomy is a simple matter of computing the pushout. For al-
gorithm design the pushout simply instantiates some definition schemes and other axiom
schemes.

It is unlikely that a general automated method exists for constructing rungs of the
ladder, since it is here that creative decisions can be made. For general-purpose design it
seems that users must be involved in guiding the rung construction process. However in
domain-specific settings and under certain conditions it will possible to automate rung
construction (as discussed in the next section). Our goal in Designware is to build an
interface providing the user with various general automated operations and libraries of
standard components. The user applies various operators with the goal of filling out
partial morphisms and specifications until the rung is complete. After each user-directed
operation, constraint propagation rules are automatically invoked to perform sound ex-
tensions to the partial morphisms and specifications in the rung diagram. Constructive
theorem-proving provides the basis for several important techniques for constructing clas-
sification arrows [7, 9].

5.2. Tactics

The design process described so far uses primitive operations such as (1) selecting a
spec or refinement from a library, (2) computing the pushout/colimit of (a diagram of)
diagram morphisms, and (3) unskolemizing and translating a formula along a morphism,
(4) witness-finding to derive symbol translations during the construction of classification
arrows, and so on. These and other operations can be made accessible through a GUI,
but inevitably, users will notice certain patterns of such operations arising, and will wish
to have macros or parameterized procedures for them, which we call tactics. They provide
higher level (semiautomatic) operations for the user.

The need for at least two kinds of tactics can be discerned.

1. Classification tactics control operations for constructing classification arrows. The
divide-and-conquer theory admits at least two common tactics for constructing
a classification arrow which we illustrated in Section 3.3.1.. One tactic can be
procedurally described as follows: (1) the user selects a operator symbol with a DRO
requirement spec, (2) the system analyzes the spec to obtain the translations of the
DRO symbols, (3) the user is prompted to supply a standard set of constructors on
the input domain D, (4) the tactic performs unskolemization on the composition
relation in each Soundness axiom to derive a translations for OCi, and so on. This
tactic was followed in the mergesort derivation.

The other tactic is similar except that the tactic selects constructors for the compo-
sition relations on R (versus D) in step (3), and then uses unskolemization to solve
for decomposition relations in step (4). This tactic was followed in the quicksort
derivation.

37

A classification tactic for context-dependent simplification provides another exam-
ple. Procedurally: (1) user selects an expression expr to simplify, (2) type analysis
is used to infer translations for the input and output sorts of expr, (3) a con-
text analysis routine is called to obtain contextual properties of expr (yielding the
translation for C), (4) unskolemization and witness-finding are used to derive a
translation for new-expr.

2. Refinement tactics control the application of a collection of refinements; they may
compose a common sequence of refinements into a larger refinement step. Plan-
ware has a code-generation tactic for automatically applying spec-to-code interlogic
morphisms. Another example is a refinement tactic for context-dependent simplifi-
cation; procedurally, (1) use the classification tactic to construct the classification
arrow, (2) compute the pushout, (3) apply a substitution operation on the spec to
replace expr with its simplified form and to create an isomorphism. Finite Differ-
encing requires a more complex tactic that applies the tactic for context-dependent
simplification repeatedly in order to make incremental the expressions set up by
applying the Expression-and-Function→ Abstracted-Op refinement.

We can also envision the possibility of metatactics that can construct tactics for a
given class of tasks. For example, given an algorithm theory, there may be ways to analyze
the sorts, ops and axioms to determine various orders in constructing the translations of
classification arrows. The two tactics for divide-and-conquer mentioned in Section 3.3.1.
are an example.

6. Summary

Perhaps the main message of this paper is that a formal software refinement process can
be supported by automated tools, and in particular that libraries of design knowledge
can be brought to bear in constructing refinements for a given requirement specification.
One goal of this paper has been to show that diagram morphisms are adequate to cap-
ture design knowledge about algorithms, data structures, and expression optimization
techniques, as well as the refinement process itself. We showed how to apply a library
refinement to a requirement specification by constructing a classification arrow and com-
puting the pushout. We discussed how a library of refinements can be organized into
taxonomies and presented techniques for constructing classification arrows incrementally.
The examples and most concepts described are working in the Specware, Designware, and
Planware systems.

Acknowledgements: The work reported here is the result of extended collaboration
with my colleagues at Kestrel Institute. I would particularly like to acknowledge the
contributions of David Espinosa, LiMei Gilham, Junbo Liu, Dusko Pavlovic, and Stephen
Westfold. I would also like to thank Lambert Meertens for his suggestions on treating
nondeterministic functions in the Specware context.

38

References

[1] Blaine, L., Gilham, L., Liu, J., Smith, D., and Westfold, S. Planware –
domain-specific synthesis of high-performance schedulers. In Proceedings of the Thir-
teenth Automated Software Engineering Conference (October 1998), IEEE Computer
Society Press, pp. 270–280.

[2] Meseguer, J. General logics. In Logic Colloquium 87, H. Ehrig et al., Ed. North
Holland, Amsterdam, 1989, pp. 275–329.

[3] Paige, R., and Koenig, S. Finite differencing of computable expressions. ACM
Transactions on Programming Languages and Systems 4, 3 (July 1982), 402–454.

[4] Smith, D. R. Top-down synthesis of divide-and-conquer algorithms. Artificial
Intelligence 27, 1 (September 1985), 43–96. (Reprinted in Readings in Artificial
Intelligence and Software Engineering, C. Rich and R. Waters, Eds., Los Altos, CA,
Morgan Kaufmann, 1986.).

[5] Smith, D. R. KIDS – a semi-automatic program development system. IEEE
Transactions on Software Engineering Special Issue on Formal Methods in Software
Engineering 16, 9 (September 1990), 1024–1043.

[6] Smith, D. R. Structure and design of problem reduction generators. In Construct-
ing Programs from Specifications, B. Möller, Ed. North-Holland, Amsterdam, 1991,
pp. 91–124.

[7] Smith, D. R. Constructing specification morphisms. Journal of Symbolic Compu-
tation, Special Issue on Automatic Programming 15, 5-6 (May-June 1993), 571–606.

[8] Smith, D. R. Derivation of parallel sorting algorithms. In Parallel Algorithm
Derivation and Program Transformation, R. Paige, J. Reif, and R. Wachter, Eds.
Kluwer Academic Publishers, New York, 1993, pp. 55–69.

[9] Smith, D. R. Toward a classification approach to design. In Proceedings of the
Fifth International Conference on Algebraic Methodology and Software Technology,
AMAST’96 (1996), vol. LNCS 1101, Springer-Verlag, pp. 62–84.

[10] Srinivas, Y. V., and Jüllig, R. Specware: Formal support for composing
software. In Proceedings of the Conference on Mathematics of Program Construction,
B. Moeller, Ed. LNCS 947, Springer-Verlag, Berlin, 1995, pp. 399–422.

39

A Containers, Bags, and Sequences

In this section we present parts of the following taxonomy of Container structures and
their refinements. This taxonomy is adapted from the Specware/Designware library. One
refinement is given in detail: Bag =⇒ Seq.

Container

��
Proto-Seq

�� %%▲▲
▲▲

▲▲
▲▲

▲▲

Proto-Bag

��xxrrr
rr
rr
rr
r

Seq

Bag Proto-Set

ww♣♣♣
♣♣
♣♣
♣♣
♣♣

''◆◆
◆◆

◆◆
◆◆

◆◆
◆

... ...

spec CONTAINER is

sorts E, Container

op empty : -> Container

op singleton : E -> Container

op _join_ : Container, Container -> Container

axiom unit is

x join empty = x & empty join x = x

constructors {empty, singleton, join} construct Container

op empty? : Container -> Boolean

definition of empty? is

axiom empty?(empty) = true

axiom empty?(singleton(y)) = false

axiom empty?(U join V) = (empty?(U) & empty?(V))

end-definition

op nonempty? : Container -> Boolean

def nonempty?(b) = ~empty?(b)

op _in_ : E, Container -> Boolean

definition of in is

axiom x in empty = false

axiom x in singleton(y) = (x = y)

axiom x in U join V = (x in U or x in V)

end-definition

end-spec

40

spec PROTO-SEQ is

translate

colimit of

diagram

nodes ASSOCIATIVE, CONTAINER, BIN-OP

arcs BIN-OP -> ASSOCIATIVE : {}

, BIN-OP -> CONTAINER : {E -> Container, binop -> join}

end-diagram

by {Container -> Seq,

empty -> empty-seq,

empty? -> empty-seq?,

singleton -> singleton-seq,

join -> concat}

The definition of PROTO-SEQ given above evaluates to the following “flat” spec:

spec PROTO-SEQUENCE is

sorts E, Seq

const empty-seq : -> Seq

op singleton-seq : E -> Seq

op _concat_ : Seq, Seq -> Seq

constructors {empty-seq, singleton-seq, concat} construct Seq

axiom unit is

forall(x:Seq)(x concat empty-seq = x & empty-seq concat x = x)

axiom associativity is

x concat (y concat z) = (x concat y) concat z

op empty-seq? : Seq -> Boolean

definition of empty-seq? is

axiom empty-seq?(empty) = true

axiom empty-seq?(singleton(y)) = false

axiom empty-seq?(U concat V) = (empty-seq?(U) & empty-seq?(V))

end-definition

op nonempty-seq? : Seq -> Boolean

def nonempty-seq?(b) = ~empty-seq?(b)

op _in_ : E, Seq -> Boolean

definition of in is

axiom x in empty-seq = false

axiom x in singleton-seq(y) = (x = y)

axiom x in U concat V = (x in U or x in V)

end-definition

end-spec

41

spec PROTO-BAG is

translate

colimit of

diagram

nodes BIN-OP, COMMUTATIVE, PROTO-SEQ

arcs BIN-OP -> COMMUTATIVE : {}

, BIN-OP -> PROTO-SEQ : {E -> Seq, binop -> concat}

end-diagram

by {Seq -> Bag,

empty-seq -> empty-bag,

empty-seq? -> empty-bag?,

singleton-seq -> singleton-bag,

concat -> bag-union}

spec PROTO-SET is

translate

colimit of

diagram

nodes BIN-OP, IDEMPOTENT, PROTO-BAG

arcs BIN-OP -> IDEMPOTENT : {}

, BIN-OP -> PROTO-BAG : {E -> Bag, binop -> bag-union}

end-diagram

by {Bag -> Set,

empty-bag -> empty-set,

singleton-bag -> singleton-set,

bag-union -> union}

42

We must extend the PROTO- specs with additional sorts and operations to get useful
theories. In practice there would be several extensions to Proto-SEQ yielding a subtax-
onomy of Sequence theories, each useful in different contexts.

Note the use of subsort definitions here. Subsorts are necessitated by the requirement
that all operators be total. For example, NE-seq (short for Non-Empty sequences) is
defined as sequences restricted to nonempty sequences. The selectors head and tail can
then be introduced as with signature NE-seq → Seq. A subsort construction E|p? comes
with an injective coercion function relax(p?) : E|p?→ E that takes subsort elements into
the parent sort. The function r is introduced as an abbreviation of relax(nonempty-seq?)
which coerces from the subsort (NE-seq) to the parent sort (seq). Note also how SEQ
introduces destructors as inverses of constructors. These play a key role in divide-and-
conquer-style algorithms. Unit denotes the empty product construction – the sort with
one element, 〈〉.

spec SEQ is

import PROTO-SEQ

sort NE-Seq

sort-axiom NE-Seq = Seq | nonempty-seq?

op r: NE-seq -> Seq

def r = relax(nonempty-seq?)

op prepend : E , Seq -> Seq

op head : NE-Seq -> E

op tail : NE-Seq -> Seq

constructors {empty-seq, prepend} construct Seq

axiom prepend(a,S) = singleton(a) concat S

op size: Seq -> Nat

definition of size is

axiom size(empty-seq) = 0

axiom size(prepend(a,S)) = 1 + size(S)

end-definition

sort 0-Seq

sort-axiom 0-Seq = Seq | empty-seq?

op r0: 0-seq -> Seq

def r0 = relax(empty-seq?)

op empty-seq-inv : 0-seq -> Unit

inversion of constructor empty-seq is

discriminator empty-seq?

destructors [empty-seq-inv]

axiom fa(x:0-seq) empty-seq(empty-seq-inv(x)) = r0(x)

sort 1-Seq

43

sort-axiom 1-Seq = Seq | singleton-seq?

op singleton-seq? : Seq -> Boolean

def singleton-seq?(x) = (size(x)=1)

op r1: 1-seq -> Seq

def r1 = relax(singleton-seq?)

op singleton-seq-inv : 1-Seq -> E

inversion of constructor singleton-seq is

discriminator singleton-seq?

destructors [singleton-seq-inv]

axiom fa(x:1-Seq) singleton-seq(singleton-seq-inv(x)) = r1(x)

sort 2-Seq

sort-axiom 2-Seq = Seq | nonsingleton-seq?

op nonsingleton-seq? : Seq -> Boolean

def nonsingleton-seq?(x) = (size(x)>1)

op r2: 2-seq -> Seq

def r2 = relax(nonsingleton-seq?)

op left-split : 2-Seq -> Seq

op right-split : 2-Seq -> Seq

inversion of constructor concat is

discriminator nonsingleton-seq?

destructors [left-split, right-split]

axiom fa(x:2-Seq) concat(left-split(x), right-split(x)) = r2(x)

end-spec

spec BAG is

import PROTO-BAG

op size: Bag -> Nat

definition of size is

axiom size(empty-bag) = 0

axiom size(singleton-bag(e)) = 1

axiom size(bag-union(b1, b2)) = size(b1) + size(b2)

end-definition

op bag-wflgt : Bag, Bag -> Boolean

def bag-wfgt(b1, b2) = (size(b1) > size(b2))

op singleton-bag? : Bag -> Boolean

def singleton-bag?(b) = (size(b)=1)

op nonsingleton-bag? : Bag -> Boolean

def nonsingleton-bag?(b) = (size(b)>1)

end-spec

44

The following text gives the refinement of bags to sequences, as described in Section
2.4.3. Note the use of a quotient sort definition here. The sort Bag-as-Seq is defined
as sequences quotiented by the permutation relation. The purpose of Bag-as-Seq is to
serve as the translation of Bag. The quotienting captures the commutativity of bags: we
say two sequences are equal as bags exactly when they are permutations of one another.
When we finally translate down to code, equality on bags will translate to the permutation
relation on the implementing sequences. A quotient sort construction E/ ≡ comes with
a surjective coercion function quotient(≡) : E → E/ ≡ that takes E elements to their
equivalence class. The function q is introduced as an abbreviation of quotient(perm?).

spec BAG-AS-SEQ is

import SEQ

op remove-1 : E, Seq -> Seq

definition of remove-1 is

axiom empty-seq?(S) => remove-1(x S)=S

axiom x=head(S) => remove-1(x, r(S))=tail(S)

axiom ~(x=head(S))

=> remove-1(x, r(S))=prepend(head(S), remove-1(x, tail(S)))

end-definition

op perm? : Seq, Seq -> Boolean

definition of perm? is

axiom empty-seq?(S1)=> (perm?(S1 S2) = empty-seq?(S2))

axiom perm?(r(S1), S2)

=> head(S1) in S2 & perm?(tail(S1), remove-1(head(S1), S2))

end-definition

sort Bag-as-Seq

sort-axiom Bag-as-Seq = Seq/perm?

constructors {bag-empty, bag-singleton, bag-union} construct Bag-as-Seq

op q : Seq -> Bag-as-Seq

def q = quotient(perm?)

op bag-empty : Bag-as-Seq

def bag-empty = q(empty-seq)

op bag-empty? : Bag-as-Seq -> Boolean

def bag-empty?(q(s)) = empty-seq?(s)

op bag-nonempty? : Bag-as-Seq -> Boolean

def bag-nonempty?(q(s)) = ~empty-seq?(s)

op bag-singleton : E -> Bag-as-Seq

45

def bag-singleton(x) = q(singleton-seq(x))

op bag-singleton? : Bag-as-Seq -> Boolean

def bag-singleton?(q(s)) = singleton-seq?(s)

op bag-nonsingleton? : E -> Bag-as-Seq

def bag-nonsingleton(q(s)) = nonsingleton-seq?(s)

op bag-in : E, Bag-as-Seq -> Boolean

def bag-in(x, q(S)) = x in S

op bag-union : Bag-as-Seq, Bag-as-Seq -> Bag-as-Seq

def bag-union(q(S1),q(S2)) = q(concat(S1, S2))

op bag-size : Bag-as-Seq -> Nat

definition of bag-size is

axiom bag-size(q(s)) = size(s)

end-definition

op bag-wflgt : Bag-as-Seq, Bag-as-Seq -> Boolean

definition of bag-wflgt is

axiom bag-wflgt(b1, b2) = gt(bag-size(b1), bag-size(b2))

end-definition

end-spec

Finally the refinement from BAG to SEQ-AS-BAG is

diagram-morphism BtoS is

{BtoS-Triv : Triv -> Triv,

BtoS-Bag : Bag -> Seq-as-Bag}

diagram BAG is

nodes Bag, Triv

arcs Triv -> Bag: {E-> E}

end-diagram

diagram BAG-AS-SEQ is

nodes Seq, Bag-As-Seq, Triv

arcs Triv -> Bag-As-Seq: {E -> E},

Triv -> Seq : {E -> E},

Seq -> Bag-As-Seq: import-morphism

end-diagram

46

morphism BtoS-Bag : Bag -> Bag-As-Seq is

{Bag -> Bag-As-Seq,

empty-bag -> bag-empty,

empty-bag? -> bag-empty?,

nonempty? -> bag-nonempty?,

singleton-bag -> bag-singleton,

singleton-bag? -> bag-singleton?,

nonsingleton-bag? -> bag-nonsingleton?,

in -> bag-in,

bag-union -> bag-union,

bag-wfgt -> bag-wfgt,

size -> bag-size}

47

B Specification for Sorting

Listed below are the components of the structured specification for the problem of sort-
ing a bag whose elements are drawn from a linearly ordered set. The specification is
parameterized on the linear order.

TRIV //

uu❦❦❦❦
❦❦
❦❦
❦❦
❦❦
❦❦
❦❦

))❙❙❙
❙❙

❙❙
❙❙

❙❙
❙❙

❙❙
❙

LINEAR-ORDER

��

BAG

))❙❙
❙❙

❙❙
❙❙

❙❙
❙❙

❙❙
❙

SEQ

uu❦❦❦
❦❦
❦❦
❦❦
❦❦
❦❦
❦❦

BAG-AND -SEQ

��
BAG-AND -SEQ-CONV // BAG-SEQ -LinOrd

��
BAG-SEQ -over -LinOrd

��
SORTING

spec BAG-AND-SEQ is

colimit of diagram

nodes TRIV, BAG, SEQ

arcs TRIV -> BAG: {},

TRIV -> SEQ: {}

end-diagram

spec BAG-AND-SEQ-CONV is

import BAG-AND-SEQ

op seq-to-bag: Seq -> Bag

definition of seq-to-bag is

axiom seq-to-bag(empty-seq) = empty-bag

axiom seq-to-bag(singleton-seq(e)) = singleton-bag(e)

axiom seq-to-bag(concat(S1, S2))

= bag-union(seq-to-bag(S1), seq-to-bag(S2))

end-definition

end-spec

spec BAG-SEQ-LinOrd is

colimit of diagram

nodes TRIV, LINEAR-ORDER, BAG-AND-SEQ-CONV

arcs TRIV -> LINEAR-ORDER: {},

48

TRIV -> BAG-AND-SEQ-CONV: {}

end-diagram

spec BAG-SEQ-over-LinOrd is

import BAG-SEQ-LinOrd

op all-le: Bag, Bag -> Boolean

definition of all-le is

axiom all-le(empty-bag, empty-bag) = true

axiom all-le(B, empty-bag) = true

axiom all-le(singleton-bag(e), empty-bag) = true

axiom all-le(singleton-bag(d), singleton-bag(e)) = (d le e)

axiom all-le(singleton-bag(d), bag-union(B1, B2))

= all-le(singleton-bag(d), B1) & all-le(singleton-bag(d), B2)

axiom all-le(bag-union(B1, B2), B) = all-le(B1, B) & all-le(B2, B)

end-definition

op ordered? : Seq -> Boolean

definition of ordered? is

axiom ordered?(empty-seq) = true

axiom ordered?(singleton(a)) = true

axiom ordered?(prepend(a, y)) = all-le(singleton(a), seq-to-bag(y))

axiom ordered?(concat(y, z)) = ordered?(y)

& all-le(seq-to-bag(y), seq-to-bag(z)) & ordered?(z)

end-definition

end-spec

spec SORTING is

import BAG-SEQ-over-LinOrd

op sorted? : Bag, Seq -> Boolean

def sorted?(x,z) = (ordered?(z) & x = seq-to-bag(z))

op sorting : Bag -> Seq

axiom sorted?(x, sorting(x))

end-spec

49

