
in Parallel Algorithm Derivation and Program Transformation,
Eds. R. Paige, J. Reif, and R. Wachter,

Kluwer Academic Publishers, Boston, 1993, pages 55–69.

Derivation of Parallel Sorting Algorithms

Douglas R. Smith1

email: smith@condor.kestrel.edu
Kestrel Institute

3260 Hillview Avenue
Palo Alto, California 94304 USA

Abstract

Parallel algorithms can be derived from formal problem specifications by
applying a sequence of transformations that embody information about
algorithms, data structures, and optimization techniques. The KIDS
system provides automated support for this approach to algorithm de-
sign. This paper carries through the salient parts of a formal derivation
for a well-known parallel sorting algorithm – Batcher’s Even-Odd sort.
The main difficulty lies in building up the problem domain theory within
which the algorithm is inferred.

1 Introduction

This paper is intended as an introduction to formal and automated design of
parallel algorithms. The level of formality is somewhat lessened in order to
concentrate on the main issues. We derive Batcher’s Odd-Even sort [2] and
discuss the derivation of several other well-known parallel sorting algorithms.

Algorithms can be treated as a highly optimized composition of informa-
tion about the problem being solved, algorithm paradigms, data structures,
target architectures, and so on. An attempt to provide automated support for
algorithm design must be based on a formal model of the composition process
and

1. representation of problem domain knowledge - expressing the basic and
derived concepts of the problem and the laws for reasoning about them.
We formalize knowledge about a particular application domain as a pa-
rameterized domain theory.

2. representation of programming knowledge - we also use theories to capture
knowledge of algorithms and data structures. The logical concept of
interpretation between theories is the basis for applying programming
knowledge in the form of theories [3, 12, 10].

1This research was supported in part by the Office of Naval Research under Grant N00014-
90-J-1733 and in part by Air Force Office of Scientific Research under Contract F49620-91-
C-0073.

Most, if not all, sorting algorithms can be derived as interpretations of the
divide-and-conquer paradigm. Accordingly, we present a simplified divide-and-
conquer theory and show how it can be applied to design the sort algorithms
mentioned above.

There are a variety of reasons for turning to a derivational approach to
algorithm design. First, a derivation is structured proof of correctness, so a
derivational approach is in accordance with modern programming methodology
that insists that programs and proofs be developed at the same time. Second,
the compositional view provides an explanation of an algorithm in terms that
are common to many algorithms. This description shows the commonalities
between algorithms and how a small collection of general principles suffice to
generate a large variety of algorithms. All too often, the published explanation
of an algorithm is just a post-hoc proof of correctness that sheds little light on
the process of inventing the algorithm in the first place. Such proofs are too
specific to the algorithm and use overly general proof techniques, such as in-
duction. The reader may wish to compare our derivation with the presentation
of Even-Odd sort in textbooks such as [1, 5]. Third, derivations often come
in families – the design decisions that are dependent on the target language
and architecture can be separated out. This allows retargeting a abstract al-
gorithm for a problem to a variety of concrete programs in different languages
for different machines. Finally, automated support can be provided for formal
derivations. The machine handles many of the lower-level details, freeing the
designer to concentrate on developing the problem domain theory and making
high-level design decisions.

2 KIDS Model of Design

The Kestrel Interactive Development System (KIDS) has served as a testbed
for our experiments in automated program derivation [11]. The user typically
goes through the following steps in using KIDS. We do not claim this to be
a complete model of software development; however, this model is supported
in KIDS and has been used to design and optimize over 60 algorithms. Ap-
plications areas have included scheduling, combinatorial design, sorting and
searching, computational geometry, pattern matching, and linear and nonlin-
ear programming.

1. Develop a domain theory – The user builds up a domain theory by defin-
ing appropriate types and operations. The user also provides laws that
allow high-level reasoning about the defined operations. Our experience
has been that laws describing the preservation of properties under various
operations provide most of the laws that are needed to support design
and optimization. In particular, distributive and monotonicity laws have
turned out to be so important that KIDS has a theory development com-
ponent that supports their automated derivation.

2. Create a specification – The user enters a specification stated in terms of
the underlying domain theory.

3. Apply a design tactic – The user selects an algorithm design tactic from
a menu and applies it to a specification. Currently KIDS has tactics for

2

simple problem reduction (reducing a specification to a library routine),
divide-and-conquer, global search (binary search, backtrack, branch-and-
bound), local search (hillclimbing), and problem reduction generators
(dynamic programming and generalized branch-and-bound).

4. Apply optimizations – KIDS supports program optimization techniques
such as simplification, partial evaluation, finite differencing, and other
transformations. The user selects an optimization method from a menu
and applies it by pointing at a program expression.

5. Apply data type refinements – The user can select implementations for the
high-level data types in the program. Data type refinement rules carry
out the details of constructing the implementation [3].

6. Compile – The resulting code is compiled to executable form. In a sense,
KIDS can be regarded as a front-end to a conventonal compiler.

Actually, the user is free to apply any subset of the KIDS operations in any
order – the above sequence is typical of our experiments in algorithm design.
In this paper we mainly concentrate on the first three steps.

3 Derivation of a Mergesort

3.1 Domain Theory for Sorting

Suppose that we wish to sort a collection of objects belonging to some set α
that is linearly-ordered under ≤. Here is a simple specification of the sorting
problem:

Sort(x : bag(α) | true)
returns(z : seq(α) | x = Seq−to−bag(z) ∧ Ordered(z))

Sort takes a bag (multiset) x of α objects and returns some sequence z such
that the following output condition holds: the bag of objects in sequence z is
the same as x and z must be ordered under ≤. The predicate true following
the parameter x is called the input condition and specifies any constraints on
inputs.

In order to support this specification formally, we need a domain theory
of sorting that includes the theory of sequences and bags, has the linear-order
〈α,≤〉 as a parameter, and defines the concepts of Seq−to−bag and Ordered.
The following parameterized theory accomplishes these ends:

Theory Sorting(〈α,≤〉 : linear− order)
Imports integer, bag(α), seq(α)
Operations

Ordered : seq(α) → Boolean

Axioms
∀(S : seq(α)) (Ordered(S)

⇔ ∀(i)(i ∈ {1..length(S)− 1} =⇒ S(i) ≤ S(i+ 1)))

3

Theorems
Ordered([]) = true
∀(a : α) (Ordered([a]) = true)
∀(y1 : seq(α), y2 : seq(α))

(Ordered(y1++y2) ⇔ Ordered(y1)
∧ Seq−to−bag(y1) ≤ Seq−to−bag(y2)
∧ Ordered(y2))

end−theory

Sorting theory imports integer, bag, and sequence theory. Sequences are
constructed via [] (empty sequence), [a] (singleton sequence), and A++B (con-
catenation). For example,

[1, 2, 3]++[4, 5, 6] = [1, 2, 3, 4, 5, 6].

Several parallel sorting algorithms are based on an alternative set of con-
structors which use interleaving in place of concatenation: the ilv operator

[1, 2, 3] ilv [4, 5, 6] = [1, 4, 2, 5, 3, 6]

interleaves the elements of its arguments. We assume that the arguments to
ilv have the same length, typically denoted n, and that it is defined by

A ilv B = C ⇔ ∀(i)(i ∈ {1..n} =⇒ C2i−1 = Ai ∧ C2i = Bi).

In Section 4 we develop some of the theory of sequences based on the ilv
constructor.

Bags have an analogous set of constructors: {{}} (empty bag), {{a}} (sin-
gleton bag), and A d B (associative and commutative bag union). The operator
Seq-to-bag coerces sequences to bags by forgetting the ordering implicit in the
sequence. Seq-to-bag obeys the following distributive laws:

Seq−to−bag([]) = {{}}

∀(a : α) Seq−to−bag([a]) = {{a}}

∀(y1 : seq(α), y2 : seq(α))
Seq−to−bag(y1++y2) = Seq−to−bag(y1) d Seq−to−bag(y1)

∀(y1 : seq(α), y2 : seq(α))
Seq−to−bag(y1 ilv y2) = Seq−to−bag(y1) d Seq−to−bag(y1)

In the sequel we will omit universal quantifiers whenever it is possible to
simplify the presentation without sacrificing clarity.

3.2 Divide-and-Conquer Theory

Most sorting algorithms are based on the divide-and-conquer paradigm: If the
input is primitive then a solution is obtained directly, by simple code. Other-
wise a solution is obtained by decomposing the input into parts, independently
solving the parts, then composing the results. Program termination is guaran-
teed by requiring that decomposition is monotonic with respect to a suitable
well-founded ordering. In this paper we focus on divide-and-conquer algorithms
that have the following general form:

4

DC(x0 : D | I(x0))
returns(z : R | O(x0, z))
= if Primitive(x0)

then Directly−Solve(x0)
else let 〈x1, x2〉 = Decompose(x0)

Compose(DC(x1), DC(x2))

We refer toDecompose as a decomposition operator, Compose as a composition
operator, Primitive as a control predicate, and Directly−Solve as a primitive
operator.

The essence of a divide-and-conquer algorithm can be presented via a re-
duction diagram:

x0

DC
> z0

∧

Decompose

∨

Compose

〈x1, x2〉
DC ×DC

> 〈z1, z2〉

which should be read as follows. Given input x0, an acceptable solution
z0 can be found by decomposing x0 into two subproblems x1 and x2, solving
these subproblem recursively yielding solutions z1 and z2 respectively, and then
composing z1 and z2 to form z0.

In the derivations of this paper we will usually ignore the primitive predicate
and Directly-Solve operator – the interesting design work lies in calculating
compatible pairs of Decompose and Compose operators.

The following mergesort program is an instance of this scheme:

MSort(b0 : bag(integer))
returns(z : seq(α) | x = Seq−to−bag(z) ∧ Ordered(z))
= if size(b0) ≤ 1

then b0
else let 〈b1, b2〉 = Split(b0)

Merge(MSort(b1), MSort(b2))

Here Split decomposes a bag into two subbags of roughly equal size and Merge
composes two sorted sequences to form a sorted sequence.

The characteristic that subproblems are solved independently gives the
divide-and-conquer notion its great potential in parallel environments. Another
aspect of divide-and-conquer is that the recursive decomposition can often be
performed implicitly, thereby enabling a purely bottom-up computation. For
example, in the Mergesort algorithm, the only reason for the recursive splitting
is to control the order of composition (merging) of sorted subproblem solutions.
However the pattern of merging is easily determined at design-time and leads
to the usual binary tree computation pattern.

To express the essence of divide-and-conquer, we define a divide-and-conquer
theory comprised of various sorts, function, predicates, and axioms that assure

5

that the above scheme correctly solves a given problem. A simplified divide-
and-conquer theory is as follows (for more details see [8, 9]):

Theory Divide−and−Conquer
Sorts D,R domain and range of a problem
Operations

I : D → Boolean input condition
O : D ×R → Boolean output condition
primitive : D → Boolean control predicate
ODecompose : D ×D ×D → Boolean output condition for Decompose
OCompose : R×R×R → Boolean output condition for Compose
≻ : D ×D → Boolean well-founded order

Soundness Axiom
ODecompose(x0, x1, x2)
∧ O(x1, z1) ∧ O(x2, z2)
∧ OCompose(z0, z1, z2)
=⇒ O(x0, z0)

· · ·
end−theory

The intuitive meaning of the Soundness Axiom is that if input x0 decom-
poses into a pair of subproblems 〈x1, x2〉, and z1 and z2 are solutions to sub-
problems x1 and x2 respectively, and furthermore solutions z1 and z2 can be
composed to form solution z0, then z0 is guaranteed to be a solution to input
x0. There are other axioms that are required: well-foundedness conditions on
≻ and admissability conditions that assure that Decompose and Compose can
be refined to total functions over their domains. We ignore these in order to
concentrate on the essentials of the design process.

The main difficulty in designing an instance of the divide-and-conquer scheme
for a particular problem lies in constructing decomposition and composition op-
erators that work together. The following is a simplified version of a tactic in
[8].

1. Choose a simple decomposition operator and well-founded order.

2. Derive the control predicate based on the conditions under which the
decomposition operator preserves the well-founded order and produces
legal subproblems.

3. Derive the input and output conditions of the composition operator using
the Soundness Axiom of divide-and-conquer theory.

4. Design an algorithm for the composition operator.

5. Design an algorithm for the primitive operator.

Mergesort is derived by choosing d −1 as a simple (nondeterministic) de-
composition operator. A specification for the well-known merge operation is
derived using the Soundness Axiom.

6

b0
Sort

> z0
∧

d −1

∨

Merge

< b1, b2 >
Sort × Sort

> < z1, z2 >

A similar tactic based on choosing a simple composition operator and then
solving for the decomposition operator is also presented in [8]. This tactic can
be used to derive selection sort and quicksort-like algorithms.

Deriving the output condition of the composition operator is the most chal-
lenging step and bears further explanation. The Soundness Axiom of divide-
and-conquer theory relates the output conditions of the subalgorithms to the
output condition of the whole divide-and-conquer algorithm:

ODecompose(x0, x1, x2)
∧ O(x1, z1) ∧ O(x2, z2)
∧ OCompose(z0, z1, z2)
=⇒ O(x0, z0)

For design purposes this constraint can be treated as having three unknowns:
O, ODecompose, and OCompose. Given O from the original specification, we
supply an expression for ODecompose then reason backwards from the conse-
quent to an expression over the program variables z0, z1, and z2. This derived
expression is taken as the output condition of Compose.

Returning to Mergesort, suppose that we choose d −1 as a simple decom-
position operator. To proceed with the tactic, we instantiate the Soundness
Axiom with the following substitutions

ODecompose 7→ λ(b0, b1, b2) b0 = b1 d b2
O 7→ λ(b, z) b = Seq−to−bag(z) ∧ Ordered(z)

yielding

b0 = b1 d b2
∧ b1 = Seq−to−bag(z1) ∧ Ordered(z1)
∧ b2 = Seq−to−bag(z2) ∧ Ordered(z2)
∧ OCompose(z0, z1, z2)
=⇒ b0 = Seq−to−bag(z0) ∧ Ordered(z0)

To derive OCompose(z0, z1, z2) we reason backwards from the consequent
b0 = Seq−to−bag(z0) ∧ Ordered(z0) toward a sufficient condition expressed
over the variables {z0, z1, z2} modulo the assumptions of the antecedent:

7

b0 = Seq−to−bag(z0) ∧ Ordered(z0)

⇐⇒ using assumption b0 = b1 d b2

b1 d b2 = Seq−to−bag(z0) ∧ Ordered(z0)

⇐⇒ using assumption bi = Seq−to−bag(zi), i = 1, 2

Seq−to−bag(z1) d Seq−to−bag(z2) = Seq−to−bag(z0)
∧ Ordered(z0).

This last expression is a sufficient condition expressed in terms of the vari-
ables {z0, z1, z2} and so we take it to be the output condition for Compose. In
other words, we ensure that the Soundness Axiom holds by taking this expres-
sion as a constraint on the behavior of the composition operator.

The input condition to the composition operator is obtained by forward
inference from the antecedent of the soundness axiom; here we have the (trivial)
consequences Ordered(z1) and Ordered(z2). Only consequences expressed in
terms of the input variables z1 and z2 are useful.

Thus we have derived a formal specification for Compose:

Merge(A : seq(integer), B : seq(integer) | Ordered(A) ∧ Ordered(B))
returns(z : seq(integer)

| Seq−to−bag(A) d Seq−to−bag(B) = Seq−to−bag(z)
∧ Ordered(z)).

Merge is now a derived concept in Sorting theory. We later derive laws for
it, but now we proceed to design an algorithm to satisfy this specification. The
usual sequential algorithm for merging is based on choosing a simple “cons”
composition operator and deriving a decomposition operator [8]. However this
algorithm is inherently sequential and requires linear time.

4 Batcher’s Odd-Even Sort

Batcher’s Odd-Even sort algorithm [2] is a mergesort algorithm in which the
merge operator itself is a divide-and-conquer algorithm. The Odd-Even merge
is derived by choosing a simple decomposition operator based on ilv and
deriving constraints on the composition operator.

Before proceeding with algorithm design we need to develop some of the
theory of sequences based on the ilv constructor. Generally, we develop a
domain theory by deriving laws about the various concepts of the domain. In
particular we have found that distributive, monotonicity, and invariance laws
provide most of the laws needed to support formal design. This suggests that
we develop laws for various sorting concepts, such as Seq-to-bag and Ordered.
From Section 3 we have

Theorem 1. Distributing Seq-to-bag over sequence constructors.
1.1. Seq−to−bag([]) = {{}}
1.2. Seq−to−bag([a]) = {{a}}
1.3. Seq−to−bag(S1 ilv S2) = Seq−to−bag(S1) d Seq−to−bag(S2)

8

It is not obvious how to distribute Ordered over ilv , so we try to derive it.
In this derivation let n denote the length of both A and B.

Ordered(A ilv B)
⇐⇒ by definition of Ordered

∀(i)(i ∈ {1..2n− 1} =⇒ (A ilv B)i ≤ (A ilv B)i+1)

⇐⇒ change of index

∀(j)(j ∈ {1..n} =⇒ (A ilv B)2j−1 ≤ (A ilv B)2j)
∧ ∀(j)(j ∈ {1..n− 1} =⇒ (A ilv B)2j ≤ (A ilv B)2j+1)

⇐⇒ by definition of ilv

∀(j)(j ∈ {1..n} =⇒ Aj ≤ Bj)
∧ ∀(j)(j ∈ {1..n− 1} =⇒ Bj ≤ Aj+1).

These last two conjuncts are similar in form and suggest the need for a
new concept definition and perhaps new notation. Suppose we define A ≤∗

B iff Ai ≤ Bi for i ∈ {1 . . . n}. This allows us to express the first conjunct as
A ≤∗ B, but then we cannot quite express the second concept – we need to
generalize to allow an offset in the comparison:
Definition 1. A pair of sequences A and B of length n are pairwise-ordered
with offset k, written A ≤∗

k B, iff Ai ≤ Bi+k for i ∈ {1 . . . n− k}.
Then the derivation above yields the following simple law

Theorem 2. Conditions under which an interleaved sequence is Ordered.
For all sequences A, B,
Ordered(A ilv B) ⇐⇒ A ≤∗

0 B ∧ B ≤∗

1 A.

Note that this definition provides a proper generalization of the notion of
orderedness:

Theorem 3. Ordered as a diagonal specialization of ≤∗

i .
For all sequences S,
Ordered(S) ⇐⇒ S ≤∗

1 S

Other laws are easily derived:

Theorem 4. Transitivity of ≤∗

i .
For all sequences A, B, C of equal length and integers i and j,
A ≤∗

i B ∧ B ≤∗

j C =⇒ A ≤∗

i+j C

As a simple consequence we have

Corollary 1. Only Ordered sequences interleave to form Ordered sequences.
For all sequences A, B,
Ordered(A ilv B) =⇒ Ordered(A) ∧ Ordered(B).

Proof:

9

Ordered(A ilv B)

⇐⇒ by Theorem 2

A ≤∗

0 B ∧ B ≤∗

1 A

=⇒ applying Theorem 4 twice

A ≤∗

1 A ∧ B ≤∗

1 B

⇐⇒ by Theorem 3

Ordered(A) ∧ Ordered(B). Λ

Theorem 5. Monotonicity of ≤∗

i with respect to merging.
For all sequences A1, A2, B1, and B2 and integers i,

A1 ≤∗

i A2 ∧ B1 ≤∗

i B2 =⇒ Merge(A1, B1) ≤
∗

2i Merge(A2, B2)

We can apply the basic sort operation sort2(x, y) = 〈min(x, y),max(x, y)〉
over parallel sequences, just as we did with the comparator ≤.

Definition 2. Pairwise-sort of sequences with offset k.
Define sort2∗k(A,B) = 〈A′, B′〉 such that

(1) for i ≤ k, B′

i = Bi

(2) for i = 1, . . . , n− k, 〈A′

i, B
′

i+k〉 = sort2(Ai, Bi+k)
(3) for i > n− k, A′

i = Ai

For example, sort2∗1([2, 3, 8, 9], [0, 1, 4, 5]) = 〈[1, 3, 5, 9], [0, 2, 4, 8]〉. Laws for
sort2∗k can be developed:

Theorem 6. sort2∗k establishes ≤∗

k.
For all sequences A, B, A′, and B′, and integer k,
sort2∗k(A,B) = 〈A′, B′〉 =⇒ A′ ≤∗

k B′.

This theorem is a trivial consequence of the definition of sort2∗k. The follow-
ing theorems give conditions under which important properties of the domain
theory (≤∗

i , Ordered) are preserved under under the sort2∗k operation. They
can be proved using straightforward analysis of cases.

Theorem 7. Ordered is invariant under sort2∗k.
For all sequences A, B and integer k,
Ordered(A) ∧ Ordered(B) ∧ sort2∗k(A,B) = 〈A′, B′〉
=⇒ Ordered(A′) ∧ Ordered(B′)

Theorem 8. Invariance of A ≤∗

i B with respect to sort2∗k(A,B).
For all sequences A, B and integers i and k,
A ≤∗

i B ∧ sort2∗k(A,B) = 〈A′, B′〉 =⇒ A′ ≤∗

i B′

Theorem 9. Invariance of A ≤∗

i B with respect to sort2∗k(B,A).
For all sequences A, B and 0 ≤ i < k,
A ≤∗

i+k A ∧ B ≤∗

i+k B ∧ A ≤∗

i B ∧ B ≤∗

i+2k A ∧ sort2∗k(B,A) = 〈B′, A′〉
=⇒ A′ ≤∗

i B′

10

With these concepts and laws in hand, we can proceed to derive Batcher’s
Odd-Even mergesort. It can be derived simply by choosing to decompose the
inputs to Merge by uninterleaving them.

〈A0, B0〉
Merge

> S0 : seq(integer)
∧

ilv−2

∨

?

〈〈A1, B1〉, 〈A2, B2〉〉
Merge ×Merge

> 〈S1, S2〉

where ilv−2 means A0 = A1 ilv A2 and B0 = B1 ilv B2. Note how this
decomposition operator creates subproblems of roughly the same size which
provides good opportunities for parallel computation. Note also that this de-
composition operator must ensure that the subproblems 〈A1, B1〉 and 〈A2, B2〉
satisfy the input conditions of Merge. This property is assured by Corollary 1.

We proceed by instantiating the Soundness Axiom as before:

A0 = A1 ilv A2 ∧ Ordered(A0)
∧ B0 = B1 ilv B2 ∧ Ordered(B0)
∧ Seq−to−bag(S1) = Seq−to−bag(A1) d Seq−to−bag(B2) ∧ Ordered(S1)
∧ Seq−to−bag(S2) = Seq−to−bag(A2) d Seq−to−bag(B2) ∧ Ordered(S2)
∧ OCompose(S0, S1, S2)
=⇒ Seq−to−bag(S0) = Seq−to−bag(A0) d Seq−to−bag(B0)

∧ Ordered(S0)

Constraints on OCompose are derived as follows:

Seq−to−bag(S0) = Seq−to−bag(A0) d Seq−to−bag(B0) ∧ Ordered(S0)

⇐⇒ by assumption

Seq−to−bag(S0) = Seq−to−bag(A1 ilv A2)
d Seq−to−bag(B1 ilv B2)

∧ Ordered(S0)

⇐⇒ distributing Seq−to−bag over ilv

Seq−to−bag(S0) = Seq−to−bag(A1) d Seq−to−bag(A2)
d Seq−to−bag(B1) d Seq−to−bag(B2)

∧ Ordered(S0)

⇐⇒ by assumption

Seq−to−bag(S0) = Seq−to−bag(S1) d Seq−to−bag(S2)
∧ Ordered(S0).

The input conditions on Merge are derived by forward inference from the

11

assumptions above:

A0 = A1 ilv A2 ∧ Ordered(A0)
∧ B0 = B1 ilv B2 ∧ Ordered(B0)
∧ Ordered(S1) ∧ Ordered(S2)

=⇒ distributing Ordered over ilv

A1 ≤∗

0 A2 ∧ A2 ≤∗

1 A1

∧ B1 ≤∗

0 B2 ∧ B2 ≤∗

1 B1

∧ Ordered(S1) ∧ Ordered(S2)

=⇒ by monotonicity of ≤∗

i with respect to Merge

S1 ≤∗

0 S2 ∧ S2 ≤∗

2 S1

∧ Ordered(S1) ∧ Ordered(S2).

Thus we have derived the specification

Merge−Compose(S1 : seq(integer), S2 : seq(integer)
| S1 ≤∗

0 S2 ∧ S2 ≤∗

2 S1 ∧ Ordered(S1) ∧ Ordered(S2))
returns(S0 : seq(integer)

| Seq−to−bag(S0) = Seq−to−bag(S1) d Seq−to−bag(S2)
∧ Ordered(S0)).

How can this specification be satisfied? Theorems 1.3 and 2 suggest ilv
since it would establish the output conditions of Merge−Compose. Theorem 2
requires that we achieve the input condition S1 ≤∗

0 S2 ∧ S2 ≤∗

1 S1 first. But
Theorem 6 (sort2∗k establishes ≤∗

k) enables us to apply Sort2∗1(S2, S1) in order
to achieve the second conjunct. Theorems 7, 8, and 9 ensure that S1 ≤∗

0 S2

remains invariant. So Merge−Compose is satisfied by ˜ilv · sort2∗1(S2, S1). The
final algorithm in diagram form is

b0
Sort

> z0
∧

d −1

∨

Merge

〈b1, b2〉
Sort × Sort

> 〈z1, z2〉

〈A0, B0〉
Merge

> S0

∧

ilv −2

∨

˜ilv · sort2∗1(S2, S1)

〈〈A1, B1〉, 〈A2, B2〉〉
Merge ×Merge

> < S1, S2 >

12

To simplify the analysis, assume that the input to Sort has length n = 2m.
Given n processors, Merge runs in time

TMerge(n) = max(TMerge(n/2), TMerge(n/2)) +O(1)
= O(log(n))

since the decomposition and composition operators both can be evaluated in
constant time and the recursion goes to depth O(log(n)).

The decomposition operator d −1 in Sort is nondeterministic. This is an
advantage at this stage of design since it allows us to defer committments and
make choices that will maximize performance. In this case the complexity of
Sort is calculated via the recurrence

TSort(n) = max(TSort(a(n)), TSort(b(n))) +O(log(n))

which is optimized by taking a(n) = b(n) = n/2 – that is, we split the input
bag in half. Given n processors this algorithm runs in O(log2(n)) time, so it is
suboptimal for sorting. However, according to [7], Batcher’s Odd-Even sort is
the most commonly used of parallel sort algorithms.

5 Related Sorting Algorithms

Several other parallel sorting algorithms can be developed using the techniques
above. Batcher’s bitonic sort [2] and the Periodic Balanced Sort [4] are also ba-
sically mergesort algorithms. They differ from Odd-Even sort in that the merge
operation is a divide-and-conquer based on concatenation as the composition
operator. For example, bitonic merge can be diagrammed as follows:

〈A,B〉
Merge

> S0

∧

[id, reverse]

∨

id

〈A0, B0〉
BMerge

> S0

∧

[halve, halve] · sort2∗0

∨

++

〈〈A1, B1〉, 〈A2, B2〉〉
BMerge × BMerge

> < S1, S2 >

The essential fact about using ++ as a composition operator is that 〈〈A1, B1〉,
〈A2, B2〉〉 must be a partition in the sense that no element of A1 or B1 is
greater than any element of A2 and B2. The cleverness of the algorithm lies in
a special property of sequences that allows a simple operation (sort2∗0 here)
to effectively produce a partition. This property is called “bitonicity” for
bitonic sort and “balanced” for the periodic balanced sort. (The operation
〈A0, B0〉 = 〈id(A), reverse(B)〉 establishes the bitonic property and decom-
position preserves it). The challenge in deriving these algorithms lies in dis-
covering these properties given that one wants a divide-and-conquer algorithm

13

based on ++ as composition. Is there a systematic way to discover these prop-
erties or must we rely on creative invention? Admittedly, there may be other
frameworks within which the discovery of these properties is easier.

Another well-known parallel sort algorithm is odd-even transposition sort.
This can be viewed as a parallel variant of bubble-sort which in turn is derivable
as a selection sort (local search is used to derive the selection subalgorithm).
See the paper by Partsch in this volume.

The ilv constructor for sequences has many other applications including
polynomial evaluation, discrete fast fourier transform, and matrix transposi-
tion. Butterfly and shuffle networks are natural architectures for implementing
algorithms based on ilv [6].

6 Concluding Remarks

The Odd-Even sort algorithm is simpler to state than to derive. The properties
of a ilv-based theory of sequences are much harder to understand and develop
than a concatenation-based theory. However, the payoff is an abundance of
algorithms with good parallel properties.

The derivation presented here requires a closer, more intensive development
of the domain theory than most published derivations in the literature. The
development was guided by some higher-level principles – invariance properties,
distributive laws, and monotonicity laws provide most of the inference rules
needed to support algorithm design.

We have used KIDS to derive a variant of the usual sequential mergesort
algorithm [8]. However, simplifying assumptions in the implemented design
tactic for divide-and-conquer disallow the derivation of the ilv-based merge
described in Section 4. We are currently implementing a new algorithm design
system based on [10] which overcomes these (and other) limitations and we see
no essential difficulty in deriving the Odd-Even sort once the domain theory
is place. Support for developing domain theories has not yet received enough
serious attention in KIDS. For some theories, we have used KIDS to derive
almost all of the laws needed to support the algorithm design process; other
theories have been developed entirely by hand. In the current system, the
theory development presented in Sections 3.1 and 4 would be done mostly
manually.

The general message of this paper is that good parallel algorithms can be for-
mally derived and that such derivations depend on the systematic development
of the theory underlying the application domain. Furthermore, machine sup-
port can envisioned for both the theory development and algorithm derivation
processes and this kind of support can be partially demonstrated at present.

Key elements of theory development are (1) defining basic concepts, op-
erations, relations and the laws (axioms) that constrain their interpretation,
(2) developing derived concepts, operations, and relations and important laws
governing their behavior. The principle of seeking properties that are invariant
under change or, conversely, operations that preserve important properties,
provides strong guidance in theory development. In particular, distributive,
monotonicity, and fixpoint laws are especially valuable and machine support
for their acquisition is an important research topic.

14

References

[1] Akl, S. The Design and Analysis of Parallel Algorithms. Prentice-Hall
Inc., Englewood Cliffs, NJ, 1989.

[2] Batcher, K. Sorting networks and their applications. In AFIPS Spring
Joint Computing Conference (1968), vol. 32, pp. 307–314.

[3] Blaine, L., and Goldberg, A. DTRE – a semi-automatic transforma-
tion system. In Constructing Programs from Specifications, B. Möller, Ed.
North-Holland, Amsterdam, 1991, pp. 165–204.

[4] Dowd, M., Perl, Y., Rudolph, L., and Saks, M. The periodic
balanced sorting network. Journal of the ACM 36, 4 (October 1989),
738–757.

[5] Gibbons, A., and Rytter, W. Efficient Parallel Algorithms. Cambridge
University Press, Cambridge, 1988.

[6] Jones, G., and Sheeran, M. Collecting butterflies. Tech. Rep. PRG-91,
Oxford University, Programming Research Group, February 1991.

[7] Leighton, F. Introduction to Parallel Algorithms and Architectures: Ar-
rays, Trees, Hypercubes. Morgan Kaufmann, San Mateo, CA, 1992.

[8] Smith, D. R. Top-down synthesis of divide-and-conquer algorithms. Ar-
tificial Intelligence 27, 1 (September 1985), 43–96. (Reprinted in Readings
in Artificial Intelligence and Software Engineering, C. Rich and R. Waters,
Eds., Los Altos, CA, Morgan Kaufmann, 1986.).

[9] Smith, D. R. Structure and design of problem reduction generators. In
Constructing Programs from Specifications, B. Möller, Ed. North-Holland,
Amsterdam, 1991, pp. 91–124.

[10] Smith, D. R. Constructing specification morphisms. Tech. Rep.
KES.U.92.1, Kestrel Institute, January 1992. in Journal of Symbolic Com-
putation, Special Issue on Automatic Programming, May-June 1993.

[11] Smith, D. R. KIDS – a semi-automatic program development sys-
tem. IEEE Transactions on Software Engineering Special Issue on Formal
Methods in Software Engineering 16, 9 (September 1990), 1024–1043.

[12] Smith, D. R., and Lowry, M. R. Algorithm theories and design tactics.
Science of Computer Programming 14, 2-3 (October 1990), 305–321.

15

