
e-Merge-ANT: November 2000e-Merge-ANT: November 2000
Kestrel Institute

Stephen Fitzpatrick, Cordell Green & Lambert Meertens
http://ants.kestrel.edu/

ANTs PI Meeting, Charleston, SC, 28-30 November 2000

• Status

• Anytime scheduler with anytime graph coloring
• Results using simulator

• Comments on challenge problem

OutlineOutline

2

StatusStatus

+Synthesis

+Analysis of Dynamics

+Scheduler Visualizer

RadSim
(& Hardware)

Informal
Architecture

Specifications

Formal
Resource & Task

Specifications

Anytime
Scheduling
Algorithms

Experiments in Dynamics

Java
Code

Track Analyzer & Visualizer
Communication &
Tracking Skeleton

Current Achievements
+Formalize

Plans

3

Distributed, Anytime ReschedulingDistributed, Anytime Rescheduling

An algorithm for scheduling radar nodes
– meet mission objectives (track targets)
– reduce resource consumption

Operational requirements
– scaleable: complexity independent of number of nodes
– distributed: tolerant of communication latency
– real-time: responds quickly enough to track targets effectively
– robust: degrades gracefully as, e.g., communication or

hardware fails
– incremental: schedules ongoing, dynamic tasks

4

Distributed, Local Repair AlgorithmDistributed, Local Repair Algorithm

Define a distributed set of scheduling processes
– each scheduling process is responsible for some set of local

resources
– schedules for two resources are in conflict if they together

cause a constraint violation

Define neighborhoods
– two resources are neighbors if they interact

• e.g., there is some constraint that relates the two resources

Define local quality metric on schedules
– e.g., number of conflicts at a node

• requires neighbors to inform each other about schedules

5

local repair with improvement

Distributed, Local Repair Algorithm (cont.)Distributed, Local Repair Algorithm (cont.)

Each scheduling process follows an iterative procedure:
– it locally optimizes its own schedule with respect to its

neighbors’ schedules
• e.g., to accommodate new taks & to reduce its conflicts with its

neighbors

– and then informs its neighbors of its new schedule

6

Communication Latency/SynchronizationCommunication Latency/Synchronization

Each scheduling process optimizes its schedule wrt its
neighbors’ schedules
– optimization is based on information at hand
– neighbors may have changed schedules
– an optimization wrt neighbors’ old schedules may be a

degradation wrt actual current schedules
– result is poor convergence

local repair without improvement

100 5
2

5

10

20

50

100

time

unscheduled tasks (%)
asynchronous
sequential

Need to synchronize update & exchange of schedules

7

Totally Sequential Synchronization?Totally Sequential Synchronization?

Extreme case: totally sequential operation across system
– ensures every change is made with up-to-date information
� no change produces a worse schedule

BUT, sequential operation is not scaleable
– at any given time, only one scheduling process throughout the

entire system may update its schedule
– (and communicate the new schedule to its neighbors)

– Complexity ∝ number of nodes

8

Graph Coloring for SynchronizationGraph Coloring for Synchronization

Use graph coloring to achieve sufficient synchronization
– nodes of the (undirected) graph are scheduling processes
– two graph nodes have a connecting edge if they interact
– color the nodes so that no two nodes of the same color have

an edge between them

At any given time, only one color is “active”
– all of the scheduling processes of that color may update
– all other scheduling processes must wait

� Interacting processes (neighbors) cannot change schedules
simultaneously
Require number of colors << number of nodes
– number of colors = number of nodes � sequential operation
– number of colors = 1 � totally parallel operation

9

Graph Coloring: Complexity of SchedulingGraph Coloring: Complexity of Scheduling

Number of scheduling processes: N
Minimum number of colors required: Cmin

N/Cmin scheduling processes can be active simultaneously
– high degree of parallelism

�Complexity independent of size of system

Cmin depends on “interaction topology”
– at most Cmin scheduling processes directly interact
– non-local task structures/constraints give high Cmin

• truly global constraints cause Cmin to be equal to N
• indicative of (theoretically) non-scaleable deployment platform

10

Distributed, Anytime Graph ColoringDistributed, Anytime Graph Coloring

How to compute a coloring in a distributed environment?
Apply similar local repair process to graph coloring:
– a color conflict occurs when two neighboring scheduling

processes have the same color
– each process repeatedly selects that color which (currently)

minimizes its conflicts with its neighbors

Need to address convergence of coloring
– at each stage, use whatever coloring is available to

synchronize coloring process
– even an imperfect coloring reduces the probability of

simultaneous changes offsetting each other

Coloring and scheduling proceed simultaneously
– an imperfect coloring may also be beneficial for the scheduling

process

11

Requirements Met?Requirements Met?

Scaleable? Constant complexity
– complexity is independent of number of nodes

Distributed? Convergence is achieved via coloring
– a high latency will still slow down the processes
– it dictates the cycle time

Real-time? A schedule is always available
– provides real-time framework
– time bounds affect the quality of schedules

Robust? Each scheduling process operates on information
available
– missing information will degrade schedules due to unresolved

resource conflicts
– but some results will still be available

Incremental? Continually reschedules

12

AnalysisAnalysis

To date, analysis is of tracking results
– outstanding objective: analysis of scheduling

Example track
Ground truth: times, position vectors, velocity vectors

G = [ti × gi × ui, i=1..]
Tracker output: times, position vectors, velocity vectors

R = [tk × pk × vk, k=1..nR]
Error vectors (in position)

ek = pk − interpolate(G, tk), k=1..nR

Display color ~ |ek|
green good - red bad

High-error points due to target being “lost”
– time required to reacquire

13

Track DisplayTrack Display

RadSim
Example

Kestrel

14

Analysis: Overall PerformanceAnalysis: Overall Performance

Representative results using simulator
R.M.S. = √(�|ek|

2/nR), k=1..nR
= 3.09 feet

Average beam usage
= total beam seconds/(3 × number of nodes × simulation duration)
= 27%

Communication usage
= 0.9 messages per second per node

15

Analysis: Track AnimationAnalysis: Track Animation

Shows ground truth path
Shows track positions
– sliding/fading window over actual track positions
– linear interpolation between positions (with velocity)
– color coded to show error (linear interpolation)

Shows tracker’s a priori prediction of target path segment
Shows radar beam usage

Implemented in VRML 2.0 for convenience
– allows control of animation speed, direction
– pre-defined and user-controlled viewpoints
– maybe move to Java3D or X3D

16

Track Animation: MovieTrack Animation: Movie
90 second pre-rendered movie shown here
Approximately 5x normal speed

17

Analysis: Tracker GridAnalysis: Tracker Grid

Larger sample size
– 6000 track points

Grid artifact
– Track positions show

correlation with 1 foot × 1 foot
grid used by tracker to
compute target locations that
best match radar
measurements

18

Comments on Challenge Problem Error MetricComments on Challenge Problem Error Metric

Error metric discussed on mailing list
– shortest distance to ground-truth path

√(� distance(G, pk)
2/nR), k=1..nR

Error metric we used
– interpolate ground-truth path using track point’s time

coordinate
√(� |pk - interpolate(G, tk)|

2/nR), k=1..nR

Neither metric takes into account the number of track points
– a track having just one measurement may score highly

Proposal: interpolate both ground and track positions to nI

points evenly spaced over duration of simulation
– approximated path integral

√(� |interpolate(R, tj) - interpolate(G, tj)|
2/ nI), j=1..nI

tj = j × (simulation duration)/nI

19

SummarySummary

Have produced a slice from specification to code
– need to refine the specifications
– and tie them to code using synthesis

Performance of tracker & scheduler seems reasonable
– need to try larger systems with multiple targets

Need further experiments to analyze scheduler performance
– synthesize family of implementations for experimentation

http://ants.kestrel.edu/

20

ReferencesReferences

VRML 2.0 (a.k.a. VRML 97) http://www.vrml.org/
– open, standardized, plain text format for 3D scene description
– animation described using key frame techniques

• e.g., time-position coordinates

• CPU/system speed determines quality of animation (frame rate)
– VRML scene can be viewed using any compliant viewer

• e.g., plugins for Netscape and Internet Explorer

– good 3D graphics card needed for reasonable frame rate (>8 fps)
– never quite reached critical mass, but some stalwarts remain (e.g.,

Parallel Graphics, Blaxxun)
X3D http://www.web3d.org/x3d.html
– open format being developed as replacement for VRML 2.0

Java3D http://www.j3d.org/
– open API for 3D scene construction & viewing in Java
– VRML scene can be viewed using stand-alone applications or

objects/applets embedded in web pages

