
Submitted to:
ACL2 Workshop 2017

c© A. Coglio, M. Kaufmann & E. W. Smith
This work is licensed under the
Creative Commons Attribution License.

A Versatile, Sound Tool for Simplifying Definitions

Alessandro Coglio
Kestrel Institute

3260 Hillview Avenue, Palo Alto, CA 94304, USA
coglio@kestrel.edu

Matt Kaufmann
Department of Computer Science

The University of Texas at Austin, Austin, TX, USA
kaufmann@cs.utexas.edu

Eric W. Smith
Kestrel Institute

3260 Hillview Avenue, Palo Alto, CA 94304, USA
eric.smith@kestrel.edu

We present a tool, simplify-defun, that transforms the definition of a given function into a simpli-
fied definition of a new function, providing a proof checked by ACL2 that the old and new functions
are equivalent. When appropriate it also generates termination and guard proofs for the new func-
tion. We explain how the tool is engineered so that these proofs will succeed. Examples illustrate its
utility, in particular for program transformation in synthesis and verification.

1 Introduction

We present a tool, simplify-defun, that transforms the definition of a given function into a simplified
definition of a new function, providing a proof that the old and new functions are equivalent. When
appropriate it also generates termination and guard proofs for the new function. Since the generated
proofs are submitted to ACL2, simplify-defun need not be trusted: its soundness only depends on the
soundness of ACL2. The new function is a ‘simplified’ version of the original function in much the same
sense that ACL2 ‘simplifies’ terms during proofs — via rewrite, type-set, forward chaining, and linear
arithmetic rules.

Simplify-defun is one of the transformations of APT (Automated Program Transformations) [5],
an ACL2 library of tools to transform programs and program specifications with a high degree of automa-
tion. APT can be used in program synthesis, to derive provably correct implementations from formal
specifications via sequences of refinement steps carried out via transformations. APT can also be used
in program analysis, to help verify existing programs, suitably embedded in the ACL2 logic, by raising
their level of abstraction via transformations that are inverses of the ones used in stepwise program re-
finement. In the APT ecosystem, simplify-defun is useful for simplifying and optimizing definitions
generated by other APT transformations (e.g., transformations that change data representation), as well
as to carry out rewriting transformations via specific sets of rules (e.g., turning unbounded integer oper-
ations into bounded integer operations and vice versa, under suitable conditions). It can also be used to
chain together and propagate sequences of transformations (e.g., rewriting a caller by replacing a callee
with a new version, which may in turn be replaced with an even newer version, and so on).

The idea of using simplification rules to transform programs is not new [7, 2]. The contribution of the
work described in this paper is the realization of that idea in ACL2, which involves techniques that are
specific to this prover and environment and that leverage its existing capabilities and libraries. This paper
could be viewed as a follow-up to an earlier paper on a related tool [6]. But that paper focused largely

http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

2 Simplify-defun

on usage, while here, we additionally focus both on interesting applications and on implementation.1

Moreover, the new tool was implemented from scratch and improves on the old tool in several important
ways, including the following:

• The new tool has significantly more options. Of special note is support for patterns that specify
which subterms of the definition’s body to simplify.

• The new tool has been subjected to a significantly larger variety of uses (approximately 300 uses
as of mid-January 2017, not including artificial tests), illustrating its robustness and flexibility.

• The old tool generated events that were written to a file; calls of the new tool are event forms that
can be placed in a book. (The old tool pre-dated make-event, which is used in the new tool.)

• The new tool takes advantage of the expander in community book misc/expander.lisp, rather
than “rolling its own” simplification. Several recent improvements have been made to that book in
the course of developing simplify-defun, which can benefit other users of the expander.

Simplify-defun may be applied to function symbols that have been defined using defun, possibly
with mutual recursion — perhaps indirectly using a macro, for example, defund or define. An anal-
ogous tool, simplify-defun-sk, may be applied to function symbols defined with defun-sk, but we
do not discuss it here.

Notice the underlining above. Throughout this paper, we underline hyperlinks to topics in the online
documentation [1] for ACL2 and its books. We use ACL2 notation freely, abbreviating with an ellipsis
(...) to indicate omitted text and sometimes modifying whitespace in displayed output.

The rest of this section introduces simplify-defun via some very simple examples that illustrate
the essence of the tool. Section 2 presents some examples of the tool’s use in program transformation;
that section provides motivation for some of the features supported by simplify-defun. Section 3
summarizes options for controlling this tool. In Section 4 we discuss how simplify-defun circumvents
ACL2’s mercurial heuristics and sensitivity to theories so that proofs succeed reliably and automatically.
We conclude in Section 5.

1.1 Simple Illustrative Examples

We start with a very simple example that captures much of the essence of simplify-defun.

(include-book "simplify-defun")

(defun f (x)

(if (zp x) 0 (+ 1 1 (f (+ -1 x)))))

Next, we run simplify-defun to produce a new definition and a defthm with the formula shown below.
Note: All defun forms generated by simplify-defun contain declare forms, which are generally
omitted in this paper; also, whitespace is liberally edited.

ACL2 !>(simplify-defun f)

(DEFUN F{1} (X)

(IF (ZP X) 0 (+ 2 (F{1} (+ -1 X)))))

ACL2 !>:pf f-becomes-f{1}

(EQUAL (F X) (F{1} X))

ACL2 !>

1We thank the reviewers of the previous paper for suggesting further discussion of implementation. In a sense, we are finally
getting around to that!

http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____MAKE-EVENT
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____DEFUND
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____DEFINE
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____DEFUN-SK
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____THEORIES
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____DECLARE

A. Coglio, M. Kaufmann & E. W. Smith 3

Several key aspects of a successful simplify-defun run are illustrated above:

• A new function symbol is defined, using the numbered-names utilities.

• The body of the new definition is a simplified version of the body of the original definition, but
with the old function replaced by the new in recursive calls.

• A ‘becomes’ theorem is proved, which states the equivalence of the old and new function.

This behavior of simplify-defun extends naturally to mutual recursion, in which case a new
mutual-recursion event is generated together with ‘becomes’ theorems. Consider this definition.

(mutual-recursion

(defun f1 (x) (if (consp x) (not (f2 (nth 0 x))) t))

(defun f2 (x) (if (consp x) (f1 (nth 0 x)) t)))

The result presents no surprises when compared to our first example.

ACL2 !>(simplify-defun f1)

(MUTUAL-RECURSION (DEFUN F1{1} (X)

(IF (CONSP X) (NOT (F2{1} (CAR X))) T))

(DEFUN F2{1} (X)

(IF (CONSP X) (F1{1} (CAR X)) T)))

ACL2 !>:pf f1-becomes-f1{1}

(EQUAL (F1 X) (F1{1} X))

ACL2 !>:pf f2-becomes-f2{1}

(EQUAL (F2 X) (F2{1} X))

ACL2 !>

Simplify-defun makes some attempt to preserve structure from the original definitions. For ex-
ample, the body of the definition of f1 (above) is stored, as usual, as a translated term. As with most
utilities that manipulate ACL2 terms, simplify-defun operates on translated terms. So the new defun

event form could easily use the transformed body, shown here; notice that T is quoted.

ACL2 !>(body ’f1{1} nil (w state))

(IF (CONSP X) (NOT (F2{1} (CAR X))) ’T)

ACL2 !>

If we naively produced a user-level (untranslated) term from that body, the result would look quite dif-
ferent from the original definition’s body.

ACL2 !>(untranslate (body ’f1{1} nil (w state)) nil (w state))

(OR (NOT (CONSP X)) (NOT (F2{1} (CAR X))))

ACL2 !>

Therefore, simplify-defun uses the directed-untranslate utility to untranslate the new (trans-
lated) body, heuristically using the old body (translated and untranslated) as a guide. This utility was
implemented in support of simplify-defun, but it is of more general use (e.g., in other APT transfor-
mations).

There are many ways to control simplify-defun by using keyword arguments, as described in the
next two sections. Here we show how to limit simplification to specified subterms. Consider:

http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____NUMBERED-NAMES
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____MUTUAL-RECURSION
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____TERM
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____UNTRANSLATE
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____DIRECTED-UNTRANSLATE

4 Simplify-defun

(defun g (x y)

(list (+ (car (cons x y)) 3)

(* (car (cons y y)) 4)

(* (car (cons x y)) 5)))

The :simplify-body keyword option below specifies simplification of any occurrence of (car (cons

x y)) that is the first argument of a call to *. The wrapper :@ indicates the simplification site, and the
underscore (_) matches anything. Notice that, in the result, only the indicated call is simplified.

ACL2 !>(simplify-defun g :simplify-body (* (:@ (car (cons x y))) _))

(DEFUN G{1} (X Y)

(LIST (+ (CAR (CONS X Y)) 3)

(* (CAR (CONS Y Y)) 4)

(* X 5)))

ACL2 !>

2 Some Applications

This section presents some practical examples of use of simplify-defun in program transformation.
They use some keyword options, which are described in Section 3 but we hope are self-explanatory here.
Not shown here are hints generated by simplify-defun to automate proofs, for example by reusing
previous guards, measures, and guard and termination theorems; this is covered briefly in subsequent
sections.

2.1 Combining a Filter with a Doubly-Recursive Producer

This example shows how simplify-defun is used to apply rewrite rules, to improve the results of
other transformations, and to chain together previous transformation steps. The main function f below
produces all pairs of items from x and y and then filters the result to keep only the “good” pairs.

(defun pair-with-all (item lst) ;; pair ITEM with all elements of LST

(if (endp lst)

nil

(cons (cons item (car lst))

(pair-with-all item (cdr lst)))))

(defun all-pairs (x y) ;; make all pairs of items from X and Y

(if (endp x)

nil

(append (pair-with-all (car x) y)

(all-pairs (cdr x) y))))

(defstub good-pair-p (pair) t) ;; just a place holder

(defun keep-good-pairs (pairs)

(if (endp pairs)

nil

A. Coglio, M. Kaufmann & E. W. Smith 5

(if (good-pair-p (car pairs))

(cons (car pairs) (keep-good-pairs (cdr pairs)))

(keep-good-pairs (cdr pairs)))))

(defun f (x y) (keep-good-pairs (all-pairs x y)))

We wish to make f more efficient; it should refrain from ever adding non-good pairs to the re-
sult, rather than filtering them out later. F’s body is (keep-good-pairs (all-pairs x y)), which
we can improve by “pushing” keep-good-pairs into the if-branches of all-pairs, using APT’s
wrap-output transformation (not described here). Wrap-output produces a function and a theorem.

(DEFUN ALL-GOOD-PAIRS (X Y) ; generated by wrap-output

(IF (ENDP X)

(KEEP-GOOD-PAIRS NIL)

(KEEP-GOOD-PAIRS (APPEND (PAIR-WITH-ALL (CAR X) Y)

(ALL-PAIRS (CDR X) Y)))))

(DEFTHM RULE1 ; generated by wrap-output

(EQUAL (KEEP-GOOD-PAIRS (ALL-PAIRS X Y))

(ALL-GOOD-PAIRS X Y)))

Below, we will apply rule1 to simplify f. But first we will further transform all-good-pairs.
It can be simplified in three ways. First, (keep-good-pairs nil) can be evaluated. Second, we can
push the call to keep-good-pairs over the append using this rule.

(defthm keep-good-pairs-of-append

(equal (keep-good-pairs (append x y))

(append (keep-good-pairs x) (keep-good-pairs y))))

Third, note that all-good-pairs, despite being a transformed version of all-pairs, is not recur-
sive (it calls the old function all-pairs), but we want it to be recursive. After keep-good-pairs is
pushed over the append, it will be composed with the call of all-pairs, which is the exact pattern that
rule1 can rewrite to a call to all-good-pairs. Simplify-defun applies these simplifications.

ACL2 !>(simplify-defun all-good-pairs)

(DEFUN ALL-GOOD-PAIRS{1} (X Y)

(IF (ENDP X)

NIL

(APPEND (KEEP-GOOD-PAIRS (PAIR-WITH-ALL (CAR X) Y))

(ALL-GOOD-PAIRS{1} (CDR X) Y))))

ACL2 !>

Note that the new function is recursive. This is because rule1 introduced a call to all-good-pairs,
which simplify-defun then renamed to all-good-pairs{1} (it always renames recursive calls).
We have made some progress pushing keep-good-pairs closer to where the pairs are created. Now,
all-good-pairs{1} can be further simplified. Observe that its body contains composed calls of
keep-good-pairs and pair-with-all. We can optimize this term using APT’s producer-consumer
transformation (not described here) to combine the creation of the pairs with the filtering of good pairs.
As usual, a new function and a theorem are produced.

6 Simplify-defun

(DEFUN PAIR-WITH-ALL-AND-FILTER (ITEM LST) ; generated by producer-consumer

(IF (ENDP LST)

NIL

(IF (GOOD-PAIR-P (CONS ITEM (CAR LST)))

(CONS (CONS ITEM (CAR LST))

(PAIR-WITH-ALL-AND-FILTER ITEM (CDR LST)))

(PAIR-WITH-ALL-AND-FILTER ITEM (CDR LST)))))

(DEFTHM RULE2 ; generated by producer-consumer

(EQUAL (KEEP-GOOD-PAIRS (PAIR-WITH-ALL ITEM LST))

(PAIR-WITH-ALL-AND-FILTER ITEM LST)))

Pair-with-all-and-filter immediately discards non-good pairs, saving work compared to fil-
tering them out later. Now simplify-defun can change all-good-pairs{1} by applying rule2.

ACL2 !>(simplify-defun all-good-pairs{1})

(DEFUN ALL-GOOD-PAIRS{2} (X Y)

(IF (ENDP X)

NIL

(APPEND (PAIR-WITH-ALL-AND-FILTER (CAR X) Y)

(ALL-GOOD-PAIRS{2} (CDR X) Y))))

ACL2 !>

Finally, we apply simplify-defun to transform f by applying all of the preceding rewrites in
succession, introducing all-good-pairs, which is in turn replaced with all-good-pairs{1} and
then all-good-pairs{2}.

ACL2 !>(simplify-defun f :new-name f-fast)

(DEFUN F-FAST (X Y)

(ALL-GOOD-PAIRS{2} X Y))

ACL2 !>:pf f-becomes-f-fast

(EQUAL (F X Y) (F-FAST X Y))

This builds a fast version of f and a theorem proving it equal to f.

2.2 Converting between Unbounded and Bounded Integer Operations

Popular programming languages like C and Java typically use bounded integer types and operations,
while requirements specifications typically use unbounded integer types and operations. Thus, synthe-
sizing a C or Java program from a specification, or proving that a C or Java program complies with a
specification, often involves showing that unbounded and bounded integers are “equivalent” under the
preconditions stated by the specification.

Consider this Java implementation of Bresenham’s line drawing algorithm [3] for the first octant.2

// draw a line from (0, 0) to (a, b), where 0 <= b <= a <= 1,000,000:

static void drawLine(int a, int b) {

2This algorithm computes a best-fit discrete line using only integer operations. Understanding the algorithm is not necessary
for the purpose of this simplify-defun example.

A. Coglio, M. Kaufmann & E. W. Smith 7

int x = 0, y = 0, d = 2 * b - a;

while (x <= a) {

drawPoint(x, y); // details unimportant

x++;

if (d >= 0) { y++; d += 2 * (b - a); }

else { d += 2 * b; }

}

}

Assuming the screen width and height are less than 1,000,000 pixels, none of the two’s complement
32-bit integer operations in the Java method wrap around. So they could be replaced with corresponding
unbounded integer operations, as shown below. This replacement raises the level of abstraction and helps
verify the functional correctness of the method.

The Java code above can be represented as shown below in ACL2 (see the paper’s supporting mate-
rials for full details), where:

• Int32p recognizes some representation of Java’s two’s complement 32-bit integers, whose details
are unimportant.

• Int32 converts an ACL2 integer in [−231,231) (i.e., an x such that (signed-byte-p 32 x)

holds) to the corresponding representation in int32p.

• Int converts a representation in int32p to the corresponding ACL2 integer in [−231,231).

• Add32, sub32, and mul32 represent Java’s two’s complement 32-bit addition, subtraction, and
multiplication operations.

• Lte32 and gte32 represent Java’s two’s complement 32-bit less-than-or-equal-to and greater-than-
or-equal-to operations.

• Drawline-loop represents the loop as a state transformer, whose state consists of a, b, x, y, d, and
the screen. This function is “defined” only where the loop invariant holds. The guard verification
of this function implies the preservation of the loop invariant.

• Drawline represents the method as a function that maps a, b, and the current screen to an updated
screen. This function is “defined”only where the precondition holds. The guard verification of this
function implies the establishment of the loop invariant.

The Axe tool [8] can automatically generate a representation similar to this one from Java (byte)code,
with some additional input from the user (e.g., part of the loop invariant).

(defun drawpoint (x y screen)

(declare (xargs :guard (and (int32p x) (int32p y))))

...) ; returns updated screen, details unimportant

(defun precond (a b) ; precondition of the method

(declare (xargs :guard t))

(and (int32p a) ; Java type of a

(int32p b) ; Java type of b

(<= 0 (int b))

(<= (int b) (int a))

8 Simplify-defun

(<= (int a) 1000000)))

(defun invar (a b x y d) ; loop invariant of the method

(declare (xargs :guard t))

(and (precond a b)

(int32p x) ; Java type of x

(int32p y) ; Java type of y

(int32p d) ; Java type of d

...)) ; conditions on x, y, and d, details unimportant

(defun drawline-loop (a b x y d screen) ; loop of the method

(declare (xargs :guard (invar a b x y d)

...)) ; measure and (guard) hints, details unimportant

(if (invar a b x y d)

(if (not (lte32 x a))

screen ; exit loop

(drawline-loop a b

(add32 x (int32 1))

(if (gte32 d (int32 0))

(add32 y (int32 1))

y)

(if (gte32 d (int32 0))

(add32 d (mul32 (int32 2) (sub32 b a)))

(add32 d (mul32 (int32 2) b)))

(drawpoint x y screen)))

:undefined))

(defun drawline (a b screen) ; method

(declare (xargs :guard (precond a b)

...)) ; guard hints, details unimportant

(if (precond a b)

(drawline-loop a b

(int32 0) ; x

(int32 0) ; y

(sub32 (mul32 (int32 2) b) a) ; d

screen)

:undefined))

The following rewrite rules are disabled because their right-hand sides are not generally “simpler”
or “better” than their left-hand sides. But when passed to the :enable option of simplify-defun,
which instructs the tool to use these rules in the expander, they systematically replace bounded integer
operations with their unbounded counterparts.

(defthmd add32-to-+ (equal (add32 x y) (int32 (+ (int x) (int y)))))

(defthmd sub32-to-- (equal (sub32 x y) (int32 (- (int x) (int y)))))

(defthmd mul32-to-- (equal (mul32 x y) (int32 (* (int x) (int y)))))

(defthmd lte32-to-<= (equal (lte32 x y) (<= (int x) (int y))))

A. Coglio, M. Kaufmann & E. W. Smith 9

(defthmd gte32-to-<= (equal (gte32 x y) (>= (int x) (int y))))

Since these rewrite rules are unconditional, the replacement always occurs, but subterms of the
form (int (int32 ...)) are generated. For instance, the term (add32 d (mul32 (int32 2) b))

above becomes (int32 (+ (int d) (int (int32 (* (int (int32 2)) (int b)))))). These
(int (int32 ...)) terms can be simplified via the following conditional rewrite rule (which the ex-
pander in simplify-defun uses by default, since it is an enabled rule). Relieving the hypotheses of
this rewrite rule’s applicable instances amounts to showing that each bounded integer operation does not
wrap around in the expressions under consideration.

(defthm int-of-int32

(implies (signed-byte-p 32 x)

(equal (int (int32 x)) x)))

Applying simplify-defun to drawline-loop and drawline yields the desired results. In this
case, the int-of-int32 hypotheses are automatically relieved. These uses of simplify-defun show
a practical use of the pattern feature: invar and precond must be enabled to relieve the int-of-int32
hypotheses, but we want the generated function to keep them unopened; so we use a pattern that lim-
its the simplification to the true branches of the ifs. The ‘becomes’ theorem generated by the first
simplify-defun is used by the second to have drawline{1} call drawline-loop{1} instead of
drawline-loop; this is another example of propagating transformations.

ACL2 !> (simplify-defun drawline-loop

:simplify-body (if _ @ _)

:enable (add32-to-+ ... gte32-to->=))

(DEFUN DRAWLINE-LOOP{1} (A B X Y D SCREEN)

(DECLARE ...)

(IF (INVAR A B X Y D)

(IF (NOT (< (INT A) (INT X)))

(DRAWLINE-LOOP{1} A B

(INT32 (+ 1 (INT X)))

(IF (< (INT D) 0)

Y

(INT32 (+ 1 (INT Y))))

(IF (< (INT D) 0)

(INT32 (+ (INT D) (* 2 (INT B))))

(INT32 (+ (INT D)

(- (* 2 (INT A)))

(* 2 (INT B)))))

(DRAWPOINT X Y SCREEN))

SCREEN)

:UNDEFINED))

ACL2 !> (simplify-defun drawline

:simplify-body (if _ @ _)

:enable (add32-to-+ ... gte32-to->=))

(DEFUN DRAWLINE{1} (A B SCREEN)

(DECLARE ...)

(IF (PRECOND A B)

10 Simplify-defun

(DRAWLINE-LOOP{1} A B

(INT32 0)

(INT32 0)

(INT32 (+ (- (INT A)) (* 2 (INT B))))

SCREEN)

:UNDEFINED))

ACL2 !>

The resulting expressions have the int conversion at the variable leaves and the int32 conversion at
the roots. APT’s isomorphic data transformation (not discussed here) can eliminate them by changing the
data representation of the functions’ arguments, generating functions that no longer deal with bounded
integers. The resulting functions are more easily proved to satisfy the high-level functional specification
of the algorithm, namely that it produces a best-fit discrete line (this proof is not discussed here).

The bounded-to-unbounded operation rewriting technique shown here, followed by the isomorphic
data transformation mentioned above, should have general applicability. Proving that bounded integer
operations do not wrap around may be arbitrarily hard: when the int-of-int32 hypotheses cannot
be relieved automatically, the user may have to prove lemmas to help simplify-defun. When a Java
computation is supposed to wrap around (e.g., when calculating a hash), the specification must explicitly
say that, and slightly different rewrite rules may be needed. When synthesizing code (as opposed to
analyzing code as in this example), it should be possible to use a similar technique with rewrite rules that
turn unbounded integer operations into their bounded counterparts, “inverses” of the rules add32-to-+,
sub32-to--, etc.

3 Options

This section very briefly summarizes the keyword arguments of simplify-defun. Here we assume that
the given function’s definition is not mutually recursive; for that case and other details, see the XDOC
topic for simplify-defun, provided by the supporting materials.

Assumptions. A list of assumptions under which the body is simplified can be specified by the
:assumptions keyword. Or, keyword :hyp-fn can specify the assumptions using a function symbol.

Controlling the Result. By default, the new function symbol is disabled if and only if the input func-
tion symbol is disabled. However, that default can be overridden with keyword :function-disabled.
Similarly, the measure, guard verification, and non-executability status come from the old function
symbol but can be overridden by keywords :measure, :verify-guards, and :non-executable,
respectively. The ‘becomes’ theorem is enabled by default, but this can be overridden by keyword
:theorem-disabled. Keywords can also specify the names for the new function symbol (:new-name)
and ‘becomes’ theorem (:theorem-name). The new function body is produced, by default, using the
directed-untranslate utility (see Section 1); but keyword :untranslate can specify to use the
ordinary untranslate operation or even to leave the new body in translated form. Finally, by default the
new function produces results equal to the old; however, an equivalence relation between the old and new
results can be specified with keyword :equiv, which is used in the statement of the ‘becomes’ theorem.

Specifying Theories. The :theory keyword specifies the theory to be used when simplifying the
definition; alternatively, :disable and :enable keywords can be used for this purpose. Keyword
:expand can be used with any (or none) of these to specify terms to expand, as with ordinary :expand

hints for the prover. Similarly, there are keywords :assumption-theory, :assumption-disable,
and :assumption-enable for controlling the theory used when proving that assumptions are preserved

http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____XDOC
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____DISABLE
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____ENABLE
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____DIRECTED-UNTRANSLATE

A. Coglio, M. Kaufmann & E. W. Smith 11

by recursive calls (an issue discussed in Section 4.3). There are also keywords :measure-hints and
:guard-hints with the obvious meanings.

Specifying Simplification. By default, simplify-defun attempts to simplify the body of the given
function symbol, but not its guard or measure. Keywords :simplify-body, :simplify-guard, and
:simplify-measure can override that default behavior. By default, simplify-defun fails if it at-
tempts to simplify the body but fails to do so, though there is no such requirement for the guard or
measure; keyword :must-simplify can override those defaults.

Output Options. The keyword :show-only causes simplify-defun not to change the world,
but instead to show how it expands into primitive events (see Section 4). If :show-only is nil (the
default), then by default, the new definition is printed when simplify-defun is successful; keyword
:print-def can suppress that printing. Finally, a :verbose option can provide extra output.

4 Implementation

Simplify-defun is designed to apply the expander, specifically, function tool2-fn in community
book misc/expander.lisp, which provides an interface to the ACL2 rewriter in a context based on
the use of forward-chaining and linear arithmetic. The goal is to simplify the definition as specified and
to arrange that all resulting proofs succeed fully automatically and quickly.

This section discusses how simplify-defun achieves this goal, with a few (probably infrequent)
exceptions in the case of proofs for guards, termination, or (discussed below) that assumptions are pre-
served by recursive calls. First, we explain the full form generated by a call of simplify-defun, which
we call its expansion; this form carefully orchestrates the proofs. Then we dive deeper by exploring the
proof of the ‘becomes’ theorem, focusing on the use of functional instantiation. Next we see how the
expansion is modified when assumptions are used. Finally we provide a few brief implementation notes.

One can experiment using the supporting materials: see the book simplify-defun-tests.lisp;
or simply include the book simplify-defun, define a function f, and then evaluate (simplify-defun
f :show-only t), perhaps adding options, to see the expansion.

The implementation takes advantage of many features offered by ACL2 for system building (beyond
its prover engine), including for example encapsulate, make-event, with-output. We say a bit
more about this at the end of the section.

4.1 The Simplify-defun Expansion

We illustrate the expansion generated by simplify-defun using the following definition, which is the
first example of Section 1 but with a guard added.

(defun f (x)

(declare (xargs :guard (natp x)))

(if (zp x) 0 (+ 1 1 (f (+ -1 x)))))

The expansion is an encapsulate event. We can see the expansion by evaluating the form (simplify-

defun f :show-only t), which includes the indicated four sections to be discussed below.

(encapsulate nil

prelude

new defun form

(local (progn local events))

‘becomes’ theorem)

http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/?topic=ACL2____WORLD
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____ENCAPSULATE
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____MAKE-EVENT
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____WITH-OUTPUT
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____ENCAPSULATE

12 Simplify-defun

4.1.1 Prelude

The prelude is mostly independent of f, but the name of f is supplied to install-not-normalized.

(SET-INHIBIT-WARNINGS "theory")

(SET-IGNORE-OK T)

(SET-IRRELEVANT-FORMALS-OK T)

(LOCAL (INSTALL-NOT-NORMALIZED F))

(LOCAL (SET-DEFAULT-HINTS NIL))

(LOCAL (SET-OVERRIDE-HINTS NIL))

The first form above avoids warnings due to the use of small theories for directing the prover. The
next two forms allow simplification to make some formals unused or irrelevant in the new definition. The
use of install-not-normalized is a bit subtle perhaps, but not complicated: by default, ACL2 stores
a simplified, or normalized, body for a function symbol, but simplify-defun is intended to generate
a definition based on the body b of the old definition as it was submitted, not on the normalization of b.
Using install-not-normalized arranges that :expand hints for f will use the unnormalized body.
This supports the proofs generated by simplify-defun, by supporting reasoning about the unnormal-
ized bodies of both the old and new functions. Finally, the last two forms guarantee that the global
environment will not sabotage the proof.

Space does not permit discussion of the handling of mutual-recursion. We mention here only
that the form (SET-BOGUS-MUTUAL-RECURSION-OK T) is then added to the prelude, in case some of
the (mutual) recursion disappears with simplification.

4.1.2 New Defun Form

The following new definition has the same simplified body as for the corresponding example in Section 1.
As before, the new body is produced by running the expander on the unnormalized body of f.

(DEFUN F{1} (X)

(DECLARE (XARGS :NORMALIZE NIL

:GUARD (NATP X)

:MEASURE (ACL2-COUNT X)

:VERIFY-GUARDS T

:GUARD-HINTS (("Goal" :USE (:GUARD-THEOREM F)) ...)

:HINTS (("Goal" :USE (:TERMINATION-THEOREM F)) ...)))

(IF (ZP X) 0 (+ 2 (F{1} (+ -1 X)))))

The guard and measure are (by default) inherited from f. Since f is guard-verified, then by default, so
is the new function. The uses of :GUARD-THEOREM and :TERMINATION-THEOREM are designed to make
the guard and termination proofs automatic and fast in most cases, and were implemented in support of
the APT project.

4.1.3 Local Events

The local events are how simplify-defun carefully arranges for proofs to succeed automatically and
fast, in most cases. The first local event defines a theory to be used when proving equality of the body
of f with a simplified version. It is the union of the runes reported by the expander when simplifying

http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____INSTALL-NOT-NORMALIZED
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____NORMALIZE
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____MUTUAL-RECURSION
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____GUARD
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____MEASURE
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____GUARD-THEOREM
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____TERMINATION-THEOREM
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____THEORY
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____RUNES

A. Coglio, M. Kaufmann & E. W. Smith 13

the body, with the set of all :congruence and :equivalence runes, since these are not tracked by the
ACL2 rewriter.3

(MAKE-EVENT (LET ((THY (UNION-EQUAL ’((:REWRITE FOLD-CONSTS-IN-+)

(:EXECUTABLE-COUNTERPART BINARY-+)

(:DEFINITION SYNP))

(CONGRUENCE-THEORY (W STATE)))))

(LIST ’DEFCONST ’*F-RUNES* (LIST ’QUOTE THY))))

The second local event proves the equality of the body with its simplified version. Notice that the
latter is still in terms of f; the new function symbol, f{1}, will be introduced later. The proof-builder
:instructions are carefully generated to guarantee that the proof succeeds; in this simple example,
they first put the proof-builder in the smallest theory that should suffice (for efficiency), then simplify the
old body (the first argument of the equal call), and then prove the resulting equality (which at that point
should be the equality of two identical terms).

(DEFTHM F-BEFORE-VS-AFTER-0

(EQUAL (IF (ZP X) 0 (+ 1 1 (F (+ -1 X))))

(IF (ZP X) 0 (+ 2 (F (+ -1 X)))))

:INSTRUCTIONS ...

:RULE-CLASSES NIL)

The third local event is as follows.

(COPY-DEF F{1}

:HYPS-FN NIL

:HYPS-PRESERVED-THM-NAMES NIL

:EQUIV EQUAL)

This macro call introduces a constrained function symbol, f{1}-copy, whose constraint results from
the definitional axiom for f{1} by replacing f{1} with f{1}-copy. It also proves the two functions
equivalent using a trivial induction in a tiny theory, to make the proof reliable and fast.

(DEFTHM F{1}-COPY-DEF

(EQUAL (F{1}-COPY X)

(IF (ZP X)

’0

(BINARY-+ ’2 (F{1}-COPY (BINARY-+ ’-1 X)))))

:HINTS ...

:RULE-CLASSES ((:DEFINITION :INSTALL-BODY T

:CLIQUE (F{1}-COPY)

:CONTROLLER-ALIST ((F{1}-COPY T)))))

(LOCAL (IN-THEORY ’((:INDUCTION F{1}) F{1}-COPY-DEF (:DEFINITION F{1}))))

3We originally generated a form (defconst *f-runes* ...) that listed all runes from the union-equal call; but
the congruence theory made that list long and distracting when viewing the expansion with :show-only t. Note that the
congruence theory includes :equivalence runes, which after all represent congruence rules for diving into calls of equivalence
relations.

http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____CONGRUENCE
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____EQUIVALENCE
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____PROOF-BUILDER

14 Simplify-defun

(DEFTHM F{1}-IS-F{1}-COPY

(EQUAL (F{1} X) (F{1}-COPY X))

:HINTS (("Goal" :INDUCT (F{1} X)))

:RULE-CLASSES NIL)

The last local event is the lemma for proving the ‘becomes’ theorem. In Section 4.2 below we explore
this use of functional instantiation.

(DEFTHM F-BECOMES-F{1}-LEMMA

(EQUAL (F{1} X) (F X))

:HINTS (("Goal"

:BY (:FUNCTIONAL-INSTANCE F{1}-IS-F{1}-COPY (F{1}-COPY F))

:IN-THEORY (UNION-THEORIES (CONGRUENCE-THEORY WORLD)

(THEORY ’MINIMAL-THEORY)))

’(:USE (F-BEFORE-VS-AFTER-0 F$NOT-NORMALIZED))))

4.1.4 ‘Becomes’ Theorem

The ‘becomes’ theorem in this example states the same theorem as its lemma above (though we will see
in Section 4.3 that this is not always be the case). The :in-theory hint serves to keep the ACL2 rewriter
from bogging down during the proof.

(DEFTHM F-BECOMES-F{1}

(EQUAL (F X) (F{1} X))

:HINTS (("Goal" :USE F-BECOMES-F{1}-LEMMA :IN-THEORY NIL)))

4.2 Proving the ‘Becomes’ Theorem

Next we see how functional instantiation is used in proving the ‘becomes’ theorem above, or more
precisely, its local lemma. Recall that above, a :by hint is used that replaces f{1}-copy by f in the
lemma f{1}-is-f{1}-copy, (EQUAL (F{1} X) (F{1}-COPY X)), to prove: (EQUAL (F X) (F{1}
X)). That substitution works perfectly (modulo commuting the equality, which the :by hint tolerates),
but it requires proving the following property, which states that f satisfies the constraint for f{1}-copy.

(EQUAL (f X)

(IF (ZP X)

’0

(BINARY-+ ’2 (f (BINARY-+ ’-1 X)))))

But the right-hand side is exactly what was produced by applying the expander to the body of f. If we
look at the :hints in f-becomes-f{1}-lemma above, we see that after using functional instantiation
(with the :by hint), a computed hint completes the proof by using two facts: f-before-vs-after-0
(the second local lemma above), which equates the two bodies; and f$not-normalized, which equates
f with its unnormalized (i.e., user-supplied) body. The latter was created in the prelude (Section 4.1.1)
by the form (install-not-normalized f). Notice that no proof by induction was performed for the
‘becomes’ theorem (or its local lemma), even though it is inherently an inductive fact stating the equiv-
alence of recursive functions f and f{1}. We are essentially taking advantage of the trivial induction
already performed in the proof of the lemma being functionally instantiated, f{1}-is-f{1}-copy.

http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____BY

A. Coglio, M. Kaufmann & E. W. Smith 15

4.3 Assumptions

The following trivial example shows how assumptions change the simplify-defun expansion.

(defun foo (x)

(declare (xargs :guard (true-listp x)))

(if (consp x)

(foo (cdr x))

x))

Under the :assumption of the guard, (true-listp x), the variable x in the body is simplified to the
constant nil, using its context (not (consp x)).

ACL2 !>(simplify-defun foo :assumptions :guard :show-only t)

(ENCAPSULATE NIL

prelude (as before)

; new defun form:

(DEFUN FOO{1} (X)

(IF (CONSP X) (FOO{1} (CDR X)) NIL))

(LOCAL (PROGN local events)) ; discussed below

; ‘becomes’ theorem:

(DEFTHM FOO-BECOMES-FOO{1}
(IMPLIES (TRUE-LISTP X)

(EQUAL (FOO X) (FOO{1} X)))

:HINTS ...)

ACL2 !>

This time, the ‘becomes’ theorem has a hypothesis provided by the :assumptions.
We next discuss some differences in the local events generated when there are assumptions. A

new local event defines a function for the assumptions, so that when the assumptions are complicated,
disabling that function can hide complexity from the rewriter.

(DEFUN FOO-HYPS (X) (TRUE-LISTP X))

In order to prove equivalence of the old and new functions, which involves a proof by induction at
some point, it is necessary to reason that the assumptions are preserved by recursive calls. The following
local lemma is generated for that purpose.

(DEFTHM FOO-HYPS-PRESERVED-FOR-FOO

(IMPLIES (AND (FOO-HYPS X) (CONSP X))

(FOO-HYPS (CDR X)))

:HINTS (("Goal" :IN-THEORY (DISABLE* FOO (:E FOO) (:T FOO))

:EXPAND ((:FREE (X) (FOO-HYPS X)))

:USE (:GUARD-THEOREM FOO)))

:RULE-CLASSES NIL)

In many cases the proof of such a lemma will be automatic. Otherwise, one can first define foo-hyps

and prove this lemma before running simplify-defun.
There are some tricky wrinkles in the presence of assumptions that we do not discuss here, in

particular how they can affect the use of copy-def (discussed above in Section 4.1.3). Some rel-
evant discussion may be found in the “Essay on the Implementation of Simplify-defun” in the file
simplify-defun.lisp.

16 Simplify-defun

4.4 Implementation Notes

The discussion above explains the expansion from a call of simplify-defun. Here we discuss at a high
level how such forms are generated. Consider the first example from the introduction, below, and let us
see its single-step macroexpansion.

(defun f (x)

(if (zp x) 0 (+ 1 1 (f (+ -1 x)))))

ACL2 !>:trans1 (simplify-defun f)

(WITH-OUTPUT :GAG-MODE NIL :OFF :ALL :ON ERROR

(MAKE-EVENT (SIMPLIFY-DEFUN-FN ’F ’NIL ’NIL ’:NONE ... STATE)))

ACL2 !>

This use of with-output prevents output unless there is an error. The make-event call instructs
simplify-defun-fn to produce an event of the form (progn E A (value-triple ’D)), where
E is the expansion, A is a table event provided to support redundancy for simplify-defun, and D is
the new definition (which is thus printed to the terminal). Simplify-defun-fn first calls the expander to
produce a simplified body, which it then uses to create D and E. For details see simplify-defun.lisp
in the supporting materials, which we hope is accessible to those having a little familiarity with ACL2
system programming (see for example system-utilities and programming-with-state). These details help
proofs to succeed efficiently, in particular by generating suitable hints, including small theories. Another
detail is that if the old definition specifies ruler-extenders other than the default, then these are carried
over to the new definition.

5 Conclusion

The use of simplification, particularly rewrite rules, is an old and important idea in program transforma-
tion. Simplify-defun realizes this idea in ACL2, by leveraging the prover’s existing proof procedures,
libraries, and environment. It is one of the transformations of the APT tool suite for transforming pro-
grams and program specifications, useful for both synthesis and verification. While simplify-defun

is appropriate for equivalence-preserving refinements, other APT transformations are appropriate for
other kinds of refinement. For instance, specifications that allow more than one implementation (see [4,
Section 2] for an example) can be refined via APT’s narrowing transformation (not discussed here).

We have used simplify-defun quite extensively in program derivations, demonstrating its robust-
ness and utility. This paper describes not only the general usage of simplify-defun, but also ACL2-
specific techniques used to implement it. It also shows some non-trivial examples that illustrate the tool’s
utility.

The tool continues to evolve. Developments since the drafting of this paper include: delaying guard
verification; and expanding all LET expressions, but reconstructing them with directed-untranslate.
These enhancements and others will be incorporated into simplify-defun when we add it, soon, to the
community books, located somewhere under books/kestrel.

Acknowledgments

This material is based upon work supported in part by DARPA under Contract No. FA8750-15-C-0007.
We thank the referees, all of whom gave very helpful feedback that we incorporated.

http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____WITH-OUTPUT
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____MAKE-EVENT
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____TABLE
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____SYSTEM-UTILITIES
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____PROGRAMMING-WITH-STATE
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____RULER-EXTENDERS

A. Coglio, M. Kaufmann & E. W. Smith 17

References
[1] ACL2 Community (accessed December, 2016): ACL2+Books Documentation. See URL http://www.cs.

utexas.edu/~moore/acl2/manuals/current/manual?topic=ACL2____ACL2.
[2] Richard S. Bird & Oege de Moor (1997): Algebra of programming. Prentice Hall International series in

computer science, Prentice Hall.
[3] Jack Bresenham (1965): Algorithm for Computer Control of a Digital Plotter. IBM Systems Journal 4(1), pp.

25–30, doi:10.1147/sj.41.0025.
[4] Alessandro Coglio (2015): Second-Order Functions and Theorems in ACL2. In: Proceedings of the Thirteenth

International Workshop on the ACL2 Theorem Prover and its Applications, doi:10.1145/1637837.1637839.
[5] Kestrel Institute & University of Texas at Austin (accessed January, 2017): APT (Automated Program Trans-

formations). http://www.kestrel.edu/home/projects/apt.
[6] Matt Kaufmann (2003): A Tool for Simplifying Files of ACL2 Definitions. In: Proceedings of the Fourth

International Workshop on the ACL2 Theorem Prover and its Applications, ACL2 2003, Boulder, Colorado,
USA, July 13-14, 2003.

[7] Douglas R. Smith (1990): KIDS: A Semiautomatic Program Development System. IEEE Trans. Software Eng.
16(9), pp. 1024–1043, doi:10.1109/32.58788.

[8] Eric W. Smith (2011): Axe: An Automated Formal Equivalence Checking Tool for Programs. Ph.D. disserta-
tion, Stanford University.

http://www.cs.utexas.edu/~moore/acl2/manuals/current/manual?topic=ACL2____ACL2
http://www.cs.utexas.edu/~moore/acl2/manuals/current/manual?topic=ACL2____ACL2
http://dx.doi.org/10.1147/sj.41.0025
http://dx.doi.org/10.1145/1637837.1637839
http://www.kestrel.edu/home/projects/apt
http://dx.doi.org/10.1109/32.58788

	Introduction
	Simple Illustrative Examples

	Some Applications
	Combining a Filter with a Doubly-Recursive Producer
	Converting between Unbounded and Bounded Integer Operations

	Options
	Implementation
	The Simplify-defun Expansion
	Prelude
	New Defun Form
	Local Events
	`Becomes' Theorem

	Proving the `Becomes' Theorem
	Assumptions
	Implementation Notes

	Conclusion

