
An Approach to the Generation of

High-Assurance Java Card Applets

Alessandro Coglio

Kestrel Institute
3260 Hillview Avenue, Palo Alto, CA 94304, USA

Ph. +1-650-493-6871 Fax +1-650-424-1807
http://www.kestrel.edu/˜coglio

coglio@kestrel.edu

1 Introduction

1.1 Smart Cards

A smart card [11], also known as integrated circuit card or chip card, consists
of an electronic chip embedded into a plastic substrate. The size of the plastic
substrate is the same as a credit card or smaller. So, the chip is very small and
hence has relatively limited processing and memory capabilities, even though
these capabilities keep increasing thanks to the continual advancements in semi-
conductor technology. A smart card communicates with the external world via
metal contacts on the surface of the card or via an antenna wound into the card.
The signals exchanged through the contacts or the antenna encode commands
to and responses from the card. The card’s memory and functionality can be
only accessed via these commands and responses. So, smart cards are easily
portable, cost-effective computing devices that can securely store and process
information.

For example, a smart card can store a private key and use it to sign or
encrypt/decrypt data. Since the card only recognizes and processes certain
commands (e.g., to sign data provided in the command, returning the signature
as a response), there is no way to extract the value of the private key as a re-
sponse from the card. The value of the private key could be returned only if
such a functionality had been explicitly programmed into the card (which hope-
fully has not). Smart cards also have built-in defenses to make it difficult (i.e.,
not cost-effective) to break their security via special hardware equipment. Cur-
rent applications of smart cards include authentication, financial transactions,
telephony, and the list is growing.

While smart cards can provide secure storage and processing of information,
such a goal is fulfilled only if the smart card’s software and hardware are cor-
rect with respect to the desired security policies. Correctness is of paramount



importance for smart cards: it is the main criterion for determining the quality
of a smart card product.

1.2 Java Card

Java Card [2] is a version of Java for smart cards. From the programmer’s point
of view, a program in Java Card is written in a subset of Java (features such
as floating point arithmetic and multi-dimensional arrays are not part of the
subset) and makes use of different libraries than the usual Java libraries. Java
Card libraries provide functionality to receive commands and send responses
according to certain standardized protocols, to perform cryptographic compu-
tations, etc. In addition to these standard libraries, various industry-specific
libraries are being defined (e.g., for telephony and banking). An application in
Java Card is called a Java Card applet. Aside from the name, Java Card applets
have very little to do with the Java applets embedded in Web pages.

A Java Card program’s source code is compiled via a regular Java compiler,
resulting in a number of class files (one for each class declared in the program),
as usual. Next, a converter is run on these class files. The converter checks
that the class files conform to the Java Card subset of Java, and in that case
it produces a number of CAP (Converted APplet) files (one for each package
constituting the program). The CAP files are optionally verified by a verifier
and then loaded into the Java Card Runtime Environment (JCRE ), which is a
virtual machine running on the smart card. The JCRE sits on top of the smart
card operating system, which in turn sits on top of the hardware. The JCRE
includes an interpreter for bytecodes as well as an implementation of the Java
Card libraries (mostly in native code). The CAP file format is optimized for
loading into and execution by the JCRE.

The term Java Card Virtual Machine (JCVM ) is an overloaded one. It is
used to denote the interpreter of the JCRE, but it is also used to denote the
ensemble of converter, verifier, and JCRE. The Java Virtual Machine (JVM)
reads class files and executes them. Analogously, the JCVM, according to its
second meaning just described, reads class files and eventually executes them,
with conversion and verification taking place in the process. But while the
converter and the verifier run outside the card, the JCRE runs on the card. In
fact, this architecture is referred to as split virtual machine architecture. Given
the limited memory and processing capabilities of smart cards, currently it is
problematic to put converter and verifier on the card: this is the reason for the
split architecture.

Java Card brings the benefits of the Java technology to the world of smart
cards. There exist several smart card platforms, and until a few years ago it
was difficult to develop portable smart card applications or to update the card
contents after the issuance of the card. Also, the type safety of Java provides
a good foundation for security. So, Java Card provides a uniform and secure
platform for the development of smart card applications.

Other emerging standard platforms for smart cards are the MULTOS oper-
ating system [9] and Windows for Smart Cards [15].



2 High Assurance and Kestrel’s Work

In order for a Java Card applet to be secure (according to the desired security
policies), the applet must be correctly implemented. In addition, the platform on
which the applet runs, i.e., the JCRE, must be correctly implemented. Since the
JCRE sits on top of a smart card operating system and hardware, the operating
system and the hardware must be also correctly implemented. Finally, all the
tools used ”between” the source code and the JCRE (namely compiler, verifier,
and converter) must be correctly implemented.

In other words, the assurance of a Java Card applet depends on several,
mutually dependent critical elements. Of course, high assurance is not a black-
or-white property, but rather it is “measured” in shades of gray. Improving
the correctness of any of the above critical elements contributes significantly to
increasing the overall assurance of the applet.

Kestrel has been developing tools and techniques for the development of
high-assurance software. Our Specware tool [8] provides capabilities to write
formal specs, refine them, compose specs and refinements, generate running code
from refined specs, and call mechanical theorem provers to prove the correctness
of specs and refinements as well as putative properties of specs for validation
purposes. Our Planware tool [1] is a domain-specific extension of Specware:
it is a fully automatic generator of schedulers from high-level specs that are
written by the user in a simple and intuitive tabular form. Planware internally
translates these domain-specific specs into Specware specs and makes use of the
Specware machinery to refine them to extremely efficient code. Other generators
are currently being built at Kestrel (e.g., a generator of C code from Stateflow
[7] diagrams).

Currently, we have projects underway to apply and extend our synthesis
technology to Java Card. More precisely, we are working on the following two
tasks:

1. synthesize implementations of the JCRE and related tools;

2. build an automatic generator of Java Card applets.

For the first task, we are building a formal spec of the JCRE in Specware.
This spec will then be refined into a simulator first, then into a JCRE imple-
mentation that runs on some smart card. The formal spec includes the CAP
file format, the interpretation of bytecodes, and the Java Card libraries. Our
formal spec can serve as an unambiguous, precise version of the informal spec
provided by Sun [13, 14, 12]. The simulator is a development tool that simulates
the JCRE on a desktop computer, useful for testing and debugging purposes.
Its correctness is obviously very important, because the developer expects it to
faithfully represent the behavior of an actual card. We may also synthesize a
converter and an off-card verifier. We are approaching this long-term task via
vertical slices.

We have been previously successful at the specification and synthesis of cer-
tain security-critical components of the JVM. Since Java security is based on



applet
spec

applet
code

GENERATOR- -

Figure 1: User’s view of the generator

type safety, we have studied the components of the JVM that are responsible
for enforcing type safety. We have realized a complete mathematical spec of
the Java bytecode verifier, which has been written in Specware and refined to
a running implementation (see [6] for a preliminary account). In this process,
we have designed various improvements over Sun’s spec and implementation
of bytecode verification [3], in particular the treatment of subroutines [4] and
subtype checks [10]. We have also identified some bugs in Sun’s spec and im-
plementation, and proposed corrections [5]. Furthermore, we have developed
a formal spec of the JVM class loading mechanisms along with their interplay
with bytecode verification, and proved a type safety theorem [10] about our
formalization.

The second task, namely the construction of a Java Card applet generator,
is the main topic of this paper and is described in the next section.

3 An Architecture for an Applet Generator

This section describes work in progress that is in early stages of its development.
So, many technical details have not been pinned down yet. Nevertheless, the
description provides a high-level view of the approach that is being taken in this
project.

3.1 User’s View

From the user’s point of view, the generator appears as shown in Figure 1. It
is a box that takes an applet spec as input and automatically produces code
implementing the specified applet. The spec is written in a domain-specific lan-
guage that has a precise, mathematically defined semantics, while being at the
same time easy and intuitive to use by smart card developers. The vocabulary
of this domain-specific language includes smart cards concepts such as com-
mands, reponses, keys, PINs, etc. Obviously, the constructs of this language
are higher-level than the Java Card code that achieves the same functionality.

In other words, from the user’s point of view the generator is a smart compiler
that translates high-level specs written in a domain-specific language to lower-
level Java Card code.



applet
spec

applet
code

translator
code

generator

refinement
engine 1

refinement
engine 2

functional
spec

refined
spec 1

refined
spec 2

refinement
directives

smart card
knowledge

Java Card
knowledge

GENERATOR

- -

?

6

?

6

6 6

- -

@
@

@R

�
�

�	

@
@

@R

Figure 2: Inside the generator

3.2 Inside the Generator

Looking inside the generator, the structure appears as in Figure 2.
The first block inside the generator is a translator that produces a functional

spec for the applet, written in the spec language of Specware. The spec language
of Specware is a version of higher-order logic, so it is mathematically precise;
however, the user is not exposed to it, because Specware specs are only produced
(and processed, as described below) internally.

In addition to the functional spec, the translator also produces some refine-
ment directives, i.e., information to guide the refinement of the functional spec.
The nature of these refinement directives is best explained through the follow-
ing example. Consider an applet that recognizes and processes five different
commands. In the spec for this applet (the one written in the domain-specific
language) the user declares symbols to denote these five commands, possibly
accompanied by parameters, and uses these symbols to specify the processing
of each of these commands. In the actual applet, these commands have to be
encoded as byte sequences that are exchanged between the smart card and the
external world, according to certain standardized protocols. So, the applet spec
must include mappings of the symbolic commands to byte sequences. The func-
tional spec produced by the translator expresses the high-level functionality of



the applet, and therefore only specifies commands symbolically. The encoding
of commands as byte sequences is in fact a refinement of the functional spec,
so the translator extracts from the applet spec this information as a refinement
directive that is later used during the refinement of the functional spec.

The first refinement engine makes use of the Specware machinery to apply
some refinements to the functional spec. The engine makes use of knowledge
about smart cards, which is part of the generator. This is generic smart card
knowledge, not specific to Java Card. For example, it includes information about
the standardized protocols for smart card communication. This knowledge is
embodied as Specware specs and refinements, which are suitably composed with
and applied to the functional spec by the refinement engine, based on the refine-
ment directives. The result of this process is a refined spec that is not specific
to Java Card.

The second refinement engine also makes use of the Specware machinery
to apply further refinements to the refined spec. It makes use of knowledge
that is specific to Java Card, e.g., the API of the libraries for handling the
communication protocols. This knowledge is also embodied as Specware specs
and refinements. These are suitably composed with and applied to the refined
spec, based on the refinement directives, to produce a more refined spec that is
now specific to Java Card.

The spec produced by the second refinement engine is ready to be trans-
lated to Java Card by the code generator. The result is Java Card code that
implements the applet spec provided by the user.

The reason for having two separate refinement steps, one independent from
and the other dependent on Java Card, is to pave the way for future exten-
sions of the generator where the same applet spec can be refined to different
languages/platforms. For example, a third refinement engine could be added
that is specific to MULTOS, including knowledge of MULTOS in the form of
Specware specs and refinements. Another code generator could be added that
transforms specs refined through this third refinement engine into C code (the
language used in development for MULTOS). This MULTOS refinement engine
and C code generator are “parallel” to the Java Card refinement engine and code
generator: the user chooses which one to use. But the platform-independent re-
finement engine is used in both cases.

The main advantages of this architecture are:

1. the high assurance deriving from the use of Specware’s mathematical foun-
dations;

2. the modularity of the generator, which eases the evolution of the genera-
tor (e.g., improving the Java Card code generator to produce code with a
smaller footprint, adding smart card knowledge about inter-applet com-
munication, adding a new target platform).



3.3 Independent Certification

A generator greatly reduces human coding errors, especially when the generator
is based on solid foundations such as Specware’s. However, the question arises
about the correctness of the generator itself. There may be bugs in the generator
that affect the correctness of the generation process.

A similar concern applies to verification, and not only to synthesis. Even
if a program has been verified via a theorem prover, model checker, or other
tool, bugs in the verification tool may invalidate the correctness result of the
program.

In verification, an approach to increase assurance is to have the verification
tool produce an explicit proof (provided that the tool possesses this function-
ality) that can be checked with a simple proof checker. The proof checker is
much simpler and smaller than the verification tool, and therefore more likely to
be correct. After the proof has been checked, the correctness of the proof only
depends on the correctness of the checker, and not of the tool used to produce
the proof.

The Specware refinement process can produce proofs of each refinement step.
The proofs for the various refinement steps can be composed together to ob-
tain a proof of the overall refinement process. Proofs for the individual steps
are produced by the transformations that are applied to the specs: since the
transformations are (designed to be) correctness-preserving, there is a proof
associated to each application of a transformation.

This means that the applet generator could be extended to generate, besides
the applet code, also a proof that the applet code correctly implements the user’s
spec. The proof can then be checked independently, as shown in Figure 3. The
checker takes as inputs the applet spec, the applet code, and the proof; it returns
a yes/no answer, depending on whether the proof is valid with respect to the
given applet spec and code. If the checker returns a positive answer, then the
correctness of the code with respect to the spec only depends on the correctness
of the smaller and simpler checker, and not any more on the correctness of the
larger and more complex generator.

The synthesis approach constructs the correctness proof during the synthesis
process, by composing smaller proofs corresponding to the various refinement
steps. In contrast, an after-the-fact verification approach must construct the
whole proof from the code only. The search space is therefore larger. In other
words, the synthesis approach can provide more scalability.

4 Future Work

Since, as previously mentioned, this project is in its early stage, much of what
has been described in the previous section is in fact future work. The work
plan is to start with a simple generator, with relatively limited capabilities, and
then add more and more capabilities to it. From the user’s point of view, the
evolution of the generator corresponds to an evolution of the domain-specific



applet
spec

applet
code

GENERATOR

CHECKER

proof

yes/no

- -

?

?

?

A
A
A
A
A
A
AAU

�
�

�
�

�
�

���

Figure 3: Independent certification

language and to an expansion of the set of applets that can be generated by the
generator. Internally, the various components of the generator (including the
knowledge used by the refinement engines) are evolved modularly.

While the first versions of the generator will target the Java Card platform,
successive versions may target additional platforms, such as C/MULTOS.

References

[1] Lee Blaine, Li-Mei Gilham, Junbo Liu, Doug Smith, and Stephen West-
fold. Planware: Domain-specific synthesis of high-performance schedulers.
In Proc. 13th Conference on Automated Software Engineering (ASE’98),
pages 270–280, October 1998.

[2] Zhiqun Chen. Java CardTM Technology for Smart Cards. Addison-Wesley,
2000.

[3] Alessandro Coglio. Improving the official specification of Java bytecode
verification. In Proc. 3rd ECOOP Workshop on Formal Techniques for
Java Programs, June 2001.

[4] Alessandro Coglio. Simple verification technique for complex Java bytecode
subroutines. Technical report, Kestrel Institute, December 2001.

[5] Alessandro Coglio and Allen Goldberg. Type safety in the JVM: Some
problems in Java 2 SDK 1.2 and proposed solutions. Concurrency and
Computation: Practice and Experience, 13(13):1153–1171, November 2001.



[6] Alessandro Coglio, Allen Goldberg, and Zhenyu Qian. Towards a provably-
correct implementation of the JVM bytecode verifier. In Proc. OOPSLA’98
Workshop on Formal Underpinnings of Java, October 1998.

[7] The Math Works Inc. Stateflow user’s guide, 2000.

[8] Kestrel Institute. SpecwareTM. http://www.specware.org.

[9] MULTOSTM. http://www.multos.com.

[10] Zhenyu Qian, Allen Goldberg, and Alessandro Coglio. A formal specifi-
cation of Java class loading. In Proc. 15th ACM Conference on Object-
Oriented Programming, Systems, Languages, and Applications (OOP-
SLA’00), volume 35, number 10 of ACM SIGPLAN Notices, pages 325–336,
October 2000. Long version available at http://www.kestrel.edu/java.

[11] W. Rankl and W. Effing. Smart Card Handbook. John Wiley and Sons,
second edition, 2000.

[12] Sun Microsystems. Java CardTM 2.1.1 Application Programming Interface,
May 2000. Available at http://java.sun.com/javacard.

[13] Sun Microsystems. Java CardTM 2.1.1 Runtime Environment (JCRE) Spec-
ification, May 2000. Available at http://java.sun.com/javacard.

[14] Sun Microsystems. Java CardTM 2.1.1 Virtual Machine Specification, May
2000. Available at http://java.sun.com/javacard.

[15] Windows for Smart Cards. http://www.microsoft.com/windowsce/smartcard.


