
A Formal Specification of JavaTM Virtual

Machine Instructions for Objects, Methods

and Subroutines⋆

Zhenyu Qian

Bremen Institute for Safe Systems (BISS), FB3 Informatik, Universität Bremen,
D-28334 Bremen, Germany

Abstract. In this chapter we formally specify a subset of Java Virtual Machine
(JVM) instructions for objects, methods and subroutines based on the official JVM
Specification, the official Java Language Specification and Sun’s JDK 1.1.4 imple-
mentation of the JVM. Our formal specification describes the runtime behaviors of
the instructions in relevant memory areas as state transitions and most structural
and linking constraints on the instructions as a static typing system. The typing
system includes a core of the Bytecode Verifier and resembles data-flow analysis. We
state some properties based on our formal specification and sketch the proofs. One
of these properties is that if a JVM program is statically well-typed with respect
to the typing system, then the runtime data of the program will be type-correct.
Our formal specification clarifies some ambiguities and incompleteness and removes
some (in our view) unnecessary restrictions in the description of the official JVM
Specification.

1 Introduction

The Java Virtual Machine (JVM) is a platform-independent abstract com-
puting machine containing an instruction set and running on various memory
areas. The JVM is typically used as an intermediate machine in the imple-
mentation of the programming language Java. The official JVM Specification
by Lindholm and Yellin [10] (OJVMS) defines the syntax of the instructions
and describes the semantics of the instructions in related memory areas.

This chapter specifies a subset of the instructions for objects, methods and
subroutines by giving a formal semantics to them. The formal specification
is based on the OJVMS, Sun’s JDK 1.1.4 implementation of the JVM, in
particular, the Bytecode Verifier, and the official Java Language Specification
by Gosling, Joy and Steele [8] (OJLS). The formal specification provides
a foundation for exposing the behaviors of the subset of the JVM. Since
programs of the instructions in the JVM can be used directly over the Web,
our formal specification defines parts of the security of internet programming
in Java.

⋆ To appear in Jim Alves-Foss (ed.) “Formal Syntax and Semantics of JavaTM”,
Springer Verlag LNCS, 1998

The formal specification considers the following essential instructions: the
load and store instructions for objects and integers, the object creation in-
struction, one operand stack management instruction, several control transfer
instructions, all method invocation instructions, several return instructions,
and the jsr and ret instructions for implementing finally-clauses.

Many features in the JVM are not considered in this chapter. They are
multi-threads, arrays, primitive types other than type int, two-word wide
data, class initialization method <clinit>, access control modifiers, excep-
tion handlings, native methods, lookupswitch, tableswitch, wide, runtime
exceptions, memory organization, the overflow and underflow of the operand
stack, the legality of accesses of local variables, the class file format in de-
tails, constant pool resolution in details and the difference between “static”
and “link time”. We assume that all classes have been loaded by a single class
loader. Due to space constraints we only very briefly sketch all proofs in this
chapter.

The paper [12] considers a larger subset of JVM instructions, in particular,
those for exception handling. In addition, it contains the proofs.

The main ideas of our approach are as follows:

– We formalize an operational semantics of the instructions by defining
each instruction as a state transition.

– At the same time we formulate a static typing system. Based on the typing
rules in the system, one may try to derive a static type for each memory
location such that the static type covers the types of all runtime data
possibly held by the memory location. The typing system characterizes
aspects of the data-flow analysis (see e.g. [1]).

– Our formal specification consists of the state transition machine and the
typing system. The state transition machine is defined only for programs,
where static types for all memory locations are derivable with respect to
the typing system. Practically, the typing system includes a core of the
Bytecode Verifier.

– We finally state some properties of the formal specification. In particular,
we state that if the type inference system can be successful, then the
runtime data are guaranteed to be type-correct.

To a large extent, our formal specification follows the OJVMS. However,
some extensions and changes of the semantics are necessary and desirable.
Four of them are as follows:

– The OJVMS (page 130) requires that the static type of an operand stack
entry or a local variable should be the least upper bound of the types
of all possible runtime data in it, and the least upper bound should be
one JVM type. The problem is, however, that the subtyping relation on
interfaces allows multiple inheritance and thus two interfaces need not
have one least common superinterface. Our solution is to allow a set of
interfaces (and classes) to be a static type of an operand stack entry or
a local variable.

2

– The OJVMS (page 132) uses a special type indicating that an object
is new, i.e. it has been created by the instruction new but not yet ini-
tialized by an instance initialization method. We introduce two kinds of
special types indicating two different stages of object initialization in the
specification: one indicates that the object is uninitialized; the other in-
dicates that the object is being initialized by an instance initialization
method, but has not yet encountered the invocation of another instance
initialization method. We distinguish between these two stages because
the objects at different stages should be dealt with differently.

– The OJVMS introduces a concept of subroutines: a jsr instruction jumps
to or calls a subroutine and a ret instruction returns from a subroutine.
The mechanism of subroutines is based on the correct use of return ad-
dresses. The OJVMS defines a new primitive type returnAddress indi-
cating that a value is a return address. For the formal specification we
refine type returnAddress into a family of special types, called subrou-
tine types, where a value of a subroutine type is the address of a jsr

instruction calling a subroutine and thus can be used to compute the
return address of the subroutine. As we will see, subroutine types are
crucial in our specification of constraints on jsr and ret instructions.

– The OJVMS does not clearly distinguish between types for memory lo-
cations and types for runtime data. Our formal specification clearly dis-
tinguish between static types for memory locations and types (or tags) of
runtime data. Therefore, we can formally discuss the type safety property
of runtime data in the execution.

In this chapter we use the following notations.

We use the notation αn to denote n syntactical objects α1, · · · , αn, the
notation {· · ·} a set and define size({αn}) := n.

We use {αn 7→ α′
n}, where αi 6= αj hold for all i, j with 0 ≤ i, j ≤ n

and i 6= j, to denote a mapping, where the mapping of each αi is α′
i, and

the mapping of every other element will be defined in each concrete case. In
fact, in each concrete case, the mapping of every other element will always be
either the element itself, or a special value failure, or not explicitly defined
because it is never used. We define Dom({αn 7→ α′

n}) := {αn}. For a mapping
θ, we use θ(α) to denote the result of the mapping for α, and write θ[α 7→ α′]
for the mapping that is equal to θ except it maps α to α′. For a set D, we
define

θ|D := {α 7→ θ(α) | α ∈ Dom(θ) ∩D}
θ|−D := {α 7→ θ(α) | α ∈ Dom(θ) −D}

A list [α0 · · · , αn] with n ≥ −1 is a special mapping {i 7→ αi | 0 ≤ i ≤ n}.
For any list lis, we define lis+ α := lis[size(lis) 7→ α].

3

2 Related work

Stata and Abadi proposed a type system for a set of instructions focusing
on subroutines and proved the soundness [15]. Since they considered only a
few instructions, they could provide lengthy proofs and clarify several key
semantic issues about subroutines. Freund and Mitchell made a significant
extension of Stata and Abadi’s type system by considering object initializa-
tion [5,6], and in doing this, discovered a bug in Sun’s implementation of the
bytecode verifier, which allows a program to use an object before it has been
initialized. To fix the bug, they wrote a typing rule that ensures that at no
time during program execution, there may be more than one uninitialized
object that is created by the same new instruction and is usable.

After realizing the bug discovered Freund and Mitchell, we detected that
an early version of the current paper contains the same bug. Except for this
point, the results of the current paper are independent of those by Stata,
Abadi, Freund and Mitchell. There are several differences between our ap-
proach and theirs. First, we follow the constraint-solving framework and use
typing rules to generate constraints that define all legal types. Second, we
consider more JVM instructions and more details. Two examples are that
our approach allows an inner subroutine to return directly to an outer jsr
instruction in nested subroutines, whereas their approach does not, and that
upon a subroutine return, our approach assigns a type to a local variable using
the information on whether the local variable is modified in the subroutine,
whereas their approach does not consider the case.

Cohen described a formal model of a subset of the JVM, called defen-
sive JVM (dJVM), where runtime checks are used to assure type-safe execu-
tion [2]. Our approach is different in that we design a static type inference sys-
tem, which assures that statically well-typed programs do not have runtime
type errors. In addition, the current dJVM does not consider subroutines,
whereas our specification does.

Goldberg gave a formal specification of bytecode verification [7]. Com-
pared with our work, he considered array types, but not subroutines. In
addition, his formal specification is a dataflow analysis and thus closer to the
implementation.

Hagiya presented another type system for subroutines [9]. One of the
interesting points in his approach is to introduce a mechanism to distinguish
the so-called “used” from the “unused” data in a subroutine. His idea is to
use a kind of special types indicating that a certain memory location in a
subroutine always has the same content as a memory location at a call to the
subroutine.

The Kimera project is quite successful in testing some running bytecode
verifiers and detecting some flaws [14]. In general, testing is often based on a
precise specification. Thus a formal specification may be useful for testing.

Dean [3] studied a formal model relating static typing and dynamic linking
and proved the safety of dynamic linking with respect to static typing. As

4

mentioned before, our formal specification does not consider the issue between
static typing and dynamic linking.

Our formal specification considers only one single class loader. Saraswat
studied static type-(un)safety in Java in the presence of more than one class
loader [13] .

Although the JVM uses some structures of the Java language, our type
system for the JVM resembles data-flow analysis and thus is quite different
from a formal specification of a type system for Java in e.g. [4,11,16].

3 JVM programs, methods, data areas and frames

According to the OJVMS, a byte is 8 bits, and a word is an abstract size that
is larger than, among others, a byte. One-byte-wide data build instructions,
whereas one-word wide data represent runtime data. We use byt to range
over all one-byte data and wrd over all one-word wide data.

The OJVMS still allows two-word wide integers. But, as mentioned before,
we do not consider two-word wide data in this chapter for simplicity.

A (JVM) program in this chapter is defined to contain a set of methods.
We assume that each method has a unique method code reference. We use cod
to range over all method code references. An address is a pair (cod , off), where
off is a one-word wide datum, called a byte offset. For any address (cod , off)
and another byte offset off ′, we define (cod , off)+off ′ := (cod , off +off). An
instruction may be longer than one byte. A program point, denoted by pp, is
the starting address of an instruction. Since we do not consider multi-threads,
we assume that there is just one program count register, which contains the
current program point.

As mentioned in the introduction to this chapter, the program point of a
jsr instruction may be used in computing the returning program point for a
subroutine. In fact, it is the byte offset of the program point, not the program
point itself, that may be used, since, as we will see later, a ret instruction,
which uses the program point of a jsr instruction, is always in the same
method as the jsr instruction. Thus we may talk about the byte offset of a
jsr in the rest of this chapter.

We consider an arbitrary but fixed program Prg . Note that the methods
in a programmay stem from different class files. A method in Prg consists of
all instructions in Prg whose program points contain the same given method
code reference. We use Mth to denote an arbitrary but fixed method in Prg .

We use allPP (Prg) and allPP (Mth) to denote the sets of all program
points in Prg and Mth, respectively. We assume that allPP (Mth) always
contains one unique element of the form (, 0). Intuitively, it is the starting
program point of the method.

We define that the function offset(byt1, byt2) yields (byt1 ∗ (28)) + byt2 if
it is a one-word wide value, a failure otherwise.

5

In our specification an object reference is formally a one-word wide datum.
We use obj to range over all object references. Furthermore, we use null to
denote a special object reference.

Following the OJVMS, we formally specify int as the primitive type of
all one-word wide integers and use val to range over these integers.

We use cnam , inam , mnam and fnam to range over names of classes,
interfaces, methods and fields, respectively. For our formal specification we
require that fnam is always a qualified name.

A record is formally a mapping of the form {fnamn 7→ wrdn}, which maps
all elements other than fnamn to a special value failure. We use rec to range
over all records.

The JVM has a heap, from which memory for all objects is allocated.
Formally, a heap state is defined as a mapping of the form {objn 7→ recn},
which maps all elements other than obj n to a special value failure. We use
hp to range over all heap states.

A frame is created each time a method is invoked, which contains a local
variable table and an operand stack for the method. A frame is destroyed
when the method completes.

A local variable table state is a list of the form [wrd0, · · · ,wrdn] with
n ≥ −1. We use lvs to range over all local variable table states. Each method
has a fixed number of local variables.

An operand stack state is a list [wrd0, · · · ,wrdn] with n ≥ −1. We use
stk to range over all operand stack states. Each method has a fixed maximal
length of operand stacks.

Note that we need not define formally what a frame is, since no frames
are explicitly used in our specification.

Each JVM thread has a Java stack to store at least the old current frame
and a return address upon a method invocation. When the method invocation
completes normally, the old current frame becomes the current frame and the
return address becomes the current program point. In this chapter the Java
stack contains tuples (lvs , stk , pp), where lvs is the old current local variable
table state, stk the old current operand stack state and pp a return address.
Since we do not consider multi-threads, we need only to consider one Java
stack. We use jstk to range over all Java stack states.

A program state is a tuple of the form (pp, jstk , lvs , stk , hp). We use stat
to range over all program states.

4 Static types

Figure 1 defines all static types. In the static analysis, a memory location
at a program point may obtain a static type, indicating the types of the
runtime data that the memory location may hold at that program point in
all executions. For simplicity, we may omit the phrases “at a program point”
and “in all executions” in the rest of this chapter.

6

Reference type set {ref n} (n > 0)
where each ref i is either type null, or a class or
interface name as in Java.

Primitive type int
Subroutine type sbr(pp) | invldsbr

Raw object type unin(pp, cnam) | init(cnam)
Unusable value type unusable

Figure 1: Static types

We introduce the static type null. If a memory location may hold nothing
more than the special object reference null, then the memory location may
be given the static type null.

The static type null and class or interface names in Java are called refer-
ence types. Note that java.lang.Object (short: Object) is a class name in
Java.

A nonempty reference type set is a static type. Intuitively, if a memory
location may hold nothing more than null and objects that are of the refer-
ence types ref i for i = 1, · · · , n but not raw objects (see below), then it may
obtain the static type {ref n}.

It is worth mentioning that the Sun’s implementation does not implement
the concept of reference type sets in the bytecode verifier.

In our specification, a single reference type is always regarded as identical
to the singleton set containing the reference type.

If a memory location may hold nothing more than elements of the primi-
tive type int, then it may obtain the static type int.

As mentioned before, the byte offset of a jsr instruction can be regarded
as an element of the subroutine type corresponding to the called subroutine.
If a memory location may hold nothing more than some valid byte offsets of
jsr instructions that call one common subroutine starting at pp, then the
memory location may obtain a subroutine type sbr(pp) as its static type. Note
that sbr(pp) 6= sbr(pp′) if and only if pp 6= pp′.

If a memory location may hold some valid and invalid byte offsets of jsr
instructions, then the memory location may obtain the static type invldsbr .

The forms unin(pp, cnam) and init(cnam) are static types for memory
locations holding raw objects. More concretely, if a memory location may
hold nothing more than objects of the class cnam created by one common
new instruction at a program point pp, then the memory location may obtain
the static type unin(pp, cnam). If the memory location may hold nothing
more than an object that is being currently initialized by an instance ini-
tialization method for the class cnam and has not encountered another in-
stance initialization method within the current instance initialization method,
then the memory location may obtain the static type init(cnam). Note that

7

unin(pp, cnam) 6= unin(pp′, cnam ′) if and only if pp 6= pp′ or cnam 6= cnam ′,
init(cnam) 6= init(cnam ′) if and only if cnam 6= cnam ′.

Any memory location may obtain the static type unusable. In particular,
if a memory location may hold runtime data of incompatible types, then it
should obtain the static type unusable, indicating that the content of the
memory location is unusable in practice. For example, if a local variable may
hold an object and an element of the type int, then our specification will
enforce the local variable to obtain the static type unusable.

To represent the above intuitive semantics more precisely, we define a
partial order ⊒ on static types as the smallest reflexive and transitive relation
satisfying that

{ref n} ⊒ {refm} for all n and m with n ≤ m and all ref i, i = 1, . . . ,m
invldsbr ⊒ sbr(pp) for all pp
unusable ⊒ any for all static types any

The relation any ⊒ any′ is read as “any covers any′”.
Intuitively, if any covers any′, then any instruction applicable to a mem-

ory location with any is also applicable to a memory location with any′.
Note that the relation implies that, for example, if any covers both int and
a reference type ref , then any must be unusable.

5 Short notations for zero or one of several static types

The syntax in Figure 2 means that an identifier on the left of ::= denotes an
arbitrary static type or the identifier void that either explicitly occurs or is
denoted by an identifier on the right of ::=.

Conceptually, the identifier void is not a static type. It is just an auxiliary
identifier denoting the situation that no static type is present.

For example, ref denotes an arbitrary class or interface name or null,
tys denotes an arbitrary reference type set or a primitive type, notnull void
denotes an arbitrary class or interface name or void, and any denotes an
arbitrary static type.

6 Program point types and program types

In general, there is no guarantee that any class file that is asked to be loaded
is properly formed. Thus according to the OJVMS, the bytecode verifier
should ensure that the class file satisfies some constraints. In particular, the
bytecode verifier should be able to statically derive a static type for each local
variable and operand stack entry at each program point, and ensure that the
derived static types satisfy some constraints.

For this purpose, we define a local variable table type as a list of the form
[any0, · · · , anyn] with n ≥ −1. We use lvsty to range over all local variable

8

Class name cnam ::= an arbitrary class name
Interface name inam ::= an arbitrary interface name
Reference type ref ::= cnam | inam | null
Primitive type prim ::= int
Void type void ::=
Type that is not null notnull ::= cnam | inam | prim
Type ty ::= ref | prim

Reference type set refs ::= {ref n} (n > 0)
Type set tys ::= refs | prim
Subroutine type sbr ::= sbr(pp) | invldsbr

Raw object type raw ::= unin(pp, cnam) | init(cnam)
Type or void notnull void ::= notnull | void
Reference type set or
raw object type refs raw ::= refs | raw
Reference type set,
raw object type or
subroutine type refs raw sbr ::= refs | raw | sbr

Anything any ::= tys | raw | sbr | unusable

Figure 2: Auxiliary symbols denoting zero or one of several static types

table types. For lvsty = [any0, · · · , anyn] and lvsty ′ = [any0, · · · , anym], we
define that lvsty ⊒ lvsty ′ holds if and only if n = m and anyi ⊒ any′i hold
for all i = 0, . . . , n.

We define an operand stack type as a list of the form [any0, · · · , anyn]
with n ≥ −1. We use stkty to range over all operand stack types. For stkty =
[any0, · · · , anyn] and stkty ′ = [any0, · · · , anym], we define that stkty ⊒ stkty ′

holds if and only if n = m and anyi ⊒ any′i hold for all i = 0, . . . , n.

The above definitions that a local variable or an operand stack entry can
hold values of arbitrary static types.

To record whether an instance initialization method has been called in-
side another instance initialization method, we use three initialization tags,
namely needIn, needNoIn and unknown. We use intag to range over all ini-
tialization tags. A ⊒-relation is defined on these tags as follows:

intag ⊒ intag ′ if and only if intag = unknown or intag = intag ′

We define a program point type as a tuple (lvsty , stkty, intag ,mod) where
mod will be defined in Section 10.6. We use ptty to range over all program
point types.

Let ptty = (lvsty , stkty, intag,mod) and ptty ′ = (lvsty ′, stkty ′, intag ′,mod ′).
The relation ptty ⊒ ptty ′ holds if and only if lvsty ⊒ lvsty ′, stkty ⊒ stkty′,
intag ⊒ intag ′ and mod ⊒ mod ′ hold, where the last relation will be defined
in Section 10.6.

9

Intuitively, the relation ptty ⊒ ptty ′ is used to ensure that any instruction
that is applicable to all program states of the program point type ptty must
be applicable to all program states of the program point type ptty ′.

For the program Prg , a program type is a mapping {pp 7→ pttypp | pp ∈
allPP (Prg)}. We use prgty to range over all program types. Let prgty and
prgty ′ be two program types. Then we define that prgty ⊒ prgty ′ holds if and
only if prgty(pp) ⊒ prgty ′(pp) holds for all pp ∈ allPP (Prg). These concepts
can also be defined for the fixed method Mth.

7 The reference type hierarchy

A reference type hierarchy in the JVM is as in Java. Following the OJVMS
(§ 2.6.4), we formally define a subtyping relation widRefConvert as the small-
est reflexive transitive relation on all reference type sets refs satisfying:

widRefConvert(cnam , cnam ′) if cnam extends cnam ′

widRefConvert(cnam , inam) if cnam implements inam
widRefConvert(inam , inam ′) if inam extends inam ′

widRefConvert (inam , Object)
widRefConvert(null, ref)

widRefConvert({ref n}, {ref
′
m}) if ∀(1 ≤ i ≤ n).∃(1 ≤ j ≤ m).

widRefConvert (ref i, ref
′
j)

Note that we do not consider array types. We use the relation diSubcls to
denote the direct subclass relation on classes.

To constrain the types of the actual and formal parameters in a method
invocation we define the relation invoConvert on all reference type sets and
the primitive type int as

invoConvert := widRefConvert ∪ {(int, int)}

Note that {(int, int)} is a degenerate case of the widening primitive con-
version in the OJVMS (§ 2.6.2). It suffices for us to have the degenerate case,
since we consider only one primitive type int.

To constrain the types of the variable and the value in an assignment, we
define the relation assConvert on all reference type sets and the primitive
type int as

assConvert := invoConvert .

The OJVMS requires that assConvert extends invoConvert by some nar-
rowing primitive conversions for integer constants. We do not consider this
difference for simplicity.

Intuitively, if a reference type set contains both a super- and a subtype,
then the subtype is redundant. Practically, a Bytecode Verifier could imple-
ment elimination of redundant reference types from a reference type set with
respect to a subtyping relation as an optimization step.

10

8 Constant pool resolution

According to the OJVMS, each class (or interface) should have a constant
pool whose entries name entities like classes, interfaces, methods and fields
referenced from the code of the class (or interface, respectively) or from other
constant pool entries. An individual instruction in the class (or interface, re-
spectively) may carry an index of an entry in the constant pool, and during
the execution of this instruction, the JVM is responsible for resolving the en-
try, i.e. determining a concrete entity from the entry. This process of resolving
an entry is called constant pool resolution.

For our formal specification we introduce some defined functions, called
resolution functions, which hide the details of resolution. In fact, except that
the resolution processes should take correct sorts of data as argument and
yield correct sorts of data or a failure as result, other details are not important
at all for the formal specification and proofs in this chapter. Nevertheless, we
still explain the definitions of the resolution functions, in order to give a
feeling why the resolution functions here are proper abstractions of the real
resolution processes.

A resolution function in this section often takes as parameter two one-
byte-wide integers ind1 and ind2, which build the index offset(ind1, ind2) in
a constant pool. In this sense, a resolution function has always a constant
pool as an implicit parameter.

The resolution function cResol(index1, index2) yields a class name cnam .
For any cnam , we define a function

allFields (cnam) := {(fnam , notnull) | fnam and notnull are the name
and type of a field in the class cnam}

Note that a field in the class cnam is either directly defined in the class or
in a superclass of the class. Since a field name fnam is a qualified name, we
need not consider the problem with hiding of fields.

We define a resolution function for a field as

fResol(ind1, ind2) := (fnam , cnam , notnull)

where fnam is the name of the field, cnam the class containing the field
declaration, and notnull the type of the field.

We define a resolution function for a special method as

mResolSp(ind1, ind2) := (mnam, cnam , (tyn)notnull void , cod,mxl)

where mnam is the name of the method, cnam the class containing the dec-
laration of the method, (tyn)notnull void the descriptor of the method, cod
the method code and mxl the length of the local variable table in the method.

We define a resolution function for a static method as

mResolSt(ind1, ind2) := (mnam , cnam, (tyn)notnull void , cod,mxl).

11

We define a resolution function for an instance method1 as

mResolV (ind1, ind2) := (mnam , cnam, (tyn)notnull void).

But the function mResolV (ind1, ind2) does not yield a method code. For
doing this, we need to define another function

mSelV (obj,mnam , (tyn)notnull void) := (cod ,mxl)

which takes an object obj, and yields the method code cod for the object obj
and the length mxl of the local variable table in the method.

We define a resolution function for an interface method as

mResolI (ind1, ind2) := (mnam , inam , (tyn)notnull void)

where inam is the name of the interface, instead of the class, that contains
the declaration of the method. Furthermore, we define

mSelI (obj,mnam , (tyn)notnull void) := (cod ,mxl).

For convenience we define the auxiliary function

mInfo(pp) := (mnam , cnam, (tyn)notnull void ,mxl)

where mnam is the method containing the pp, (tyn)notnull void the descrip-
tor of the method, cnam the class containing the declaration of the method,
and mxl the number of the local variables in the method.

9 Constraint domain and constraints

The previous sections have in fact introduced (part of) a constraint domain
for our formal specification. Although there are no problems to completely
formally define all concepts in a constraint domain, we can only discuss (part
of) them informally in this chapter due to the space limit.

First of all, all data, data structures (e.g. local variable table states,
operand stack states, program states), static types and type structures (e.g.
local variable table types, operand stack types, program point types, pogram
types) defined in the previous sections are elements of the constraint domain.
These elements are all sorted. Informally, every time when we introduce an
identifier to range over a kind of data, data structures, static types or type
structures, we introduce a sort. We use the introduced identifiers also as
names of these sorts. So it is possible for one sort to have several names. For
example, the sort byt consists of all one-byte wide data, the sort wrd all one-
word wide data, the sort pp all program points, the sort lvs all local variable

1 Thanks to Gilad Bracha for clarifying comments on the semantics of method
dispatch at this point.

12

table states, the sort stk all operand stack states, the sort stat all program
states, the sorts ref , refs , tys and refs raw corresponding static types, re-
spectively, as defined in Figure 2, the sort lvsty all local variable table types,
the sort stkty all operand stack types and the sort prgty all program point
types. Standard data or type structures, e.g. sets or lists of some data or
types, also build sorts, but not necessarily have a sort name.

There is a subsort relation among the sorts, which corresponds to the
subset relation. In particular, Figure 2 defines that if a sort occurs as an
alternative on the right of ::=, then the sort on the left of ::= is a supersort
of it. For example, the sort ref is a supersort of the sorts cnam and inam
and contains null, the sort prim contains int, the sort notnull is a supersort
of the sorts cnam , inam and prim, refs contains all {ref n}, where each ref i
is an element of the sort ref , etc. Since a singleton reference type set {ref }
and the reference type ref are regarded as the same static type, we define
that the sort refs is a supersort of the sort ref .

For each sort, there are a countable set of variables. In general, the com-
pletely capitalized version of a sort name denotes a variable of the sort. For
example, BYT is a variable of byt and WRD a variable of wrd . For notional
simplicity we also introduce the variable P for the sort pp, L for the sort lvs ,
S for the sort stk , J for the sort jstk , H for the sort hp, LG for the sort
lvstag , SG for the sort stktag, Ξ for the sort stat, LT for the sort lvsty, ST
for the sort stkty, IT for the sort intag , M for mod , Π for the sort ptty and
Φ for the sort prgty. We use to denote a wildcard variable.

In general, terms are built using variables, constants and functions in the
constraint domain. Terms are sorted as usual. A sort of a subsort is always
a term of a supersort. Every term has a least sort. We will use the partially
capitalized version of a sort name, where only the first letter is changed into
a capital letter, to range over all terms of the sort. For example, Pp, Stat
and Ptty range over the terms in the sorts pp, stat and ptty, respectively.

A term containing no variables is called closed. In fact, each element in
the constraint domain is a closed term.

Logical formulas are built as in First-Order Predicate Logic, where pred-
icates take only sorted arguments in the constraint domain. We use q and r

to range over all logical formulas.
We use the form q[sn] to denote a logical formula containing the (occur-

rences of) terms sn. If the forms q[sn] and q[tn] occur in the same context
(e.g. the same rule), then si and ti are of the same sort for i = 1, . . . , n, and
q[tn] is the logical formula obtained from q[sn] by replacing each si by ti for
i = 1, . . . , n.

A substitution is a finite mapping of the form {Xn 7→ sn}, where the sort
of each term si must be a subsort of the sort of Xi for all i = 1, · · · , n. We
consider only closed substitutions in this chapter, i.e. where si is a closed
term for i = 1, . . . , n. We use σ to range over all closed substitutions.

A constraint is a logical formula. A set of constraints {q1, · · · , qm} repre-
sents the logical formula q1 ∧ · · · ∧ qm ∧ true.

13

A constraint q is satisfied under a substitution σ if and only if σ(q) is
closed and holds in the constraint domain. A constraint q is satisfiable if
there is a substitution, under which the constraint q is satisfied.

In our formal specification, we may define a function f that yields results
in a sort a for some arguments and the special value failure not in a for all
other arguments, and use a term f(sn) in a constraint, say q[f(sn)], where
a term of a is required. Intuitively, this usage always implicitly requires that
f(sn) should not yield failure . Formally, we may always define a new sort
a′, which is a supersort of a and contains the failure as a constant, define
the f to have the result sort a′, and replace the constraint q[f(sn)] by the
constraints q[X] and X = f(sn), where X is a new variable of the sort a.
The reason why the constraint X = f(sn) assures that “f(sn) is not equal
to failure” is that failure is not in the sort a and thus X = failure is never
satisfiable. (Note that if there are two functions yielding failure , then we need
to assume that they yield different failure ’s; otherwise the least sort of the
term failure may not exist.)

Our formal specification consists of two parts. The first part defines a
state transition relation on program states stat =⇒ stat ′, read as “stat
changes into stat ′”. The relation is defined by state transition rules of the
following form:

Premises

Ξ[sn] =⇒ Ξ[tn]
where Premises is a set of constraints. Let

Q := FV(Premises) ∪ FV(Ξ[sn] =⇒ Ξ[tn]).

Then the rule means that if all constraints in Premises are satisfied under
a substitution σ, then σ(Ξ)[σ(sn)] =⇒ σ(Ξ)[σ(tn)] holds. In the sequel, we
may also say that Ξ[sn] changes into Ξ[tn] in the informal discussion for
simplicity.

To specify all program types of a program, the following two forms of
constraints are particularly important:

Prgty(Pp) = Ptty and Prgty(Pp) ⊒ Ptty

The former says that the program point type at Pp in Prgty is Ptty. The latter
says that the program point type at Pp in Prgty covers Ptty . If a program
point Pp can be reached by more than one preceding program point, then it
is quite convenient to write a constraint of the latter form to constrain the
program point type at Pp.

The type system in our formal specification should introduce constraints
on one program type for the method Mth. Therefore, we require that all
typing rules contain one common program type variable Φ.

In general, a typing rule is in the form:

14

AConds
CConstrs

SConstrs
The AConds is a set of logical formulas, called applicability conditions, and
contains a distinguished constraintMth(P) = Instr . The term Instr gives the
form of an instruction. Intuitively, AConds is used to determine a program
point P , where the rule can be applied. The identifier CConstrs stands for
a set of logical formulas. It contains no logical formulas of the form Φ(P) ⊒
Ptty. Intuitively, CConstrs constrains Φ(P). The identifier SConstrs stands
for a set of logical formulas of the form Φ(Pp′) ⊒ Ptty, where in most cases
Pp′ stands for a successor program point.

The reason for us to write a typing rule in the form as above is that a typ-
ing rule also suggests an intuitive data-flow analysis step. Roughly speaking,
if the data-flow analysis arrives at a program point Pp satisfying AConds ,
in particular the constraint Mth(Pp) = Instr in AConds , and if the pro-
gram type at Pp satisfies CConstrs , then the program type at each successor
program point Pp′ should satisfy the corresponding constraint in SConstrs .

Let
Q := FV(AConds)− {Φ}
Q′ := FV(CConstrs ∪ SConstrs)− ({Φ} ∪Q)

then a typing rule as above formally introduces the constraint

∀Q.(AConds ⇒ ∃Q′.(CConstrs ∪ SConstrs))

It is easy to see that the constraint holds if and only if, if AConds is satisfied
under a substitution σ with Dom(σ) = Q ∪ {Φ}, then there is a substitution
σ′ with Dom(σ) = Q ∪ Q′ ∪ {Φ} such that σ′

|Q∪{Φ} = σ and σ′(CConstrs ∪

SConstrs) hold.
Let ConstraintsMth denote the set of the constraints introduced as above

from all typing rules. Then we say that the method Mth has a program type
prgty , or that a program type prgty is a program type of the method Mth, if
and only if all constraints in ConstraintsMth are satisfied under {Φ 7→ prgty}.
Note that a program may have more than one program type. For example, a
local variable that is not used in a method may be given an arbitrary static
type in a program type. A program is said to be statically well-typed if and
only if it has a program type.

10 The rules in the formal specification

There are constraints that should occur in many rules. We omit the explicit
presentation of the following constraints for notational simplicity.

– The CConstrs in a typing rule always implicitly contains a constraint
Pp ∈ allPP (Mth) for each Φ(Pp) ⊒ Ptty in the SConstrs . This assures
that Pp is always a program point, i.e. a starting address of an instruction.

15

– In the specification we only consider the instructions for one-word wide
data. Thus the rules are all based on the assumption that all data in local
variables and the operand stack are one-word wide.

10.1 Load and store instructions

The state transitions for loading and storing objects and integers of type int

are defined by the rules in Figure 3. The aload and iload instructions load
a local variable onto the operand stack. The astore and istore instructions
store a value from the operand stack in a local variable.

Prg(P) = aload IND or iload IND

Ξ[P,L, S] =⇒ Ξ[P + 2, L, S + L(IND)]
(S-1),(S-2)

Prg(P) = astore IND or istore IND

Ξ[P,L, S +WRD] =⇒ Ξ[P + 2, L[IND 7→ WRD], S]
(S-3),(S-4)

Figure 3: The state transitions for load and store instructions

The typing rules for load and store instructions are given in Figure 4.
We explain rule (T-1) to show some of the tricky points in the formulation
of constraints. First, REFS RAW = LT (IND) expresses a membership con-
straint, i.e. that the static type LT (IND) should be in the sort refs raw , since
REFS RAW can only be instantiated by an element in the sort refs raw . It
implies that an aload instruction can load both initialized and uninitialized
objects. In addition, rule (T-1) says that the local variable table type at P+2
(i.e. after the instruction) should componentwise cover that at P (before the
instruction). The same should also hold for the operand stack type, except
that the operand stack type at P + 2 should be extended by the static type
of the IND-th local variable. A similar constraint should also hold on the
components M at P and Mod ′ at P + 2. The precise definitions of M and
Mod ′ will be given in Sections 10.6 and 10.7. Note that the variables Φ and
LT in the terms Φ(P) and LT (IND) are not higher-order (i.e. function) vari-
ables, since the terms of this form in this chapter can always be regarded as
applications of an implicit function app on two first-order arguments.

Similar explanations can be given for the other three typing rules. One
point that is worth noticing in rule (T-3) is that the variableREFS RAW SBR
can be initiantiated into an element of the sort sbr , whereas the variable
REFS RAW in rule (T-1) cannot. This means that, as required in the OJVMS
and implemented in the Sun’s implementation, an astore instruction can
store a (valid or invalid) byte offset, whereas an aload instruction cannot
load it.

An aconst_null instruction loads the reference null. Its state transition
rule and typing rule are defined in Figure 5.

16

Mth(P) = aload IND

Φ(P) = Π [LT , ST ,M]
REFS RAW = LT (IND)

Φ(P + 2) ⊒ Π [LT ,ST + REFS RAW ,Mod ′]
(T-1)

Mth(P) = iload IND

Φ(P) = Π [LT ,ST ,M]
int = LT (IND)

Φ(P + 2) ⊒ Π [LT ,ST + int,Mod ′]
(T-2)

Mth(P) = astore IND

Φ(P) = Π [LT ,ST + REFS RAW SBR,M]

Φ(P + 2) ⊒ Π [LT [IND 7→ REFS RAW SBR], ST ,Mod ′]
(T-3)

Mth(P) = istore IND

Φ(P) = Π [LT ,ST + int,M]

Φ(P + 2) ⊒ Π [LT [IND 7→ int], ST ,Mod ′]
(T-4)

Figure 4: The typing rules for load and store instructions

Prg(P) = aconst null

Ξ[P, S] =⇒ Ξ[P + 1, S + null]
(S-5)

Mth(P) = aconst null

Φ(P) = Π [ST]

Φ(P + 1) ⊒ Π [ST + null]
(T-5)

Figure 5: The state transitions for aconst null and bipush

17

The state transitions for getfield and putfield are defined in Figure 6.
A getfield instruction replaces an object reference at the top of the operand
stack by the content of a field of the referenced object.

A putfield instruction stores the content at the top of the operand stack
into a field of the object referenced by the second top of the operand stack.

Prg(P) = getfield IND1 IND2
(FNAM , ,NOTNULL) = fResol(IND1, IND2)
WRD = H(OBJ)(FNAM)

Ξ[P,S +OBJ ,H] =⇒ Ξ[P + 3, S +WRD ,H]
(S-6)

Prg(P) = putfield IND1 IND2
(FNAM , ,) = fResol(IND1, IND2)
REC = H(OBJ)[FNAM 7→ WRD]

Ξ[P, S +OBJ +WRD ,H] =⇒ Ξ[P + 3, S,H [OBJ 7→ REC]]
(S-7)

Figure 6: The state transitions for getfield and putfield

The typing rules for getfield and putfield are given in Figure 7. The
sort of the variable REFS in Π [ST + REFS] and Π [ST + REFS + TYS]
assures that the OBJ in Figure 6 really references an object. The con-
straint widRefConvert (REFS ,CNAM) assures that in Figure 6 if OBJ ∈
Dom(H), then FNAM ∈ Dom(H(OBJ)) holds, i.e. both H(OBJ)(FNAM)
and H(OBJ)[FNAM 7→ WRD] are defined and make sense. But the typing
rules do not ensure that the condition OBJ ∈ Dom(H) in Figure 6 holds,
since the OBJ may hold null at run time. If OBJ 6∈ Dom(H) holds, then
H(OBJ) yields a failure. Thus the Premises in both rules in Figure 6 are
not satisfiable. In fact, in this case we would need another state transition
rule to describe which kind of runtime exception can be thrown. However, as
mentioned before, our formal specification does not consider this.

10.2 Object creation

A new instruction creates an object. The state transition and typing rules for
the instruction are defined in Figure 8.

The condition OBJ 6∈ Dom(H) in rule (S-8) assures that the object ref-
erence OBJ is new. Rule (T-8) says that the operand stack type after the
instruction covers one with unin(P,CNAM)2 at the top, which indicates that
the operand stack may hold an object that has not been initialized by an in-
stance initialization method <init>, i.e. an uninitialized object. Indeed, a

2 The OJVMS mentions such a type but gives no details on how it can be used in
the specification.

18

Mth(P) = getfield IND1 IND2

Φ(P) = Π [ST + REFS]
(,CNAM ,NOTNULL) = fResol(IND1, IND2)
widRefConvert(REFS ,CNAM)

Φ(P + 3) ⊒ Π [ST + NOTNULL]
(T-6)

Mth(P) = putfield IND1 IND2

Φ(P) = Π [ST + REFS + TYS]
(,CNAM ,NOTNULL) = fResol(IND1, IND2)
widRefConvert(REFS ,CNAM)
assConvert (TYS ,NOTNULL)

Φ(P + 3) ⊒ Π [ST]
(T-7)

Figure 7: The typing rules for getfield and putfield

Prg(P) = new IND1 IND2
CNAM = cResol(IND1, IND2)
OBJ 6∈ Dom(H)
Dom(REC) = allFields(CNAM)

Ξ[P, S,H] =⇒ Ξ[P + 3, S +OBJ ,H [OBJ 7→ REC]]
(S-8)

Mth(P) = new IND1 IND2

Φ(P) = Π [LT ,ST]
CNAM = cResol(IND1, IND2)
unin(P,CNAM) 6∈ LT

unin(P,CNAM) 6∈ ST

Φ(P + 3) ⊒ Π [LT ,ST + unin(P,CNAM)]
(T-8)

Figure 8: The state transition and the typing rule for new

19

typing rule that forbids the use of a memory location with a static type of
the form unin(,) forbids the use of an uninitialized object.

The constraints unin(P,CNAM) 6∈ LT and unin(P,CNAM) 6∈ ST as-
sure that at the program point P , no new object created by the same new

instruction at P can be used as a new object. This is strictly weaker than
to say that there is no new object created by the new instruction at P , since
a memory location at P is still allowed to hold a new object created by the
new instruction at P if the memory location has the type unusable. For an
example, see Section 11.

10.3 Operand stack management instructions

We only give the rules for dup in Figure 9. The rules for other instructions
are similar.

Prg(P) = dup

Ξ[P,S +WRD] =⇒ Ξ[P + 1, S +WRD +WRD]
(S-9)

Mth(P) = dup

Φ(P) = Π [ST + ANY]

Φ(P + 1) ⊒ Π [ST + ANY + ANY]
(T-9)

Figure 9: The state transition and typing rules for dup

10.4 Control transfer instructions

Prg(P) = if acmpeq BYT1 BYT2
OBJ1 = OBJ2 ⇒ P ′ = P + offset(BYT1,BYT2)
OBJ1 6= OBJ2 ⇒ P ′ = P + 3

Ξ[P, S +OBJ1 +OBJ2] =⇒ Ξ[P ′, S]
(S-10)

Prg(P) = if icmpeq BYT1 BYT2
VAL1 = VAL2 ⇒ P ′ = P + offset(BYT1,BYT2)
VAL1 6= VAL2 ⇒ P ′ = P + 3

Ξ[P, S + VAL1 + VAL2] =⇒ Ξ[, S]
(S-11)

Prg(P) = goto BYT1 BYT2

Ξ[P] =⇒ Ξ[offset(BYT1,BYT2)]
(S-12)

Figure 10: The state transitions for control transfer instructions

20

Mth(P) = if acmpeq BYT1 BYT2

Φ(P) = Π [ST +REFS +REFS′]

Φ(P + offset(BYT1,BYT2)) ⊒ Π [ST]
Φ(P + 3) ⊒ Π [ST]

(T-10)

Mth(P) = if icmpeq BYT1 BYT2

Φ(P) = Π [ST + int+ int]

Φ(P + offset(BYT1,BYT2)) ⊒ Π [ST]
Φ(P + 3) ⊒ Π [ST]

(T-11)

Mth(P) = goto BYT1 BYT2

Φ(P) = Π

Φ(P + offset(BYT1,BYT2)) ⊒ Π
(T-12)

Figure 11: The typing rules for control transfer instructions

All control transfer instructions can be dealt with in a very similar way. We
consider only a few control transfer instructions. The state transitions for
these instructions are given in Figure 10. They are quite straightforward.

The OJVMS requires (page 133) that no uninitialized objects may exist
on the operand stack or in a local variable when a control transfer instruction
causes a backwards branch. In our specification this requirement is unneces-
sary, thanks to rule (T-8).

10.5 Method invocation and return instructions

The state transitions for method invocation instructions are defined in Fig-
ure 12. We first consider the state transition rule (S-13) for invokespecial.
Since the instruction is only used to invoke instance instantiation methods
<init> and private methods, and to perform method invocations via super,
we use the function mResolSp. The state transition says that the execution
of the invoked method starts with a program state, in which the operand
stack is empty and the local variables hold the object, on which the method
is invoked, and all actual arguments. We use the notation lvsn to denote an
arbitrary local variable table state with the length n.

The state transition for invokevirtual (or invokeinterface) is simi-
lar to that for invokespecial. The difference is only that the former uses
the functions mResolV and mSelV (or mResolI and mSelI , respectively) to
compute the method code associated with OBJ , whereas the latter uses the
function mResolSp to do the same thing, independent of OBJ . Note that the
bytes BYT and 0 in a invokeinterface instruction are useless. They are
contained in the instruction for historical reasons.

Invocation of a method leads to the execution of a method code. The
typing rule in Figure 13 constrains the program point type at the beginning

21

Prg(P) = invokespecial IND1 IND2

(, , (TYn)NOTNULL VOID,COD ,MXL) = mResolSp(IND1, IND2)

Ξ[P, J, L, S +OBJ+WRDn]

=⇒ Ξ[COD, J + (L, S, P + 3), lvsMXL[0 7→ OBJ , n 7→ WRDn], []]

(S-13)

Prg(P) = invokevirtual IND1 IND2

(MNAM , , (TYn)NOTNULL VOID) = mResolV (IND1, IND2)
MNAM 6= < init >

(COD,MXL) = mSelV (OBJ ,MNAM , (TYn)NOTNULL VOID)

Ξ[P, J, L, S +OBJ+WRDn]

=⇒ Ξ[COD, J + (L, S, P + 3), lvsMXL[0 7→ OBJ , n 7→ WRDn], []]

(S-14)

Prg(P) = invokeinterface IND1 IND2 BYT 0

(MNAM , , (TYn)NOTNULL VOID) = mResolI (IND1, IND2)
n = BYT − 1

(COD ,MXL) = mSelI (OBJ ,MNAM , (TYn)NOTNULL VOID)

Ξ[P, J, L, S +OBJ+WRDn]

=⇒ Ξ[COD, J + (L, S, P + 5), lvsMXL[0 7→ OBJ , n 7→ WRDn], []]

(S-15)

Prg(P) = invokestatic IND1 IND2

(, , (TYn)NOTNULL VOID ,COD ,MXL) = mResolSt(IND1, IND2)

Ξ[P, J, L, S+WRDn]
=⇒ Ξ[COD, J + (L, S, P+3), lvsMXL[i 7→WRDi+1 | 0 ≤ i < n], []]

(S-16)

Figure 12: The state transitions for method invocation instructions

Mth(P) =
P = (, 0)

(MNAM ,CNAM , (TYn)NOTNULL VOID ,MXL) = mInfo(P)
MNAM = < init > ⇒

(NOTNULL VOID = void ∧

(CNAM 6= Object ⇒ (LT = UUMXL[0 7→ init(CNAM), n 7→TYn] ∧
IT = needIn)) ∧

(CNAM = Object ⇒ (LT = UUMXL[0 7→CNAM , n 7→TYn] ∧
IT = needNoIn))

instMeth(MNAM ,CNAM , (TYn)NOTNULL VOID) ⇒
LT = UUMXL[0 7→ CNAM , n 7→ TYn]

statMeth(MNAM ,CNAM , (TYn)NOTNULL VOID) ⇒
LT = UUMXL[i 7→ TYi+1 | 0 ≤ i < n]

Φ(P) ⊒ (LT , [], IT ,mod0)
(T-13)

Figure 13: The typing rule for the starting program point of a method code

22

of a method code. The rule is totally independent of method invocation in-
structions. The rule says that the method must be a <init>, an instance or
a static method. The static types given for the local variables depend on
what kind method it is. In general, however, each local variable that does not
store the object, on which the method is invoked, nor an actual parameter,
is always given the type unusable. This means that the content of such a lo-
cal variable cannot be used before the program explicitly assigns something
to the local variable. This means that the content of such a local variable
cannot be used before the program explicitly assigns something to the local
variable. We use UU n to denote the list [unusable, · · · , unusable] consisting
of n unusable.

In the case of an <init> method, the local variable 0 stores the object
being initialized. The static type for the local variable 0 and the initialization
tag depend on whether the class CNAM containing the method code is Object

or not. If CNAM is not Object, then the initialization tag is needIn and
the static type for the local variable 0 is init(CNAM); The initialization
tag needIn means that an instance initialization method needs to be called
exactly once within the current method code in any case, since, as we will see,
rule (T-14) will change the initialization tag into needNoIn and rule (T-20)
checks whether the initialization tag is really needNoIn. Note that if CNAM
is Object, the object being initialized cannot, and need not, be initialized by
another <init> within the current <init>.

Another point here is that the class CNAM is chosen to be the one con-
taining the <init> method. In fact, rule (T-14) will assure that CNAM is
either the original class of the object being initialized, or a superclass of it.
Thus it is safe to use CNAM at the place of the original class

The rule contains the component mod0, which will be defined in Sec-
tion 10.6.

The cases for an instance method and a static method are straightfor-
ward. Not much explanation for these rules is necessary.

The typing rules for method invocation instructions are given in Figure 14
and 15. Although these method invocation instructions are based on quite
different mechanisms, they all require that the operand stack at the program
point of the instruction contain the correct number of arguments with certain
types. In order to express this, each of the typing rules contains constraints
of the following forms:

(· · · , (TYn)void, · · ·) = a resolution function(IND1, IND2)
Φ(P) = Π [· · · , ST + · · ·+TYSn, · · ·]
invoConvert(TYS i, TYi) (i = 1, . . . , n)

We consider rule (T-14) for invokespecial in Figure 14 in detail. The rule
looks quite complicated, since the CConstrs-part of the rule basically gives
three cases. The program point type at the program point of a invokespecial
instruction must satisfy one of these cases.

23

Mth(P) = invokespecial IND1 IND2

(MNAM ,CNAM , (TYn)NOTNULL VOID, ,)=mResolSp(IND1, IND2)

Φ(P) = Π [LT , ST + REFS RAW+TYSn, IT ,M]
invoConvert(TYS i, TYi) (i = 1, . . . , n)
MNAM = < init > ⇒

(((REFS RAW = unin(P ′,CNAM) ∧
LT ′ = LT [CNAM /REFS RAW] ∧
ST ′ = ST [CNAM /REFS RAW] ∧
IT ′ = IT ∧
M ′ = Mod1) ∨

(REFS RAW = init(CNAM ′) ∧
IT = needIn ∧
(CNAM ′ = CNAM ∨ diSubcls(CNAM ′,CNAM)) ∧
LT ′ = LT [CNAM /REFS RAW] ∧
ST ′ = ST [CNAM /REFS RAW] ∧
IT ′ = needNoIn ∧
M ′ = Mod2)) ∧

NOTNULL VOID = void)
MNAM 6= < init > ⇒

(widRefConvert(REFS RAW ,CNAM) ∧
LT ′ = LT ∧
(NOTNULL VOID = NOTNULL ⇒ ST ′ = ST + NOTNULL) ∧
(NOTNULL VOID = void ⇒ ST ′ = ST) ∧
IT ′ = IT ∧
M ′ = M)

Φ(P + 3) ⊒ Π [LT ′, ST ′, IT ′,M ′]
(T-14)

Figure 14: The typing rule for invokespecial

24

The first case is when an <init>method is invoked on an object, on which
no <init>method has been invoked before. In this case, the operand stack en-
try containing the object to be initialized has the static type unin(P ′,CNAM).
Following the OJVMS, the rule requires that the class containing the <init>
method must be CNAM , and that after the instruction, all occurrences of
unin(P ′,CNAM) are changed into CNAM , indicating that the object has
been initialized.

Note that the rule changes the component M into Mod1 in the above
case. The definition of Mod1 will be given in Section 10.7.

The second case is when the instruction invokes an <init> method on
an object that is being initialized within the enclosing <init> method, i.e.
when the initialization tag IT is needIn and the operand stack entry for the
object has the static type init(CNAM ′). In this case init(CNAM ′) must be
introduced by rule (T-13). As mentioned in the discussion for that rule, the
enclosing method must be in the class CNAM ′. The constraint

(CNAM ′ = CNAM) ∨ diSubcls(CNAM ′,CNAM)

means that the invoked <init> method is either in the same class as the
enclosing method or in the immediate superclass of it. Analogous to the
first case above, the instruction changes all occurrences of init(CNAM ′) into
CNAM , indicating that after the instruction (but still inside the enclosing
<init> method) the object being initialized is regarded as having been ini-
tialized. In addition, the constraint IT ′ = needNoIn in the rule expresses the
change of the initialization tag into needNoIn. Rule (T-20) for return will
use the tag to determine whether an <init> method really invokes another
<init> method or not.

The constraint NOTNULL VOID = void assures that the <init>method
has no return type.

Note that the rule changes the component M into Mod2 in the second
case. The definition of Mod2 will be given in Section 10.7.

The third case concerns the invocation of a usual instance method (e.g.
via super). In this case, the constraint widRefConvert(REFS RAW ,CNAM)
assures that the class CNAM is a superclass of all possible classes of the
object, on which the method is invoked. In addition, the constraint implicitly
implies that REFS RAW = REFS holds. Now the method may have a return
type or not. the operand stack type ST ′ after the instruction is either ST +
NOTNULL or ST .

Rules (T-15), (T-16) and (T-17) are for invokevirtual, invokeinterface
and invokestatic. They are very similar to the third case of rule (T-14).
One difference is that they use the resolution functions mResolV , mResolI
and mResolSt , respectively, instead of mResolSp. In addition, rule (T-16)
needs to deal with the number BYT1 and BYT2 explicitly occurring in the
invokeinterface instruction. The invokestatic does not need an object,
on which the method is invoked,

25

Mth(P) = invokevirtual IND1 IND2

(MNAM ,CNAM , (TYn)NOTNULL VOID, ,) = mResolV (IND1, IND2)

Φ(P) = Π [ST +REFS+TYSn]
invoConvert(TYS i, TYi) (i = 1, . . . , n)
widRefConvert(REFS,CNAM)
MNAM 6= < init >
NOTNULL VOID = void ⇒ ST ′ = ST

NOTNULL VOID = NOTNULL ⇒ ST ′ = ST + NOTNULL

Φ(P + 3) ⊒ Π [ST ′]
(T-15)

Mth(P) = invokeinterface IND1 IND2 BYT1 BYT2

BYT1 > 0
BYT2 = 0

(MNAM ,INAM ,(TYBYT 1−1)NOTNULL VOID)=mResolI (IND1,IND2)

Φ(P) = Π [ST +REFS+TYSBYT 1−1]
invoConvert(TYS i, TYi) (i = 1, . . . ,BYT1− 1)
widRefConvert(REFS, INAM)
MNAM 6= < init >
NOTNULL VOID = void ⇒ ST ′ = ST

NOTNULL VOID = NOTNULL ⇒ ST ′ = ST + NOTNULL

Φ(P + 5) ⊒ Π [ST ′]
(T-16)

Mth(P) = invokestatic IND1 IND2

(MNAM , , (TYn)NOTNULL VOID, ,) = mResolSt(IND1, IND2)

Φ(P) = Π [ST+TYSn]
invoConvert(TYS i, TYi) (i = 1, . . . , n)
MNAM 6= < init >
NOTNULL VOID = void ⇒ ST ′ = ST

NOTNULL VOID = NOTNULL ⇒ ST ′ = ST +NOTNULL

Φ(P + 3) ⊒ Π [ST ′]
(T-17)

Figure 15: The typing rules for other method invocation instructions

Prg(P) = areturn or ireturn

Ξ[P, J + [(L′, S′, P ′)], L, S+WRD] =⇒ Ξ[P ′, J, L′, S′+WRD]
(S-17),(S-18)

Prg(P) = return

Ξ[P, J + [(L′, S′, P ′)], L, S] =⇒ Ξ[P ′, J, L′, S′]
(S-19)

Figure 16: The state transitions for return instructions

26

The state transition rules for return instructions are given in Figure 16.
The state transition uses the return address P ′ stored in the current Java
stack.

Mth(P) = areturn

Φ(P) = Π [ST +REFS]

(, , (TYn)REF,) = mInfo(P)
widRefConvert(REFS,REF)

(T-18)

Mth(P) = ireturn

Φ(P) = Π [ST + int]

(, , (TYn)int,) = mInfo(P)
(T-19)

Mth(P) = return

(,MNAM , (TYn)void,) = mInfo(P)
MNAM = < init > ⇒ Φ(P) = Π [needNoIn]

(T-20)

Figure 17: The typing rules for return instructions

The typing rules for return instructions are given in Figure 17. The rules
need no additional explanations. The only thing that is worth mentioning
is that a return instruction may be used to terminate an <init> method.
In this case, the rule checks whether the initialization tag is needNoIn to
assure that the <init> method has indeed invoked another <init> method.
Note that if the <init> method is in Object, then the tag has been set into
needNoIn at the beginning of the method.

Note that in general, there may exist some uninitialized objects in the
operand stack or local variables when a method terminates. However, there
is no possibility to pass an uninitialized object to the invoking method (see
Theorem 3).

10.6 Implementing finally-clauses

According to the OJVMS, jsr and ret instructions are control transfer in-
structions typically used to implement finally clauses in Java. Following
the OJVMS, we call the program point, to which a jsr instruction jumps, a
jsr target, and the code starting from a jsr target a subroutine. If no ambi-
guity is possible, we also call a jsr target a subroutine. Roughly speaking, a
jsr instruction calls a subroutine and a ret instruction returns from a sub-
routine. But, formally a subroutine need not have a ret instruction. We use

27

sb to range over all jsr targets (i.e. subroutines) and write SB as a variable
for them.

Prg(P) = jsr BYT1 BYT2
P = (,OFF)

Ξ[P, S] =⇒ Ξ[P + offset(BYT1,BYT2), S +OFF]
(S-20)

Prg(P) = ret IND

P = (COD ,)

Ξ[P,L] =⇒ Ξ[(COD, L(IND) + 3), L]
(S-21)

Figure 18: The state transitions for jsr and ret

The state transitions for jsr and ret are given in Figure 18. Rule (S-
20) says that a jsr instruction pushes the byte offset OFF of the current
program point onto the operand stack and transfers control to the jsr target
P + offset(BYT1,BYT2).

Rule (S-21) is for ret. It uses a byte offset in a local variable to compute
the program point following the jsr as the returning program point.

Typing jsr and ret is complex, since the OJVMS requires the following
features:

– Not every path in a subroutine needs to reach a ret instruction. A sub-
routine implicitly terminates whenever the current method terminates.

– Subroutines may be nested: a subroutine can call another subroutine.
(This feature is useful in implementing nested finally clauses.)

– In nested subroutines, an inner subroutine may contain a ret instruction
that directly returns to an arbitrary outer subroutine.

– During the execution, a returning program point can never be used more
than once by a ret instruction. Furthermore, at the outer program point,
to which a ret instruction in an inner subroutine directly returns, no
returning program point for a subroutine between the inner and the outer
subroutine should still be able to be used as a returning program point.

Technically, the mechanism should be more complex, since the OJVMS
still takes three additional situations into account. First, the implementation
of a finally clause often needs to be reachable from different execution
paths. Second, different execution paths often have to use a common local
variable to hold their own contents that are incompatible to each other. Third,
the content stored in a local variable in an execution path before the execution
of a finally clause may need to be used after the execution of the finally

clause. As an example for all these three situations, we can consider the
implementation of a try-catch-finally clause. More concretely, the finally
clause needs to be reachable from the end of the try clause and from the

28

beginning of the catch clause, the try clause needs to store a return integer
value in a local variable for use after the execution of the finally clause,
but the catch clause stores an exception in the same local variable for use
after the execution of the finally clause as well.

The problem is that since a common local variable may hold incompatible
contents, as described in the second situation above, the usual typing rules in
our formal specification would force the local variable in and, in particular,
after the finally clause to have the type unusable. Therefore a use of the
local variable in an individual execution path after the finally clause, as
described in the third situation, would be impossible.

To solve the problem, the OJVMS suggests to change the usual typing
process such that in an execution path, if a local variable is not modified or
accessed in a finally clause, then its type after the execution of the finally
clause should be the same as before the execution of the finally clause.
Thus we need a mechanism to record the local variables that are modified or
accessed within a finally clause. The component mod in a program point
type has been reserved for this purpose. Now we formally define what a
component mod is:

– First, we build a set grf of pairs of jsr targets, representing a directed
acyclic graph.

– Then we build a set csb of jsr targets.
– Finally, a component mod is a mapping such that Dom(mod) = grf ∪csb,

mod(sb, sb′) for (sb, sb′) ∈ grf and mod(sb) for sb ∈ csb are sets of indices
of local variables.

Intuitively, a pair (sb, sb′) in a grf should denote a call of the subroutine
sb′ inside the subroutine sb, and grf should contain nested non-recursive sub-
routine calls that may reach the current program point. A set grf need not
be a tree, since more than one subroutine may contain a call of the same sub-
routine and one subroutine may contain calls of more than one subroutine.
A set csb should contain current subroutines, i.e. those subroutines that con-
tain the current program point. The set mod(sb, sb′) for (sb, sb′) ∈ grf should
contain the indices of all local variables that may be modified or accessed in
an execution path from sb to sb′, and mod(sb) for sb ∈ csb those from sb to
the current address.

We define the following notations:

nod(mod) := {sb | (sb,) or (, sb) or sb ∈ Dom(mod)}
grf (mod) := {(sb, sb′) | (sb, sb′) ∈ Dom(mod)}
csb(mod) := {sb | sb ∈ Dom(mod)}

We define that mod ⊒ mod ′ holds if and only if grf (mod) ⊇ grf (mod ′)
and csb(mod) ⊇ csb(mod ′) hold, mod(sb, sb′) ⊇ mod ′(sb, sb′) holds for each
(sb, sb′) ∈ grf (mod ′) and mod(sb) ⊇ mod ′(sb) holds for each sb ∈ csb(mod ′).

The typing rules for jsr and ret are given in Figure 19. We first consider
rule (T-21). The rule defines only one constraint at the program point P

29

Mth(P) = jsr BYT1 BYT2

Φ(P) = Π [ST ,M]
SB = P + offset(BYT1,BYT2)
SB 6∈ nod(M)

Φ(SB) ⊒ Π [ST + sbr(SB),
M|grf (M) ∪ {(sb,SB) 7→ M(sb) | sb ∈ csb(M)} ∪ {SB 7→ ∅}]

(T-21)

Mth(P) = ret IND

Φ(P) = Π [LT]
LT (IND) = sbr()
∀P ′∀IND ′∀Π ′∀LT ′.((Mth(P ′)=ret IND ′ ∧ P ′ 6=P ∧ Φ(P ′)=Π ′[LT ′])

⇒ LT (IND) 6=LT ′(IND ′))
(T-22)

Mth(P) = ret IND

Φ(P) = (LT ,ST , IT ,M)
Mth(P ′) = jsr BYT1 BYT2
SB = P ′+offset(BYT1,BYT2)
LT (IND) = sbr(SB)
Φ(P ′) = Π ′[LT ′,ST ′,M ′]

Φ(P ′ + 3) ⊒ (LT ′[j 7→ invld(LT (j), sbrs(SB ,M)) | j ∈ mlvs(SB ,M)],
invld(ST , sbrs(SB ,M)), IT ,
reachMod (M, {sb | (sb,SB) ∈ Dom(M)}) ∪
{sb 7→ M ′(sb,SB) ∪mlvs(SB ,M) | (sb,SB) ∈ Dom(M)})

(T-23)

Figure 19: The typing rules for ret and jsr

30

of a jsr instruction, namely SB 6∈ nod(M), which assures that the called
subroutine SB is not called recursively. At the beginning of the subroutine
SB , the new M records the addition of the edges (sb, SB) representing the
calls of SB inside all old current subroutines in csb(M), and elimination
of the old current subroutines in csb(M) and addition of the new current
subroutine SB , where SB 7→ ∅ denotes that no local variables have been
modified or accessed since the beginning of the new current subroutine SB .

Rule (T-22) is for ret. The constraint LT (IND) = sbr() assures that the
local variable IND holds a byte offset. The constraint ∀P ′∀IND ′∀Π ′∀LT ′. · · ·
assures that the method Mth has at most one ret instruction for the same
subroutine. This is not a serious restriction, since whenever two ret instruc-
tions are needed, one can always write the first ret and at the place of the
second ret a goto instruction to the first ret.

Rule (T-23) introduces constraints for the program type at the returning
program point P ′ + 3, to which a ret at P returns, where the calling jsr of
the subroutine is at P ′.

The formulation of rule (T-23) uses several new auxiliary functions.
The first auxiliary function computes the set of the indices of all local

variables that may be modified or accessed in an execution path from a given
program point to the current program point. For the component mod in a
program point type and a subroutine sb ∈ nod(mod), we define

mlvs(sb,mod) :=

⋃

(sb,sb′)∈grf (mod)(mod(sb, sb′) ∪mlvs(sb′,mod))

if sb 6∈ csb(mod)
mod(sb) if sb ∈ csb(mod)

The term mlvs(SB ,M) in rule (T-23) is a set containing the indices of all
local variable that may be modified or accessed from SB to P .

The second auxiliary function computes all subroutines called from the
call of a given outer subroutine to the current subroutine. For the component
mod in a program point type and a subroutine sb ∈ nod(mod), we define

sbrs(sb,mod) :=

{⋃

(sb,sb′)∈grf (mod){sb}∪sbrs(sb
′,mod) if sb 6∈ csb(mod)

{sb} if sb ∈ csb(mod)

In order to change all subroutine types of those subroutines in a given
set of subroutines E into invalid subroutine types, we define the following
function invld(any,E):

invld(any,E) :=

{

invldsbr if any = sbr(sb) and sb ∈ E

any otherwise

Note that any in the second line can be an arbitrary static type.
For convenience, we lift the function invld to operand stack types:

invld([any0, · · · , anym], E) := [invld(any0, E), · · · , invld(anym, E)]

31

In order to compute the part of a mod , which is reachable to a sub-
routine in a given set of subroutines E, we define the following function
reachMod(mod , E):

reachMod (mod , E) :=

{(sb, sb′) 7→ mod(sb, sb′) | (sb, sb′) ∈ Dom(mod), sb′ ∈ E}
∪ reachMod (mod , {sb | (sb, sb′) ∈ Dom(mod), sb′ ∈ E}) if E 6= ∅

∅ if E = ∅

In rule (T-23), the applicability conditions Φ(P) = (LT , · · ·), Mth(P ′) =
jsr BYT1 BYT2, SB = P ′+offset(BYT1,BYT2) and LT (IND) = sbr(SB)
assure that the ret at P causes the subroutine SB to return to the next
program point P ′ + 3 of the calling jsr at P ′. Note that the constraint
∀P ′∀IND ′∀Π ′∀LT ′. · · · in rule (T-22) enforces that there exists at most one
P for a jsr at P ′ in rule (T-23).

Rule (T-23) expresses the following relationship between the program
types at P , P ′ and P ′ + 3, where the jsr at P ′ calls a subroutine SB , the
ret at P returns from the subroutine SB to P ′ + 3:

– If a local variable is definitely not modified or accessed from SB to P ,
then its static type at P ′ +3 covers that at P ′; otherwise, i.e. if the local
variable may be modified or accessed from SB to P , then its static type at
P ′+3 covers that at P , except that if its static type at P is a subroutine
type for a subroutine possibly called from SB to P , then its static type
at P ′ + 3 covers invldsbr .

– The operand stack type at P ′ + 3 covers that at P , except that if an
operand stack entry at P has a subroutine type for a subroutine called
from SB to P , then the static type of the entry at P ′+3 covers invldsbr .

– The initialization tag at P ′ + 3 covers that at P .

– The subroutines called until P ′ + 3 include all those called until P but
not from SB to P . The local variables possibly modified or accessed from
the call of a current subroutine to P ′ + 3 include those from the call of
the same current subroutine to SB plus all those possibly modified or
accessed from SB to P .

A final tricky point is that although the ret instruction in rule (T-23)
accesses all those local variables that have a subroutine type for a subroutine
called from P ′ to P , the typing rule need not treat this explicitly. The reason
is that the indices of these variables are all contained in the set mlvs(SB ,M)
in rule (T-23). In fact, if a local variable holds a program point of a jsr

instruction between SB and P , then the program point must be stored in the
local variable by an astore instruction between SB and P . By the typing
rule for astore (see the discussion below) and the definition of mlvs , the
index of the local variable must be included in the set mlvs(SB ,M).

32

10.7 On the instructions that modify or access local variables

Now it is time to give the precise definitions of the term Mod ′ in Figure 4,
the term mod0 in Figure 13 and the terms Mod1 and Mod2 in 14.

We first consider the typing rules in Figure 4. Given the notations in
Figure 4, we formally define

Mod ′ := M|grf (M) ∪ {sb 7→ M(sb) ∪ {IND} | sb ∈ csb(M)}

The typing rule in Figure 13 introduces the program point type for the
starting program point of a method. We define mod0 := ∅.

Now we consider rule (T-14) for invokespecial in Figure 14. Since the
first two cases in rule (T-14) consider the initialization of a raw object, we
regard all those local variables whose contents reference the raw object as
being modified. Given the notations in Figure 14, we formally define

Mod1 := M|grf (M) ∪
{sb 7→ M(sb)∪{i |unin(P ′,CNAM)=LT (i)} | sb ∈ csb(M)}

Mod2 := M|grf (M) ∪ {sb 7→ M(sb)∪{i | init(CNAM)=LT (i)} | sb ∈ csb(M)}

Note that the third case in rule (T-14) does not deal with initialization of a
raw object, thus does not cause the extension of the M .

11 Examples

In this section we use real methods to illustrate how to check whether a given
method has a given program type.

For notational simplicity, some instructions are abbreviated as follows:

– Each instruction
opcode byt1 byt2

at the program point pp with opcode ∈ {if acmeq, if icmeq, goto, jsr}
and pp = (, off) is abbreviated as

opcode n

with n = off + (byt1 ∗ (28)) + byt2.
– Each instruction

opcode ind1 ind2

with opcode ∈{getfield,putfield,new,invokespecial,invokevirtual,
invokeinterface, invokestatic} is abbreviated as

opcode #n

with n = (ind1 ∗ (28)) + ind2. The instruction

invokeinterfaceind1 ind2 byt 0

is abbreviated as invokeinterface #n with n = (ind1 ∗ (28)) + ind2.

33

Figure 20 gives the type checking for the first method. A row in Figure 20
contains a program point, i.e. an instruction, in the given method, the pro-
gram point type in the given program type at the program point, the typing
rule applied at the program point and all possible successor program points
with respect to the rule. Since the method does not deal with any subroutines
or instance initializations, we consider only the local variable table type and
the operand stack type in a program point type.

We assume that the declaration of the method void m(J1,J2) in Fig-
ure 20 is contained in a class C. Furthermore, we assume that J1 and J2 are
two interfaces, and the entry at the index #17 in the constant pool references
a method in a superinterface of J1 and J2, which takes no parameters and
yields no result. At the program point 13, the static type of the top entry
in the operand stack needs to be represented as a set, since the top entry
may be the first or second actual parameter and the interfaces J1 and J2

need not have one smallest common superinterface. Rule (T-16) is applied at
the program point 13, where the constraint widRefConvert(REFS, INAM)
in the rule assures that the invoked method must exist in a superinterface of
J1 and J2.

The method LT ST Rule Successors

Method void m(J1,J2) (T-13) 0

0 aconst_null [C, J1, J2] [] (T-5) 1

1 aload 1 [C, J1, J2] [null] (T-1) 3

3 if_acmpeq 11 [C, J1, J2] [null, J1] (T-10) 6, 11
6 aload 1 [C, J1, J2] [] (T-1) 8

8 goto 13 [C, J1, J2] [J1] (T-12) 13

11 aload 2 [C, J1, J2] [] (T-1) 13

13 invokeinterface #17 [C, J1, J2] [{J1, J2}] (T-16) 18

18 return [C, J1, J2] [] (T-20)

Figure 20: A method containing an interface method invocation

The second example in Figure 21 shows the use of subroutine types. The
method contains two jsr instructions at 0 and 9 calling the subroutine 13.
The subroutine 13 contains a jsr at 15 calling the (inner) subroutine 18,
and the subroutine 18 directly returns to the corresponding calling jsr of
the (outer) subroutine 13, i.e. to 3 or 12. After the return, i.e. at 3 and 12,
the subroutine types sbr(13) and sbr(18) are changed into invldsbr . The local
variable 1 has different static types at the two calling jsr, i.e. at 0 and 9.
Since the local variable 1 is not modified or accessed in the subroutine 13,
after the return of the subroutine, i.e. at 3 and 12, the static type of the local
variable 1 is the same as that at the calling jsr, i.e. at 0 and 9.

34

The method LT ST Rule Successors

Method void m() (T-13) 0

0 jsr 13 [C, unusable , unusable] [] (T-21) 13

3 astore 2 [C, unusable , invldsbr] [invldsbr] (T-3) 5

5 aload 0 [C, unusable , invldsbr] [] (T-1) 7

7 astore 1 [C, unusable , invldsbr] [C] (T-3) 9

9 jsr 13 [C,C, invldsbr] [] (T-21) 13

12 return [C,C, invldsbr] [invldsbr] (T-20)
13 astore 2 [C, unusable , unusable] [sbr(13)] (T-3) 15

15 jsr 18 [C, unusable , sbr(13)] [] (T-21) 18

18 ret 2 [C, unusable , sbr(13)] [sbr(18)] (T-22)
(T-23) 3

(T-23) 6

Figure 21: A method containing subroutines

12 Static well-typedness vs. runtime properties

The OJVMS requires that the type-correctness of nearly all runtime uses of
data is checked statically. In our formal specification, which considers a subset
of the JVM, we can formally prove that if a program is statically well-typed,
then all runtime data to be used will definitely have correct types. For doing
this, we first need to define precisely what are the types of runtime data.

12.1 Tags of runtime data

In the previous sections we have often informally mentioned the types of
runtime data. Two examples are as follows:

– In Section 10.2 we mentioned that a new instruction creates an object.
This informally implies that the created datum is a reference of an object.

– In Section 10.6 we mentioned that a jsr instruction pushes a byte offset
onto the operand stack.

However, the problem is that both an object reference and a byte offset are
one-word wide data in our constraint domain. In other words, the type of a
datum cannot be determined by the datum itself. Thus we need an additional
mechanism to explicitly determine the type of a datum.

The mechanism can be built in two steps: first, we define the possible types
of runtime data; second, we extend the state transition relation to define the
types of the contents in the local variables and the operand stack.

A relatively simple set of possible types of runtime data, called tags, is
defined as follows:

tag ::= cnam | null | int | addr | undefined

35

Intuitively, the tag cnam should be the tag of the reference of each object
of the class cnam, null that of the special reference null, and int that of
each element of the primitive type int. As mentioned before, we need to deal
with the byte offset of a jsr. Thus we introduce the tag addr for all byte
offsets. The tag undefined indicates that the content of a local variable or an
operand stack entry has not been explicitly defined by an instruction in the
execution so far. We use tag to range over all tags.

Note that the above set of tags is a relatively simple one, since they do
not contain anything to express that an object is a raw object or an offset is
of a special subroutine type. In fact, there are no problems to do that, except
that the definition of the types of the contents in the local variables and
the operand stack would become more complicated. We consider the above
simple set due to space limits in this chapter.

To record the type of the content of each local variable and each operand
entry, lists of tags of the form [tag0, · · · , tagn] with n ≥ −1 are introduced. We
define [tag0, · · · , tagn](k) := tagk if 0 ≤ k ≤ n, [tag0, · · · , tagn](k) := failure
otherwise. A list of the above form is called a local variable state tag if it
consists of the types of the contents in all local variables; it is called an
operand stack state tag if it consists of the types of the contents of an operand
stack.

For readability, we use lvstag to range over all local variable state tags,
and stktag over all operand stack state tags. For notational simplicity, we
write LG as a variable for the sort lvstag , and SG for the sort stktag.

A local variable state tag and an operand stack state tag do not record
the type of an object that is held by a field of another object but not directly
by a local variable or an operand stack entry. Thus we still need to introduce
a class record as a mapping {objn 7→ cnamn}. A class record as above maps
all elements other than obj n to a special value failure. We use classof to
range over all concrete class records and C as a variable for the sort classof .

In order to record the local variable state tags and the operand stack state
tags for the methods stored in a Java stack, we define a Java stack tag as a
list consisting of entries of the form (lvstag, stktag). We use jstktag to range
over all Java stack tags and use JG as a variable of the sort jstktag .

We define a program state tag as a tuple (jstktag , classof , lvstag, stktag)
and in the rest of the chapter still use statag to range over all program state
tags.

Finally, we define that an extended program state is a pair (stat , statag),
where stat = (pp, jstk , lvs , stk , hp), statag = (jstktag , classof , lvstag, stktag),
size(jstk) = size(jstktag), size(lvs) = size(lvstag) and size(stk) = size(stktag)
hold.

Now we extend the state transition rules in Section 10. Let us call an
extended state transition rule an extended rule and an original state transition
rule an extended rule in this section.

36

In order to ensure that the extended rule relation does not affect the orig-
inal state transition relation, we require that if an original rule in Section 10
is of the form

Premises

Stat =⇒ Stat ′

then the extended rule obtained from it is always of the form

Premises

Stat, Statag =⇒ Stat ′, Statag ′

satisfying that

– FV(Statag ′) ⊆ FV(Statag)
– for every two program states stat and stat ′ and every extended pro-

gram state (stat , statag), if there is a substitution σ such that Dom(σ) =
FV(Premises)∪FV(Stat =⇒ Stat ′), stat = σ(Stat), stat ′ = σ(Stat ′) and
σ(Premises) hold, then there is a substitution σ′ such that Dom(σ′) =
Dom(σ)∪FV(Statag) and σ′(Statag) = statag hold, and (stat ′, σ′(Statag ′))
is an extended program state.

For notational simplicity, we always omit the Premises-, Stat- and Stat ′-
parts in the definition of an extended rule in this section. Note that the
Statag- and Statag ′-parts may contain variables occurring in Stat- and Stat ′-
parts.

In many extended rules, the Java stack tags are not changed and the
local variable state tags (or the operand stack state tags) are changed in a
completely analogous way as the local variable states (or the operand stack
states, respectively). The extended rules for aload and new are two such
extended rules. We give their definitions in Figure 22 and omit the explicit
presentation of other such extended rules due to space constraints.

(JG ,C ,LG ,SG) =⇒ (JG ,C ,LG, SG + LG(IND)]
(S’-1)

(JG,C ,LG ,SG) =⇒ (JG ,C [OBJ 7→ CNAM],LG ,SG +CNAM]
(S’-8)

Figure 22: The extended rules for aload and new

Figure 23 contains the extended rule for getfield. The rule is slightly
tricky, since the way to get the tag of the loaded content depends on whether
the loaded content is an object or not. If it is an object, then the tag should
be obtained from the class record classof in the program state. If it is a value
of a primitive type, then the tag should the primitive type. (In this chapter
the only primitive type is the type int.) To model this, we define the following

37

auxiliary function, which yields the tag of the content held by the field fnam
of the type notnull in the object obj .

seltag(fnam , notnull , obj , hp, classof) :=

classof (hp(obj)(fnam)) if notnull is a cnam
int if notnull is int
failure otherwise

(JG ,C ,LG ,SG)
=⇒ (JG ,C ,LG ,SG + seltag(FNAM ,NOTNULL,OBJ ,H,C))

(S’-6)

Figure 23: The extended rule for getfield

Rules (S-13), (S-14) and (S-15) for method invocations change the Java
stack states. Thus their extended rules change the Java stack tags. Since
these extensions are very similar, we present only one of them. The situation
is similar for rules (S-17) and (S-19). Thus we present only one of the two
extended rules. Figure 24 these two extended rules, where UDk stands for a
list [undefined , · · · , undefined] consisting of k times undefined .

(JG,C ,LG ,SG + TAG0+TAGn)
=⇒ (JG + (LG ,SG),C ,UDMXL[i 7→ TAG i | 0 ≤ i ≤ n], []]

(S’-13)

(JG + (LG ′,SG ′),C ,LG, SG +TAG

=⇒ (JG + (LG ′,SG ′),C ,LG ′,SG ′ + TAG]

(S’-17)

Figure 24: The extended rules for invokespecial and areturn

(JG ,C ,LG ,SG) =⇒ (JG ,C ,LG ,SG + addr)
(S’-20)

(JG ,C ,LG, SG) =⇒ (JG ,C ,LG, SG)
(S’-21)

Figure 25: The extended rules for jsr and ret

Figure 25 contains the extended rules for jsr and ret. Note that in
rule (S’-21), the program state tag does not change at all. The intuition

38

is that a ret may change some the validity of some byte offsets. However,
since we consider only a simple tag addr for byte offsets, this intuition can-
not be reflected. (As mentioned, the simple tag addr could be replaced by a
family of tags indexed by all subroutines. But we do not consider them here.)

12.2 The concepts for runtime type safety

To model the correctness of a tag tag with respect to a static type any , we
formally define a relation correct by:

correct(null, refs)
correct(cnam , refs) if widRefConvert (cnam , refs)
correct(cnam , unin(, cnam))
correct(cnam , init(cnam ′)) if widRefConvert (cnam , cnam ′)
correct(int, int)
correct(addr , sbr())
correct(undefined , unusable)
correct(tag , any) if correct(tag , any ′) and any ⊒ any ′

We also define that correct(lvstag , lvsty) holds if and only if size(lvstag) =
size(lvsty) and correct(lvstag(i), lvsty(i)) for all i = 0, . . . , size(lvstag), and
that correct(stktag, stkty) holds if and only if size(stktag) = size(stkty) and
correct(stktag(i), stkty(i)) for all i = 0, . . . , size(stktag).

For a heap hp and a class record classof , we define that correct(hp, classof)
holds if and only if the following conditions are true:

1. Dom(hp) ⊆ Dom(classof).
2. For each obj 7→ rec ∈ hp, if (fnam , notnull) ∈ allFields(classof (obj)),

then fnam ∈ Dom(rec).
3. For each obj 7→rec ∈ hp and (fnam , notnull) ∈ allFields(classof (obj)), if

notnull = ref , then rec(fnam) ∈ Dom(classof).
4. For each obj 7→rec ∈ hp and (fnam , notnull) ∈ allFields(classof (obj)), if

notnull = ref , then widRefConvert(classof (rec(fnam)), notnull).

Intuitively, condition 1 says that classof can determine the class of each
object in hp. Condition 2 assures that an object in hp always contains all
fields required by its class. Condition 3 assures that if an object in hp contains
a field whose type is a class or an interface, then the field holds an object,
whose class can be determined by classof . Condition 4 says that the class of
the object held by the field in condition 3 is a subtype of the class or interface
of the field.

Note that if notnull 6= ref , i.e. if notnull = int, then conditions 3 and 4
have no effects. Thus one might wonder why we do not define a condition
constraining rec(fnam). The intuition is that if the runtime type of a datum
is a primitive type, then the runtime type is always the static type. Thus
for (fnam , int) ∈ allFields(classof (obj)) and obj 7→ rec ∈ hp, the content
rec(fnam)) is always an integer of the type int. Hence such a condition is
useless.

39

12.3 Runtime properties

From now on, we assume that the program Prg has a program type prgty .
Formally we define an arbitrary execution of Prg as

(stat1, statag1) =⇒ (stat2, statag2) =⇒ · · ·

where each (stat i, statagi) for i = 1, 2, 3, · · ·, are extended program states,
stat1 is of the form (pp1, [], · · ·) and Prg(pp1) is of the form invokestatic · · ·.

We use (stat1, statag1) =⇒∗ (stath, statagh) with h ≥ 1 to denote a zero
or more step execution

(stat1, statag1) =⇒ · · · =⇒ (stath, statagh)

For the rest of the chapter, we assume that

– stat i = (ppi, jstk i, lvs i, stk i, hpi) for all i = 1, 2, 3, . . .,
– statag i = (jstktag i, classof i, lvstag i, stktagi) for all i = 1, 2, 3, . . ., and
– prgty(ppi) = pttyppi

= (lvstyppi
, stktyppi

, intagppi ,modppi) for all i =
1, 2, 3, Note that i 6= j does not imply that ppi 6= ppj.

Now we give some lemmas and theorems. Proofs are omitted due to space
limits.

The first theorem states the runtime type safety.

Theorem 1. In the execution (stat1, statag1) =⇒ (stat2, statag2) =⇒ · · ·,
if correct(lvstag1, lvstypp1

), correct(stktag1, stktypp1
) and correct(hp1) hold,

then correct(lvstag i, lvstyppi
), correct(stktag i, stktyppi) and correct(hp i) hold

for all i = 1, 2, · · ·.

The proof follows from an induction on the length of the execution using
the extended rules and typing rules.

A practical consequence of Theorem 1 is as follows:

Corollary 2. An offset cannot be manipulated by an instruction described
in our formal specification except:

1. It can be created and stored onto the operand stack by a jsr.
2. It can be manipulated in the operand stack by the stack manipulation

instruction dup.
3. It can be stored from the operand stack in a local variable by an astore.
4. In a local variable, it can be used to compute the return address by a ret.

Now let us consider raw objects and instance initialization methods. The
following theorems can either be proved using a set of tags for runtime data
that is more refined then the current one, or by a careful analysis of all
possible executions. Note that Theorems 3 and 4 are not completely trivial,
since a method may pass values via the heap.

40

Theorem 3. Assume that a method invokes another method. Then the in-
voked method can never pass a raw object back to the invoking method.

Theorem 4. Assume that a method invokes another method that is not an
<init>. Then the invoking method can never pass a raw object to the invoked
method.

It is very easy to show how an instance initialization method invokes
another instance initialization method.

Theorem 5. If an instance initialization method is not in class Object, then
a fragment of an execution path from the starting address to a return in-
struction of the method always includes exactly one invocation of an instance
initialization method of the same class or the immediate superclass on the ob-
ject being initialized. If the instance initialization method is in class Object,
then the fragment includes no invocations of an instance initialization method
on the object being initialized.

Now we can state when the static type of a local variable or an operand
stack entry ensures that it contains a raw object.

Theorem 6. Assume that (stat1, statag1) =⇒ (stat2, statag2) =⇒ · · · is
an execution and X ∈ {lvsh, stkh} and XT ∈ {lvstyh, stktyh} with h ≥ 1 are
such that X is lvsh if and only if XT is lvstyh (and thus X is stkh if and
only if XT is stktyh).

– If XT (k) = unin(pp, cnam) holds for some k, pp and cnam, then X (k)
contains a reference to an uninitialized object of the class cnam created
by a new at pp.

– If XT (k) = init(cnam) holds for some k and cnam, then X (k) contains
a reference to an object of cnam that is being initialized inside an <init>

and has not been initialized by another <init>.

The following lemma shows that it is impossible for two different local
variables/operand stack entries at a program point to have the same static
type unin(pp, cnam) for some pp and cnam but hold references to different
uninitialized objects. In fact, the lemma states the correctness of the typ-
ing rule for invokespecial on an instance initialization method, i.e., that
if an object in a local variable/operand stack entry with the static type
unin(pp, cnam) is initialized, then all occurrences of unin(pc, cnam) can be
replaced by cnam .

Lemma 7. Assume that (stat1, statag1) =⇒ (stat2, statag2) =⇒ · · · is an
execution and X ,Y ∈ {lvsh, stkh} and XT ,YT ∈ {lvstyh, stktyh} with h ≥ 1
such that X is lvsh if and only if XT is lvstyh, and Y is lvsh if and only if
YT is lvstyh. Then the following conditions cannot hold at the same time for
the indices k and k′:

41

– XT (k) = YT (k′) = unin(pp, cnam) holds for certain pp and cnam.
– X (k) and Y(k′) contain references to different uninitialized objects created

by the same new at pp.

Now we know that if a memory location has a class as a static type, then
it always holds initialized object or null.

Theorem 8. Assume that (stat1, statag1) =⇒ (stat2, statag2) =⇒ · · ·
is an execution and X ∈ {lvsh, stkh} and XT ∈ {lvstyh, stktyh} with h ≥ 1
such that X is lvsh if and only if XT is lvstyh. If XT (k) = cnam holds for
some k and cnam, then X (k) contains a reference to an initialized object of
cnam or null.

The typing rules for an instruction specify precisely how the instruction
behaves on an uninitialized object. The following theorem summarizes some
of the results:

Theorem 9. 1. A reference to an uninitialized object cannot be used in an
instruction described in our formal specification except it is dup aload,
astore or invokespecial. In the case of invokespecial, the method
must be <init>, the object is the one being initialized and must be of the
same class as the <init>.

2. Inside a method <init> that is not declared in the class Object, there
must be a call to another <init> on the object being initialized via an
invokespecial, where the called <init> is declared in the same class as
or in an immediate superclass of that of the calling <init>. Before this
call, the object being initialized cannot be used in an instruction described
in our formal specification except it is dup, aload or astore.

13 Conclusion

We have shown a formal specification of a substantial subset of JVM instruc-
tions. The formal specification clarifies some ambiguities and incompleteness
and removes some (in our view) unnecessary restrictions in the description
of the official Java Virtual Machine Specification [10].

Finally, it is worth mentioning that our study on the semantics of the JVM
in this chapter led to the discovery of a possibility of writing a constructor
that invoked no other constructor in the JDK 1.1.4 implementation of the
JVM, which is clearly an implementation bug with respect to the official Java
Virtual Machine Specification (page 122).

Acknowledgement

Thanks to Gilad Bracha and David von Oheimb for clarifying comments
and useful feedback, and Masami Hagiya for pointing out an error in the
description.

42

References

1. A. Aho, R. Sethi, and J. Ullman. Compilers — Principles, Techniques, and

Tools. Addison-Wesley Publishing Company, 1986.
2. R. Cohen. The Defensive Java Virtual Machine specification. Technical report,

Computational Logic inc., 1997.
3. D. Dean. The security of static typing with dynamic linking. In Proc. 4th ACM

Conf. on Computer and Communications Security. ACM, 1996.
4. S. Dossopoulou and S. Eisenbach. Java is type safe — probably. In Proc. 11th

European Conf. on Object-Oriented Programming, pages 389–418. Springer-
Verlag LNCS 1241, 1997.

5. S. Freund and J. Mitchell. A type system for object initialization in the java
bytecode language. Presneted at Int. Workshop on Security and Languages,
Oct. 1997.

6. S. Freund and J. Mitchell. A type system for object initialization in the java
bytecode language (summary). Electronic Notes in Theoretical Computer Sci-

ence, 10, 1998. http://www.elsevier.nl/locate/entcs/volume10.html.
7. A. Goldberg. A specification of Java loading and bytecode verification. 1997.
8. J. Gosling, B. Joy, and G. Steele. The JavaTMLanguage Specification. Addison-

Wesley, 1996.
9. M. Hagiya. On a new method fot dataflow analysis of Java Virtual Machine

subroutines. 1998.
10. T. Lindholm and F. Yellin. The JavaTMVirtual Machine Specification. Addison-

Wesley, 1996.
11. T. Nipkow and D. von Oheimb. Javaℓight is type-safe — definitely. In Proc.

25st ACM Symp. Principles of Programming Languages, 1998.
12. Z. Qian. A formal specification of Javatm Virtual Machine instructions. Tech-

nical report, FB Informatik, Universität Bremen, September 1997. Revised
version to appear June 1998.

13. V. Saraswat. Java is not type-safe. Technical report, AT&T Research, 1997.
14. E. Sirer, S. McDirmid, and B. Bershad. A Java system security architecture.

http://kimera.cs.washington.edu/, 1997.
15. R. Stata and M. Abadi. A type system for Java bytecode subroutines. In Proc.

25st ACM Symp. Principles of Programming Languages, 1998.
16. D. Syme. Proving Java type soundness. Technical report, University of Cam-

bridge Computer Laboratory, 1997.

43

