
Constraint-Based Specification and Dataflow

Analysis for JavaTM Bytecode Verification

Zhenyu Qian

Kestrel Institute, 3260 Hillview Avenue, Palo Alto, CA 94304, USA⋆

Aug. 10, 1998

Abstract. (Java) bytecode verification should prevent various runtime errors in
Java Virtual Machine (JVM) programs and play an important part in ensur-
ing Java-based internet security. The official JVM specification is inadequate for
security-critical applications. Recent research work has proposed using formal typ-
ing systems to specify bytecode verification. However, it is still unknown how to
make an implementation, whose correctness and completeness with respect to the
formal specification can be proved.

This paper proposes an approach to bridging the gap. We first give formal
typing rules enforcing formal constraints on types for memory locations in simplified
legal JVM programs. Then we present a dataflow analysis algorithm (scheme) as
a bytecode verifier, which non-deterministically uses the formal rules to compute
the smallest types for memory locations that satisfy the constraints, or to report
a failure if the computation fails. By formally proving the correctness, termination
and completeness, we show a way to reach a bytecode verifier, which is provably
correct with respect to a formal specification.

1 Introduction

Java Virtual Machine (JVM) is designed so that JVM programs (i.e. byte-
code) can be dynamically loaded over the Web and run locally. In order to
ensure that no security problems may arise in the local system, mechanisms
are needed to enforce restrictions on dynamically loaded bytecode. One of
the mechanisms is bytecode verification, which should statically ensure that
bytecode will never use data with wrong types in execution. Although the
Java industry has been working hard to make their bytecode verifiers secure,
several serious flaws have been discovered (and fixed) so far (see e.g. [10,15]).

The problem has at least two aspects. The first is to ask whether the
specification is adequate to guarantee the security. The official JVM speci-
fication (OJVMS) is inadequate, since it is ambiguous and hard to reason
about. Therefore, recent research work (e.g. [17,5,13]) proposes using formal
typing systems to specify bytecode verification.

⋆ The author gratefully acknowledges the support by DARPA contract F30602-96-
C-0363. Part of the work was done while the author was at Bremen Institute for
Safe Systems, Department of Computer Science, University of Bremen, Germany.

The second aspect of the problem is that even if there is a formal specifi-
cation, it is still unknown how to make an implementation, whose correctness
and completeness with respect to the formal specification can be proved.

This paper proposes an approach to solving the second aspect of the prob-
lem. We give formal typing rules enforcing constraints on types for memory
locations in simplified legal JVM programs (in Section 5). Then we present a
dataflow analysis algorithm (scheme) as a bytecode verifier (in Section 7),
which non-deterministically uses the formal typing rules to compute the
smallest types for memory locations that satisfy the constraints, or to re-
port a failure if the computation fails. By formally proving the correctness,
termination and completenessof the algorithm in Section 8, we show a way to
reach a bytecode verifier, which is provably correct with respect to a formal
specification.

2 Overview of our approach

JVM instructions are assembly instructions mainly operating on a stack,
called the operand stack, and occasionally on registers, called local variables.
Operand stack entries and local variables are also called local memory loca-
tions. Data in local memory locations are either object references or primitive
values. The full JVM uses a heap to store objects. But we do not consider it
in this paper for simplicity.

A JVM method contains, among others, the name of the method, the
types of all parameters and return value, the number of local variables, and
a sequence of JVM instructions, called the body. The position of a JVM
instruction in a body is called a program point. A JVM class (i.e. class file)
is the result obtained by compiling a Java class. A class file contains a JVM
method if and only if the original Java class contains the corresponding Java
method.

In this paper we consider the following instructions:

– An instruction aload ind loads an object, and an instruction iload ind
an integer value, from the local variable ind onto the operand stack.

– An instruction astore ind stores an object, and an instruction istore ind
an integer value, from the operand stack into the local variable ind .

– An instruction goto pp transfers control to the program point pp.
– An instruction if acmpeq pp compares the two top object references in

the operand stack, and if equal, then transfers control to the program
point pp, else to the next program point.

– We assume that an implicit instruction at the start of a method sets an
empty stack as the operand stack, and stores the object, on which the
method is invoked, and all actual parameters into the first local variables.

– An instruction return terminates the current method.
– Instructions jsr and ret build the mechanism for subroutines. More

concretely, jsr pp calls the subroutine pp by first pushing the next pro-
gram point as the return program point onto the operand stack and then

2

transferring control to the program point pp, while ret ind returns from
a subroutine by using the content of the local variable ind as a return
program point and transferring control to it. A subroutine need not have
a ret. If it has, then an astore should be used to store the return pro-
gram point that has been pushed onto the operand stack by jsr into a
local variable so that ret can access it.

2.1 An example: the state transition

Consider, for example, the method in Figure 1, which has the name m, two
parameters of the primitive type int, no return value, and 5 local variables.

To illustrate the operational semantics, Figure 1 also gives all states of
local memory locations in an execution. The states of local variables are
recorded as lists of the same length under “L”, those of the operand stack as
lists of different lengths under “S”.

Program L S Successor

Method void m(int,int)

.limit locals 5

0 jsr 5 [obj , val1, val2, ,] [] 5

1 aload 0 [obj , val1, val2,1,12] [] 2

2 astore 2 [obj , val1, val2,1,12] [obj] 3

3 jsr 5 [obj , val1, obj ,1,12] [] 5

4 return [obj , val1, obj ,4,12] [] returns
5 astore 3 [obj , val1, val2〈obj 〉, ,] [1〈4〉] 6

6 aload 0 [obj , val1, val2〈obj 〉, 1〈4〉,] [] 7

7 aload 0 [obj , val1, val2〈obj 〉, 1〈4〉,] [obj] 8

8 if_acmpeq 11 [obj , val1, val2〈obj 〉, 1〈4〉,] [obj , obj] 11

9 aload 0

10 astore 1

11 jsr 12 [obj , val1, val2〈obj 〉, 1〈4〉,] [] 12

12 astore 4 [obj , val1, val2〈obj 〉, 1〈4〉,] [12] 13

13 ret 3 [obj , val1, val2〈obj 〉, 1〈4〉,12] [] 1〈4〉

Figure 1: A JVM program and an execution

The notation obj stands for the reference of the object on which the
method is invoked. The notations val1 and val2 stand for the two integer
actual parameters. The notation “ ” in a local memory location means that
the state is not important.

We explain some details. First, due to the implicit instruction, the local
variables at the program point 0 have the state [obj , val1, val2, ,], meaning
that the local variables 0, 1 and 2 hold obj , val1 and val2, respectively.

3

The jsr 5 at 0 calls the subroutine 5. Note that the subroutine is called
both at 0 and 3. The notation [obj , val1, val2〈obj 〉, ,] at 5means that the lo-
cal variables have the state [obj , val1, val2, ,] when the subroutine is entered
from 0, and [obj , val1, obj , ,] when entered from 3. In Figure 1, whenever
a local memory location holds different data in different executions of the
subroutine 5, we use 〈〉 to quote the one in the execution entered from 3.

The astore 3 at 5 yields a state at 6, which is the state at 5 except that
the local variable 3 gets the top entry of the operand stack.

The ret 3 at 13 uses the content in the local variable 3 as the return
program point. In the two executions of the subroutine 5, the return program
points are 1 and 4, respectively. The states yielded at 1 and 4 are equal to
the state of the corresponding execution at 13. Note that the subroutine 5

calls another subroutine 12, but the latter directly returns to the caller of
the former via the ret 3 at 13.

2.2 An example: static types of local memory locations

Bytecode verification should assign a kind of type, called a static type, to
each local memory location at every program point. Roughly speaking, a
static type is either directly a type of some runtime datum or the union of
several types of runtime data. We call a mapping from pairs of local memory
locations and program points to static types a program type.

A JVM program is legal if and only if there is a program type for it such
that all constraints on the static types of local memory locations enforced by
our typing rules are satisfied.

The method in Figure 1 is a legal JVM program, where static types as-
signed to local variables and operand stack entries are given as lists in the
columns LT and ST , respectively, in Figure 2.

We assume that the method is contained in a class C. Then the static
types involved are C, int, unus and sbr(pp), where unus is the static type
of all data and sbr(pp) is the static type of the return program points for
all occurrences of the instruction jsr ppcalling the subroutine pp. Note that
sbr(pp) 6= sbr(pp′) if and only if pp 6= pp′. Since unus is the static type of all
data, including data of int, C and sbr(pp), local memory locations with the
static type unus are unusable (by most instructions)1 .

These static types together with an artificial element ⊥ build a lattice,
whose partial ordering ⊒ satisfies that unus ⊒ C ⊒ ⊥, unus ⊒ int ⊒ ⊥ and
unus ⊒ sbr(pp) ⊒ ⊥. For any static types stty and stty ′, we say that stty
covers stty ′, if stty ⊒ stty ′.

The column “Successors” contains all statically possible successor pro-
gram points of each program point. They will help the discussion, since most
typing rules enforce, among others, constraints on the static types at stati-
cally possible successor program points.

1 In the full JVM, some stack manipulation instructions like pop can handle a local
memory location with the static type unus.

4

Program LT ST Successors

Method void m(int,int)

.limit locals 5

0 jsr 5 [C,int,int,unus,unus] [] 5

1 aload 0 [C,unus,int,unus,unus] [] 2

2 astore 2 [C,unus,int,unus,unus] [C] 3

3 jsr 5 [C,unus,C,unus,unus] [] 5

4 return [C,unus,C,unus,unus] [] returns
5 astore 3 [C,unus,unus,unus,unus] [sbr(5)] 6

6 aload 0 [C,unus,unus,sbr(5),unus] [] 7

7 aload 0 [C,unus,unus,sbr(5),unus] [C] 8

8 if_acmpeq 11 [C,unus,unus,sbr(5),unus] [C,C] 11,9
9 aload 0 [C,unus,unus,sbr(5),unus] [] 10

10 astore 1 [C,unus,unus,sbr(5),unus] [C] 11

11 jsr 12 [C,unus,unus,sbr(5),unus] [] 12

12 astore 4 [C,unus,unus,sbr(5),unus] [sbr(12)] 13

13 ret 3 [C,unus,unus,sbr(5),sbr(12)] [] 1,4

Figure 2: Static types for local memory locations of the method in Figure 1

The typing rule for the implicit instruction at the beginning of the method
enforces the constraint that static types of all local variables at the program
point 0 should cover the static types [C,int,int,unus,unus]. We actually assign
these static types to the local variables. The static types unus for the local
variables 3 and 4 ensure that the local variables are unusable at 0.

The typing rule for jsr at 0 and 3 enforces the constraint that static
types for local memory locations at 5 should cover the corresponding ones
at 0 and at 3, except that the operand stack should be extended by a static
type covering sbr(5). As an example, we assign the static type unus to the
local variable 2 at 5, which covers the corresponding static types int at 0 and
C at 3.

The typing rule for astore 3 at 5 enforces the constraint that a static
type of the top entry of the operand stack at 5 should be a class2, and that a
static type of each local memory location at 6 should cover that at 5, except
that a static type of the local variable 3 at 6 should cover that of the top
entry in the operand stack at 5.

Before we continue, let us consider a problem in typing subroutines. The
problem is because one may wish to let some data at a call site of a subroutine
be used after the subroutine returns. Thus if a local variable, say the local
variable 2, has different static types int and C at different call sites 0 and 3,
respectively, then the local variable 2 in the subroutine should have a static
type, unus in this case, covering the static type at each calling site. Now if
we followed a naive dataflow approach by letting the local variable 2 keep the

2 In general, it can be a set of classes. See the formal treatment later.

5

static type unus after the subroutine returns, then the local variable 2 would
be unusable after the subroutine returns. In other words, if we inserted e.g.
iload 2 at 1, which should load an integer value from the local variable 2,
or aload at 4, which should load an object from the local variable 2, then
the JVM program would become illegal.

To overcome this difficulty, the OJVMS requires that if a local variable
may not be modified in a subroutine, then the static type of the local variable
at each return program point should cover that at the corresponding call site,
independent of that before the subroutine returns.

Bearing this requirement in mind, one can better understand the con-
straints enforced by the typing rule for the ret 3 at 13:

1. The local variable 3 at 13 should have a static type of the form sbr(pp),
to ensure that it holds a return program point. In this example, pp = 5.
Since jsr 5 occurs at 0 and 3, both 1 and 4 are possible return program
points. Thus both 1 and 4 are possible successor program points.

2. For each local memory location, we have two cases:
(a) If it is a local variable that may not be modified in the subroutine

5, e.g. it is the local variable 2, then its static type at each successor
program point should cover that at the corresponding call site, i.e.
int at 0 or C at 3. We assign int and C to the local variable 2 at 1
and 4, respectively.

(b) Otherwise, its static type at each successor program point should
cover that at the ret 3, i.e. at 13, except that if the static type
at 13 is of the form sbr(pp′) for a subroutine pp′ called between
the corresponding jsr 5 and the ret 3, then the static type at the
successor programpoint should be unus . The last except-case enforces
that the local variables 3 and 4 at 1 and 4 have unus . It serves
to assure an OJVMS’s requirement, saying that no return program
points for subroutines called between a jsr 5 and the ret 3 are
usable after the subroutine 5 returns. In fact, this detail does not
essentially affect the main issue of this paper. But we still include it
here for the completeness of the example.

In general, a typing rule statically enforces the constraint that if an in-
struction uses a local memory location at a program point, then the instruc-
tion must be able to deal with all data of the assigned static type. Thus in
order to statically ensure that no data with wrong types will be used in the
execution of a legal JVM program, we need only to prove the followingtype
safety property:

– A local memory location at a program point may only hold data of the
assigned static type.

Comparing the states in Figure 1 and the static types in Figure 2, we can
intuitively see that this property holds. Indeed, the paper [13] formally shows
it for a set of JVM instructions including those given here. Therefore we can

6

take the typing rules given here as a sound specification and use them for
further development.

2.3 An example: dataflow analysis

First of all, a lattice of program types can be built from the lattice of static
types in a more or less standard way, where the partial order and the meet and
join operations in the lattice of program types are obtained componentwise
from those in the lattice of static types. Then it does not seem difficult to write
a dataflow analysis algorithm,which for every JVM program, either computes
a program type such that all constraints enforced by typing rules are satisfied,
or reports a failure. The algorithm can be a fixed-point iteration, which starts
with the bottom element in the lattice of program types, repeatedly calls some
monotone transfer functions yielding an ascending chain of program types,
until no new program types may be yielded, or a failure is reported.

The challenge here is to write an algorithm so that its correctness and
completeness properties with respect to the typing rules can be formally
proved.

Our idea is to have each transfer function being based on each typing
rule and to have a non-deterministic fixed-point iteration scheme repeatedly
and non-deterministically calling the transfer functions. Intuitively, a transfer
function should take a program type as argument, and then determine a
program point, check the enforced constraint on the static types at that
program point, and yield a program type bigger than the argument such
that the enforced constraints on the static types at each successor program
point are satisied.

❛

pp′ : jsr ...
lvs(ind) : stty ′

✑
✑
✑✸

❛

❄
❛

pp : ret ...
lvs(ind) : stty
lvs(ind) is not known to be modified
(lvs(ind) is known to be modified)

◗
◗

◗❦
❛

pp′ + 1 : ...
lvs(ind) : stty′

(lvs(ind) : stty)

Figure 3: Transfer function for ret

The idea works well for all typing rules except for a typing rule for ret.
The reason is that a naive transfer function built based on the typing rule
for ret is not monotone in general. The situation is illustrated in Figure 3,
where we consider the program point pp of a ret, the program point pp′ of
a corresponding calling jsr and the return program point pp′ + 1, and use
lvs(ind) : stty and lvs(ind) : stty′ to denote that the local variable ind has
a static type stty and stty′, respectively. Note that the typing rule needs to

7

know which local variables may be modified in the subroutine. A natural way
to compute this information is to let each transfer function accumulate the
indices of those local variables that are known to be modified from a calling
jsr to the current program point step by step. In Figure 3, assume that the
local variable ind was first unknown to be modified from pp′ to pp. Then its
static type at pp′ +1 can be (in general, should cover) its static type stty′ at
pp′. However, as soon as the local variable ind becomes known to be modified
from pp′ to pp, its static type at pp′ + 1 should be changed so that it covers
the static type stty at pp. In this case, if stty ⊒ stty′ does not hold, then
the transfer function yields a program type that does not cover the argument
program type at pp′ + 1, and thus is not monotone.

One may wonder why we don’t first finish computing all modified local
variables before starting the main fixed-point iteration. The reason is that to
compute all modified local variables, we need to know all possible execution
paths. But an execution path may depend on successor program points of a
ret, which in turn depend on the static type of the local variable that the ret
uses. Thus it is in general impossible to compute all modified local variables
before part of a program type is known.

To ensure the monotonicity property, we propose adding an additional
applicability condition requiring that the transfer function for ret can be
called only when for each local variable that is not known to be modified, its
static type at the calling jsr covers its static type at the ret. This implies
that, in Figure 3, if the local variable ind is unknown to be modified from
pp′ to pp, then stty ⊒ stty′ is the additional applicability condition for the
local variable ind at pp′ + 1 to obtain the static type stty ′.

What remains to be done is to prove that the additional applicability con-
dition does not affect the completeness property. For doing this in Figure 3,
we prove that if lvs(ind) is unknown to be modified from pp′ to pp, and if
stty ⊒ stty′ does not hold, then some transfer functions must be able to be
applied at a program point other than pp on a path from +pp′ to pp to yield
a new program type. Indeed, if lvs(ind) is unknown to be modified from pp ′

to pp, then a path from pp′ to pp exists, on which lvs(ind) is not modified.
Now if no transfer functions applied at a program point other than pp on the
path can yield a new program type, then all enforced constraints on the static
types on the path are satisfied. This implies that for each typing rule on the
path, the static type of lvs(ind) at a successor program point always covers
that at the current program point. By the transitivity property, stty ⊒ stty ′

must hold. A contradiction arises!

Note that although the intuition appears easy, the formal proof is not
easy at all. One of the difficulties is, as mentioned, that successor program
points of a ret depend on the static type of a local variable.

8

3 Preliminaries

Weuse the notation αn to denote a sequence of n syntactical objects α1, · · · , αn,
and the notation {· · ·} a set.

We use {αn 7→ α′
n}, where αi 6= αj hold for all i, j with 0 ≤ i 6= j ≤ n,

to denote a mapping, where the mapping of each αi is α
′
i, and the mapping

of other elements will yield a failure if it is not otherwise stated. We define
Dom({αn 7→ α′

n}) = {αn}. For a mapping θ and a set E, we use θ|E to denote
{α 7→ θ(α) | α ∈ Dom(θ) ∩ E}. For a mapping θ, we use θ(α) to denote the
result of the mapping for α, and write θ[α 7→ α′] for the mapping that is
equal to θ except it maps α to α′.

A list [α0 · · · , αn] is a special mapping {i 7→ αi | 0 ≤ i ≤ n}. We define
[α0 · · · , αn] + α := [α0 · · · , αn, α].

A lattice is a 4-tuple (D,⊒,⊔,⊓), where D is a set, ⊒ a partial order
on D, ⊓ the binary greatest lower bound operation and ⊓ the binary least
upper bound operation on D. The relation d1 ⊒ d2 is read as “d1 covers d2”.
Sometimes we write d1 ⊑ d2 in place of d2 ⊒ d1 and use d1 ⊐ d2 (or d1 ⊏ d2)
for d1 ⊒ d2 (or d1 ⊑ d2, respectively) and d1 6= d2.

We consider only finite lattices, i.e. those (D,⊒,⊔,⊓), where D is a finite
set. In a finite lattice, there exist no infinite ascending chain d1 ⊏ d2 ⊏ d3 · · ·.
A finite lattice is always complete, i.e. satisfies that each subset A ⊆ D has a
least upper bound and greatest lower bound in D.

3.1 Constraints

A constraint-solving framework has a constraint domain (L,M, [[]]) consist-
ing of a language L, a carrier M an interpretation [[]] (cf. e.g. [9]).

In our case, the language L is a first-order order-sorted language, which
extends the usual first-order many-sorted language (cf. e.g. [6]) with a subsort
relation (cf. e.g. [16]). As usual, L has a logical part consisting of usual logical
constants, connectives, quantifiers, variables, and a non-logical part consisting
of sorts, the subsort relation, function and predicate symbols.

A sort in L is a name composed of low-case letters. A subsort relation is
a partial relation on sorts. For simplicity, we may not explicitly name a sort
of standard composite data such as finite sets, finite mappings ord lists.

A function in L is a symbol that has exactly one arity of the form an → b

for sorts a1, · · · , an and b; the function is called a constant if n = 0. A predicate
inL is a symbol that has one or more arities of the form an for sorts a1, · · · , an.
The predicates = and 6= exist for each sort. There is a set of variables for
each sort.

Logical formulas and terms are built and sorted as usual. If a term has a
sort, then it has each of the supersorts as its sort. Each term has a least sort.

We use s[sn] to denote a term or logical formula containing (the occur-
rences of) the subterms sn. If s[sn] and s[tn] are in the same context, then
s[tn] is the term obtained from s[sn] by replacing each si by ti.

9

A variable may be bound (by ∀ and ∃) as usual. A variable is free if it is
not bound. We use FV(s) to denote the set of all free variables in a term or
a logical formula s. A term or logical formula containing no free variables is
called closed.

We use the completely capitalized version of a sort name to denote a
variable of the sort, the partially capitalized version of a sort name, where
only the first letter is a capital, to range over all terms of the sort, and the
name of a sort to range over all closed terms of the sort. For example, REFS
stands for a variable of the sort refs, Pp and Ptty stand for a term of the
sorts pp and ptty , respectively, and refs stands for a closed term of the sort
refs. and pp stands for a closed term of the sort pp.

Although it is crucial to choose a particular carrier in a constraint-solving
framework (see e.g. [9]), the interpretation of the terms and logical formulas
we will really use is quite standard. For simplicity, we just mention that the
structure M is an order-sorted initial algebra containing

– the sets [[a]] for all sorts a such that [[a]] ⊆ [[b]] if a is a subsort of b,
– the functions [[f : an → b]] : [[an]] → [[b]] for all function symbols f : an →

b, and
– the relations [[r : an]] : [[an]] for all predicate symbols r : an

and satisfying all axioms defining functions and predicates. For convenience
we will not distinguish between a sort a (a function f : an → b, or a predicate
r : an) and its interpretation [[a]] ([[f : an → b]], or [[r : an]], respectively).
Furthermore, we will use closed terms and closed logical formulas to refer
elements and assertions in M.

A constraint is a logical formula. A set of constraints {sm} represents the
logical formula s1 ∧ · · · ∧ sm ∧ true.

A variable assignment is a mapping {Xn 7→ sn}, where each Xi is a vari-
able and each si is a closed term of the sort of Xi for all i = 1, · · · , n. A
variable assignment as above maps each element other than Xn to itself. We
use σ to range over all variable assignments. We assume that in σ(s), bound
variables are automatically renamed whenever necessary to avoid bound vari-
able captures.

A constraint s is satisfied under a variable assignment σ if and only if
σ(s) is closed and holds (in M). A constraint is satisfiable if and only if it is
satisfied under a variable assignment.

Let X be a variable and s a closed term. Then the constraint X = s is
satisfiable if and only if s is an element of the sort of X.

For convenience, we may define a function f to have a result sort a and
regard terms of the form f(sn) as terms of the sort a, but allow f to yield
a special value failure not in a for some (unusual) arguments. When we
write f(sn), we always implicitly mean that f(sn) should not yield failure.
Formally, we could always have defined a new supersort a′ of a, let a′ contain
a new constant failure a, re-define the f to have the result sort a′, replace
each occurrence of the form f(sn) by a fresh variable X of the sort a, and

10

add the constraint X = f(sn) in the context. The reason why the constraint
X = f(sn) assures that “f(sn) is not equal to failure a” is that failure a is
not in the sort a and thus X = failure a is never satisfiable.

4 The instance method Mth and its static types

For the formal treatment in this paper, we consider an arbitrary but fixed
instance method Mth , which is declared in a class Cls, has a method head of
the form MethodvoidMth(tyn), has LocN local variables and InstrN instruc-
tions in the body. The treatment of other kinds of methods is similar and thus
omitted here. We assume that local variables are indexed by 0, · · · ,LocN − 1
and program points are the integers 0, · · · , InstrN −1. For the sake of unifor-
mity, we also assume that −1 is the program point of the method head. We
use pp to denote the sort of all program points, and ind the sort of all local
variable indices. We use instr to denote the sort of all instructions.

4.1 Static types

Figure 4 formally defines static types, where a singleton set {cnam} can be
denoted as cnam . Beside the static types mentioned in Section 2, class sets
are the only new thing here. A class set intuitively denotes the least common
superclass of all classes in that set with respect to the subtyping relation in
JVM. Since we use class sets, we need not explicitly consider the subtyping
relation any more in this paper. In [13], we use reference type sets, which
may also contain interfaces. The concept of reference type sets significantly
simplifies the treatment, since two interfaces in JVM need not have a least
superinterface.

Class set {cnamn}(n > 0) where each cnami is a class name.
Primitive type int

Subroutine type sbr(pp) where each pp is a program point.
Unusable value type unus

The smallest ⊥

Figure 4: Static types

We define a partial order ⊒ on static types as the smallest reflexive and
transitive relation satisfying that

{cnamn} ⊒ {cnamm} for all n and m with n ≥ m

unus ⊒ stty ⊒ ⊥ for all static types stty

Since we can define the meet and join operations ⊓ and ⊔ easily based on
the ⊒ and there are only finite many static types, static types form a finite
lattice.

11

We state some properties of the static types, which will be used later.

Lemma 1. Assume that sbr(pp) is a subroutine type and cnam an arbitrary
class. Let any, any′ and any′′ be three static types.

1. For ⊘ ∈ {⊓,⊔}, if any ⊘ any′ is int or sbr(pp) for some pp, then either
any = any ⊘ any′ or any′ = any ⊘ any′.

2. If any ⊒ any′, any′ 6= ⊥ and any is int or sbr(pp) for some pp, then
any = any′.

3. If any ⊒ any′, any′ 6= ⊥ and any′ is not int (or not of the form sbr(pp)
for some pp), then any is not int (or not of the form sbr(pp), respec-
tively).

4. Assume that any′ is int, sbr(pp) or cnam, and any′′ is int or sbr(pp′).
If any ⊒ any′, any ⊒ any′′ and any′ 6= any′′, then any = unus. If
any′ ⊒ any, any′′ ⊒ any and any′ 6= any′′, then any = ⊥.

4.2 Sorts of static types

In order to enable a simple and precise description, we use the syntax in
Figure 5 to define sorts of static types, where the non-terminals on the left
of ::= are sorts. Sorts of static types correspond to sets of static types. The
subsort relation on these sorts is defined so that two sorts are under the
subsort relation if and only if the corresponding sets are under the subset
relation. For example, ty is a supersort of cnam, stty is a supersort of each
sort of static types, and since {cnam} and cnam are regarded as the same
static type, refs is a supersort of cnam .

Class names cnam ::= · · · a class name · · ·
Types ty ::= cnam | int

Class sets refs ::= {cnamn} (n > 0)
Subroutine types sbr ::= sbr(pp)
Class sets or subroutine types refs sbr ::= refs | sbr

Static types stty ::= int | refs sbr | unus

Figure 5: Sorts of static types

4.3 Types based on static types and variable assignments

In this section we define several sorts. Each of them contains the artificial
elements ⊥ and ⊤ indicating the beginning and a failure of the fixed-point
iteration, respectively.

First, we define the sort lvsty of all local variable type lists, and the sort
stkty of all operand type stacks, which are lists of the form [stty0, · · · , sttyn]with
n ≥ −1 consisting of static types.

12

To record local variables modified in a subroutine, we define modification
histories as lists [(sbn, indsn)] of pairs of subroutines and sets of indices of
local variables such that sbi 6= sbj for all 1 ≤ i 6= j ≤ n. We use mod

to denote a sort of them. Intuitively, a modification history [(sbn, indsn)]
represents that

– the subroutine sb1 is called directly by the enclosing method(i.e. not by
another subroutine),

– the subroutine sbi is called by the subroutine sbi−1 for each i with 1 <

i ≤ n,
– the set inds i consists of the indices of all local variables modified from

sbi to sbi+1 for each i with 1 ≤ i < n, and
– sbn consists of the indices of all local variables modified from sbn to the

current program point.

We use the following function to add an index set inds to the last pair in a
modification history (sbn, indsn)

addmlvs(inds , (sbn, indsn)) :=
{

[(sbn−1, indsn−1)] + (sbn, indsn ∪ inds) if n ≥ 1
[] otherwise

Note that in the full JVM, a modification history needs to be expressed
as a directed acyclic graph, where a node stands for a subroutine and a
directed edge for a call to the subroutine represented by the ending node
by the subroutine represented by the beginning node, since more than one
subroutine may call the same subroutine and one subroutine may call more
than one subroutine. Although there are no fundamental problems at all to
do this, the treatment appears too tedious to be described in this paper.
Thus we choose to consider the simplified case, where each program point
of a well-typed program can only have a single list of called (and not yet
completed) subroutines.

Now we define program point types as triples (lvsty, stkty,mod) consisting
of local variable type lists, operand type stacks and modification histories
and use ptty denote the sort of them.

Finally we define program types (of the method Mth) as mappings

{pp 7→ pttypp | for each (program point) pp ≥ 0}

from program points to program point types and use prgty denote the sort
of them.

For each sort defined in this section, we define a partial relation ⊒, the
meet operation ⊓ and the join operation ⊔ satisfying the following:

– ⊥ is the smallest and ⊤ the biggest element with respect to ⊒ in the sort,
– All elements that contain an occurrence of ⊥, including the static type ⊥,

are regarded as identical to ⊥. All elements that contain an occurrence of
⊤ are regarded as identical to ⊤. Note that the biggest static type unus
does not indicate a failure.

13

– The equations in Figure 6 hold for each ⊘ ∈ {⊓,⊔}, where we write ⊙⊓

for ∩, ⊙⊔ for ∪, ⊥⊤⊓ for ⊥ and ⊥⊤⊔ for ⊤.

These sorts are all finite lattices.

– For listy = [stty0, · · · , sttyn
] and listy′ = [stty′

0, · · · , stty
′
m
],

listy ⊒ listy′ ⇐⇒ n = m and stty
i
⊒ stty′

i
for all i = 0, . . . , n

listy ⊘ listy′ =

{

[stty0 ⊘ stty′
0, · · · , sttyn

⊘ stty′
n
] if m = n

⊥⊤⊘ otherwise

– For mod = [(sbn, indsn)] and mod ′ = [(sbm, inds′m)],

mod ⊒ mod ′ ⇐⇒ n = m and indsi ⊇ inds′i for all i = 0, . . . , n

mod ⊘mod ′ =

{

[(sbn, inds ⊙⊘ inds′n)] if m = n

⊥⊤⊘ otherwise

– For ptty = (lvsty, stkty,mod) and ptty′ = (lvsty′, stkty′,mod ′),

ptty ⊒ ptty′ ⇐⇒ lvsty ⊒ lvsty′, stkty ⊒ stkty′ and mod ⊒ mod ′

ptty ⊘ ptty′ := (lvsty ⊘ lvsty′, stkty ⊘ stkty′,mod ⊘mod ′)

– For prgty and prgty′,

prgty ⊒ prgty′ ⇐⇒ prgty(pp) ⊒ prgty′(pp) hold for all pp
prgty ⊘ prgty′ := {pp 7→ prgty(pp) ⊘ prgty′(pp) | for each pp}

Figure 6: Definitions of ⊒, ⊓ and ⊔ for the sorts lvsty, stkty, mod , ptty and prgty

We say that the sort of a variable X is based on static types if and only
if the sort is stty, a subsort of stty, lvsty , stkty, mod , ptty or prgty . For two
variable assignments σ1 and σ2 with Dom(σ1) = Dom(σ2), we define the
relation σ1 ⊒ σ2 by that σ1 ⊒ σ2 holds if and only if for all X ∈ Dom(σ1),

σ1(X) ⊒ σ2(X) if the sort of X is based on static types
σ1(X) = σ2(X) otherwise

For σ1 and σ2 such that Dom(σ1) = Dom(σ2) and σ1(X) = σ2(X) hold for
all X ∈ Dom(σ1) such that the sort of X is not based on static types, we
define σ1 ⊘ σ2 by that Dom(σ1 ⊘ σ2) = Dom(σ1) and

σ1 ⊘ σ2(X) =

{

σ1(X) ⊘ σ2(X) if the sort of X is based on static types
σ1(X) otherwise

5 The form of typing rules and well-typedness

From now on we also write P and SB as variables of the sort pp, LT , ST ,
M , Π and Φ as variables of the sorts lvsty , stkty , mod , ptty and prgty, re-
spectively, for notational simplicity.

14

The following two forms of constraints are particularly important:

Prgty(Pp) = Ptty and Prgty(Pp) ⊒ Ptty

The former says that the program point type at Pp in Prgty should be Ptty ,
and the latter says that it should cover Ptty . If a program point Pp can be
reached by more than one preceding program point, then it is quite convenient
to use the latter form to constrain the program point type at Pp.

In general, a typing rule is in the form:

AC
CC

SC
The AC, CC and SC are sets of constraints. The constraints in AC are called
applicability conditions, among which a distinguished constraint of the form
Mth(P) = Instr exists. Intuitively, AC is used to determine a program point
P , where the typing rule should be applied. In particular, Mth(P) = Instr
says that the instruction at a program point P in Mth should be of the form
Instr . The CC contains constraints on the program point type at the current
program point P . The SC consists of zero or more logical formulas of the
form Φ(Pp) ⊒ Ptty, which are constraints on the program point types at
successor program pointsPp of the instruction.

Intuitively, all typing rules enforce constraints on one common program
type. Therefore, all typing rules contain one common variable Φ for a program
type.

Syntactically, a typing rule always satisfies the following conditions:

FV(AC ∪ CC) ∪ {Φ} ⊇ FV(SC)
FV(AC) ⊇ FV(Pp) for each Φ(Pp)⊒Ptty ∈ SC

Let Q denote FV(AC) − {Φ} and Q′ denote FV(CC ∪ SC) − ({Φ} ∪ Q).
Then a typing rule formally denotes the constraint

∀Q.(AC ⇒ ∃Q′.(CC ∪ SC))

It is easy to see that the constraint is satisfied under a variable assignment
{Φ 7→ prgty} if and only if, if AC is satisfied under a variable assignment σ
withDom(σ) = Q∪{Φ} and σ(Φ) = prgty, then there is a variable assignment
σ′ with Dom(σ) = Q ∪ Q′ ∪ {Φ} such that σ′

|Q∪{Φ} = σ and σ′(CC ∪ SC) is
satisfied.

The reason for us to separate the sets CC and SC in a typing rule will
become clear in Section 7.

We say that Mth has a program type prgty, (or prgty is a program type of
Mth,) if and only if the constraints denoted by all typing rules are satisfied
under {Φ 7→ prgty}. The method Mth may have zero, one or more than one
program type.

A program is legal (or statically well-typed) if and only if it has a program
type.

15

6 The formal specification

This section gives the typing rules. In the rules we use to denote a wildcard
variable. We assume the following:

– The AC part of each typing rule except rule (T-7) always implicitly con-
tains the constraint Φ(P) 6= ⊥.

– Each constraint of the form Φ(Pp) = P tty in the AC- or CC-part of a
typing rule always implicitly stands for Φ(Pp) 6= ⊥ ∧ Φ(Pp) = P tty.

– The CC in a typing rule always implicitly contains a constraint Pp = PP

(or Pp ≤ InstrN) for each Φ(Pp) ⊒ Ptty in the SC, where PP is a fresh
variable of the sort pp. The constraint ensures that Pp is a program point.

The typing rules for some instructions are given Figure 7. We explain
rule (T-1) to show some of the tricky points in the formulation of a typing
rule. Similar explanations can be given for other typing rules.

Mth(P) = aload IND

Φ(P) = Π [LT ,ST]
REFS = LT (IND)

Φ(P + 1) ⊒ Π [LT ,ST +REFS]
(T-1)

Mth(P) = iload IND

Φ(P) = Π [LT ,ST]
int = LT (IND)

Φ(P + 1) ⊒ Π [LT ,ST + int]
(T-2)

Mth(P) = astore IND

Φ(P) = Π [LT ,ST +REFS SBR,M]

Φ(P + 1) ⊒ Π [LT [n 7→ REFS SBR],ST , addmlvs({IND},M)]
(T-3)

Mth(P) = istore IND

Φ(P) = Π [LT , ST + int,M]

Φ(P + 1) ⊒ Π [LT [n 7→ int],ST , addmlvs({IND},M)]
(T-4)

Figure 7: Typing rules for load and store instructions

First, REFS = LT (IND) in rule (T-1) intuitively expresses a member-
ship constraint, i.e. that LT (IND) should be in the sort refs, since REFS
is a variable of the sort refs. It implies that an aload must load objects. In
addition, rule (T-1) says that the local variable type list, the operand type
stack and the modification history at P + 1 should cover the corresponding
component at P , except that the operand type stack at P + 1 should be
extended by a static type covering LT (IND). Note that the variables Φ and

16

LT in Φ(P) and LT (IND) are not higher-order variables, since Φ(P) is in
fact an application of an implicit function app on two first-order variables Φ
and P , and LT (IND) that on LT and IND .

Similar explanations can be given for other typing rules. Note that rules (T-
3) and (T-4) affect modification histories. More concretely, the term addmlvs({IND},M)
in these rules adds the index IND of the modified local variable into the mod-
ification history M .

It is worth noticing that in rule (T-3) the variable REFS SBR can be
instantiated into an element of the sort sbr , whereas the variable REFS in
rule (T-1) cannot. This means that an astore instruction can store a program
point, whereas an aload instruction cannot load it.

Mth(P) = if acmpeq N

Φ(P) = Π [ST +REFS +REFS ′]

Φ(N) ⊒ Π [ST]
Φ(P + 1) ⊒ Π [ST]

(T-5)

Mth(P) = goto N

Φ(P) = Π

Φ(N) ⊒ Π
(T-6)

Figure 8: Typing rules for control transfer instructions

The typing rules for the control transfer instructions in Figure 8 need no
further explanations.

Mth(P) = Method void Mth(TYn)
n ≤ LocN

Φ(P + 1) ⊒ (unusLocN [0 7→Cls , n 7→TY n], [], ∅)
(T-7)

Mth(P) = return
(T-8)

Figure 9: Typing rule for the starting program point of a method code

The typing rules for starting and terminating the methodMth are defined
in Figure 9. Rule (T-7) treats the implicit instruction starting a method. It
says that at the beginning of a method, if a local variable does not store the
object on which the method is invoked, nor an actual parameter, then it is
given the type unus , ensuring that its content is unusable before a value is
explicitly assigned to it. We use unusm to denote the list [unus, · · · , unus]

17

consisting of m times unus . Note that the modification history at the begin-
ning of a method is ∅. Rule (T-8) means that no explicit constraints on the
program point type at a return are needed (in the context of the current
paper).

The typing rules for jsr and ret are given in Figure 10. Rule (T-9) uses
SB 6∈ Dom(M) to assure that the subroutine SB is not called recursively.
Furthermore, it ensures that the modification history at the beginning of the
subroutine SB extends the one at the call site by a pair (SB , ∅), indicating
that the subroutine SB is called.

Mth(P) = jsr SB

Φ(P) = Π [ST ,M]
SB 6∈ Dom(M)

Φ(SB) ⊒ Π [ST + sbr(SB),M + (SB, ∅)]
(T-9)

Mth(P) = ret IND

Φ(P) = Π [LT]
LT (IND) = sbr()
∀P ′∀IND ′∀Π ′∀LT ′.((Mth(P ′)=ret IND ′ ∧ P ′ 6=P ∧ Φ(P ′)=Π ′[LT ′])

⇒ LT (IND) 6=LT ′(IND ′))
(T-10)

Mth(P) = ret IND

Φ(P) = (LT ,ST ,M)
Mth(P ′) = jsr SB

LT (IND) = sbr(SB)
Φ(P ′) = (LT ′,ST ′,M ′)

Φ(P ′+1) ⊒ (LT ′[j 7→turnUnus(LT (j), sbsin(M,SB)) | j∈mlvsin(M,SB)],
turnUnus(ST , sbsin(M,SB)),
addmlvs(mlvsin(M,SB),modtill(M,SB))

(T-11)

Figure 10: Typing rules for ret and jsr

Rules (T-10) and (T-11) are both for ret. We could have combine them
into one, but the resulting typing rule would become too clumsy.

In rule (T-10), the constraint LT (IND) = sbr() assures that the local
variable IND holds a program point. The constraint ∀P ′∀IND ′∀Π ′∀LT ′. · · ·
assures that Mth has at most one ret for the same subroutine. This is not a
serious restriction due to the presence of goto.

In rule (T-11), the applicability conditions assure that SB is a subroutine,
the jsr at P ′ is one of jsr’s that call the subroutine, the ret at P terminates
the subroutine and causes control to return to P ′+1. Note that the constraint

18

∀P ′∀IND ′∀Π ′∀LT ′. · · · in rule (T-10) assures that in rule (T-11), the ret at
P is the unique ret for the subroutine SB .

The formulation of rule (T-11) uses several auxiliary functions. Let mod =
[(sbn, indsn)]. Then the first group of auxiliary functions are defined as fol-
lows:

sbsin(mod , sb) :=

{

{sbk, · · · , sbn} if sb = sbk for 1 ≤ k ≤ n

failure otherwise

mlvsin(mod , sb) :=

{⋃

k≤i≤n inds i if sb = sbk for 1 ≤ k ≤ n

failure otherwise

modtill(mod , sb) :=

{

[(sbk−1, indsk−1)] if sb = sbk for 1 ≤ k ≤ n

failure otherwise

Assume that the program point type at a program point pp contains
the modification history mod . Then the function sbsin(mod , sb) with sb ∈
Dom(mod) intuitively computes a set containing all subroutines called from
sb to pp. The function mlvsin(mod , sb) with sb ∈ Dom(mod) computes the
set of the indices of local variables that may be modified from sb to pp. The
function modtill(mod , sb) computes the result of mod obtained by cutting all
subroutines after (and including) the subroutine sb.

In order to change all subroutine types of the subroutines in a set E into
the static type unus , we define the following auxiliary functions turnUnus
and turnUnusLis :

turnUnus(stty, E) :=

{

unus if stty = sbr(sb) and sb ∈ E

stty otherwise

turnUnusLis([sttym], E) := [turnUnus(sttym, E)]

Lemma 2. Let stty be a static type. Then turnUnus(stty, E) ⊒ stty always
holds.

Proof. Follows easily from the definition. �

Rule (T-11) enforces the following constraints on the program point type
at the return program point P ′ + 1:

– The term LT ′[j 7→ turnUnus(LT (j), sbsin(M, SB)) | j ∈ mlvsin(M, SB)]
intuitively means that if a local variable j is not modified from SB to
P (i.e. not in mlvsin(M, SB)), then its static type at P ′ + 1 should
cover LT ′(j) (at P ′); otherwise it shoudl cover LT (j) (at P), where if
LT (j) is a subroutine type for a subroutine called from SB to P (i.e.
in sbsin(M, SB)), then the static type for the local variable j at P ′ + 1
should be unus .

– The term turnUnus(ST , sbsin(M, SB)) means that the operand stack
type at P ′ + 1 should cover ST (at P), where if an operand stack entry
in ST has a subroutine type for a subroutine called from SB to P , then
the corresponding static type at P ′ + 1 should be unus .

19

– The term addmlvs(mlvsin(M, SB),modtill(M, SB)) intuitively means that
the list of modified variables at P ′+1 should be obtained from the one at
P by cutting the subroutine SB and all subroutines called by it, and all
local variables modified in the subroutine SB , including those modified in
subroutines called by it, should be regarded as being modified at P ′ +1.

7 Computing a program type or yielding a failure

The typing rules given in Section 6 formally define all program types of the
method Mth: a program type is one program type of Mth if and only if it
satisfies all constraints defined by these rules. Although one could generate
all possible program types and check whether they satisfy the constraints
one by one, it is definitely desirable to have a constraint-solving algorithm to
compute a program type. In addition, it is interesting to ask whether there
is a canonical (or principal) one among all program types of Mth .

In this section we describe an algorithm, called analyzer , which computes
the smallest program type of the method Mth as the canonical one if there
is any, or yields a failure, if there is none.

7.1 Using abstract interpretation

Abstract interpretation is a framework that has been successfully used in
formalizing a wide variety of data-flow analysis. Since the classic presentation
of data-flow analysis (in e.g. [1]) is not formal enough for our purpose in this
paper, we follow the idea of abstract interpretation.

More concretely, we follow the Cousots’ approach to abstract interpreta-
tion ([4], see also e.g. [11]), which aims at effectively finding safe approxima-
tions for states of memory locations at program points. In our case, a program
state contains a state of local memory locations at each program point, and
a program point type can serve as a safe approximation of all possible states
of memory locations at a program point.

7.2 Applicability, pre-satisfaction and satisfaction of typing rules

From now on, when discussing a particular typing rule, we will use the general
notations given at the beginning of Section 5 and the special notations in the
formulation of the typing rule without explicitly saying.

For each typing rule, if there is a variable assignment σ with

Dom(σ) = FV(AC) ∪ {Φ}

such that AC is satisfied under σ, then the typing rule is said to be applicable
under σ.

For each typing rule, if there is a variable assignment σ with

Dom(σ) = FV(AC ∪ CC) ∪ {Φ}

20

such that AC ∪ CC is satisfied under σ, then the typing rule is said to be
pre-satisfied under σ.

If a typing rule is pre-satisfied under σ and SC is satisfied under σ, then
it is said to be satisfied under σ.

We also say that a typing rule is applicable (pre-satisfied or satisfied) at the
program point σ(P) or with respect to the program type σ(Φ) if it is applicable
(pre-satisfied or satisfied) under σ.

7.3 The algorithm

We formulate the algorithm analyzer in Figure 11, which produces a sequence
of intermediate program types prgty0, prgty2, · · ·, and finally terminates with
either a program type of the method Mth or a failure. The algorithm uses
a boolean function monoton assure to slightly restrict the flexibility of the
application of rule (T-11) and calls a procedure apply a rule to compute each
intermediate program type.

Input: The method Mth .
Output: A program type or failure.
Body:

1. Let prgty0 := ⊥.
2. Assume that prgty

k
is the last obtained intermediate program type. Choose a

typing rule and a variable assignment σ such that σ(Φ) = prgty
k
holds, the rule

is applicable under σ, and if the rule is rule (T-11) then monoton assure(σ)
yields true. Let apply a rule take the typing rule and σ as arguments and run.
(a) If apply a rule yields a failure, then the algorithm terminates with a failure;
(b) otherwise, if apply a rule yields a program type different than prgty

k
, then

let the yielded program type be a new intermediate program type prgty
k+1.

3. If the above step yields a new intermediate program type prgty
k+1, then repeat

the step with k := k + 1, until the algorithm terminates with a failure, or
apply a rule does not yield a new intermediate program type for all typing
rules and variable assignments chosen as above. In the latter case, the algorithm
terminates with the last computed intermediate program type.

Figure 11: The algorithm analyzer

The procedure apply a rule is defined in Figure 12. If a typing rule is
given, then the procedure becomes a transfer function based on that rule.
The transfer function intuitively takes the last obtained intermediate pro-
gram type prgtyk as argument and attempts to compute a new one prgty k+1.
The prgtyk+1 should be bigger than prgtyk and not equal to⊤, satisfy the con-
straints enforced by the typing rule, thus be closer than prgtyk to a program
type of Mth, if it exists. Technically, apply a rule takes a variable assignment
σ, instead of a single program type, as argument, since the AC part of a typ-

21

Input: A typing rule and a variable assignment σ such that the typing rule is
applicable under σ.
Output: A program type or failure.
Body:

1. If find a subst yields a variable assignment σ′ for the typing rule and σ such
that σ′(Φ(Pp)) ⊔ σ′(Ptty) 6= ⊤ for all Φ(Pp) ⊒ Ptty ∈ SC, then the current
procedure yields the program type

σ
′(Φ)[σ′(Pp) 7→σ

′(Φ(Pp)) ⊔ σ
′(Ptty) | Φ(Pp)⊒Ptty ∈ SC]

2. otherwise, the current procedure yields a failure.

Figure 12: The procedure apply a rule

ing rule may contain other variables than Φ, and a variable assignment also
determines the assignment of these other variables.

Input: A typing rule and a variable assignment σ such that the typing rule is
applicable under σ.
Output: A variable assignment or failure.
Body:

1. Construct all variable assignments σ′ such that σ′
|FV(AC)∪{Φ} ⊒ σ holds and

the typing rule is pre-satisfied under σ′.
2. If no such variable assignments exist, then yield a failure;
3. Otherwise, yield the result of applying the operation ⊓ to all these variable

assignments.

Figure 13: The procedure find a subst

The procedure apply a rule calls the procedure find a subst in Figure 13.
The procedure find a subst computes a variable assignment σ ′ such that
σ′(Φ) ⊒ prgty and the typing rule is pre-satisfied under σ′, or reports a
failure. Note that the procedure find a subst, as defined in Figure 13, is
naive and inefficient. We could have written a more efficient one, but the
proof would become complicated.

The boolean function monoton assure is defined in Figure 14. It means
that if a local variable j is not modified from σ(P ′) to σ(P) (according to
the modification history mod in σ(Φ(P)) at σ(P)), then the static type of
the local variable j at σ(P) covers that at σ(P ′). It formalizes the additional
applicability condition mentioned in Section 2.3.

7.4 Fixed points

A program type prgty is called a fixed point restricted to a typing rule and
a variable assignment σ if and only if whenever the typing rule is applicable

22

Input: A variable assignment σ under which rule (T-11) is applicable.
Output: true or false.
Body: We use the notations in rule (T-11). Let σ(Φ(P)) = (lvsty, · · · ,mod) and
σ(Φ(P ′)) = (lvsty′, · · ·). If σ(SB) ∈ Dom(mod) and

∀0 ≤ j < LocN .j 6∈ mlvsin(σ(SB),mod) ⇒ lvsty(j) ⊒ lvsty
′(j)

holds, then the current function yields true; otherwise the function yields false.

Figure 14: The boolean function monoton assure

under σ and σ(Φ) = prgty holds, there is a variable assignment σ′ such that
the typing rule is satisfied under σ′ and σ′

|FV(AC)∪{Φ} = σ holds. A program
type prgty is called a fixed point if and only if, it is a fixed point restricted to
each typing rule and each variable assignment.

Intuitively, if analyzer terminates with a program type, then the program
type must be a fixed point.

7.5 Example

Figure 15 describes how to compute the program type in Figure 2 using the
algorithm analyzer .

Each row in Figure 15 records a program point type in an intermedi-
ate program type, together with information about the next application of a
typing rule. The informnation includes a number indicating the order of the
application in the column “Step”, the name of the applied typing rule in the
column “Rule” and all static successor program points according the typing
rule in the column “Succ.’s”. According to the algorithm analyzer , an appli-
cation includes a check of the CC-part and a computation of a new program
point type at each successor program point. If more than one program point
type has been computed at one program point, then from the second one on,
only the changed parts are explicitly recorded in Figure 15. Note that the
last program point types for all program points are exactly those in Figure 2.

The computation has 30 application steps. Step 1 applies rule (T-7) and
computes a local variable type list [C,int,int,unus,unus] and an operand type
stack [] at the program point 0. Step 2 applies rule (T-9), checks the local
variable type list [C,int,int,unus,unus] and the operand stack type [] at the
program point 0 and computes a local variable type list [C,int,int,unus,unus]
and an operand stack type [sbr(5)] at the program point 5, and so on.

After step 9, which applies rule (T-10) at 13, rule (T-11) could be applied
at 13. But we choose first to continue at 9 to consider the second branche
of if_acmeq. (Note that a static analysis needs to consider both branches of
if_acmeq.) After step 14, we choose to apply rule (T-11) at 13 as step 15.

23

P LT ST M Step Rule Succ.’s

Method void m(int,int) 1 (T-7) 0

0 [C,int,int,unus,unus] [] [] 2 (T-9) 5

1 [C,unus,int,unus,unus] [] [] 16 (T-1) 2

2 [C,unus,int,unus,unus] [C] [] 17 (T-3) 3

3 [C,unus,C,unus,unus] [] [] 18 (T-9) 5

4 [C,unus,C,unus,unus] [] [] 30 (T-8) returns
5 [C,int,int,unus,unus] [sbr(5)] [(5, {})] 3 (T-3) 6

[C,unus,unus,unus,unus] 19 (T-3) 6

6 [C,int,int,sbr(5),unus] [] [(5, {3})] 4 (T-1) 7

[C,unus,unus,sbr(5),unus] 20 (T-1) 7

7 [C,int,int,sbr(5),unus] [C] [(5, {0,3})] 5 (T-1) 8

[C,unus,unus,sbr(5),unus] 21 (T-1) 8

8 [C,int,int,sbr(5),unus] [C,C] [(5, {0,3})] 6 (T-5) 11,9
[C,unus,unus,sbr(5),unus] 22 (T-5) 11,9

9 [C,int,int,sbr(5),unus] [] [(5, {0,3})] 10 (T-1) 10

[C,unus,unus,sbr(5),unus] 23 (T-1) 10

10 [C,int,int,sbr(5),unus] [C] [(5, {0,3})] 11 (T-3) 11

[C,unus,unus,sbr(5),unus] 24 (T-3) 11

11 [C,int,int,sbr(5),unus] [] [(5, {0,3})] 7 (T-9) 12

[C,unus,int,sbr(5),unus] [(5, {0,1,3})] 12 (T-9) 12

[C,unus,unus,sbr(5),unus] 25 (T-9) 12

12 [C,int,int,sbr(5),unus] [sbr(12)] [(5, {0,3}), (12, {})] 8 (T-3) 13

[C,unus,int,sbr(5),unus] [57→{0,1,3},127→{}] 13 (T-3) 13

[C,unus,unus,sbr(5),unus] 26 (T-3) 13

13 [C,int,int,sbr(5),sbr(12)] [] [(5, {0,3}), (12, {4})] 9 (T-10)
[C,unus,int,sbr(5),sbr(12)] [(5, {0,1,3}), (12, {4})] 14 (T-10)

15 (T-11) 1
[C,unus,unus,sbr(5),sbr(12)] 27 (T-10)

28 (T-11) 4
29 (T-11) 1

Figure 15: Computing the program type in Figure 1

24

Let mod denote [(5, {0,1,3}), (12, {4})]. Then we have that

mlvsin(mod , 5) = {0, 1, 3, 4}
sbsin(mod , 5) = {5, 12}
modtill(mod , 5) = []

Since the local variable 2 has the static type int at both 13 and 0, the
function monoton assure yields true. Thus the application is possible. Step
15 computes a program point type at 1. The local variables 3 and 4 at 1 have
the static type unus , since they have the subroutine types sbr(5) and sbr(12)
at 13, where 3, 4 ∈ mlvsin(mod , 5) and 5, 12 ∈ sbsin(mod , 5) hold. The local
variables 0 and 1 at 1 have the static types C and unus , respectively, covering
those at 13, since 0, 1 ∈ mlvsin(mod , 5) holds. The local variable 2 at 1 has
its static type int at 0, since 2 6∈ mlvsin(mod , 5) holds. Note that the static
type of the local variable 2 at 13 is also int. But it affects only the result
yielded by the boolean function monoton assure, not directly the static type
of the local variable 2 at 1.

Step 28 applies rule (T-11) at 13 with respect to the jsr at 3, computing
a new program point type at 4. The program point type at 13 contains the
samemod as above, and thus the functionsmlvsin(mod , 5), sbsin(mod , 5) and
modtill(mod , 5) yield the same results as above. Since now the local variable 2
at 13 has the static type unus and that at 3 the static type C,monoton assure
yields true. Thus the application is possible. For the same reason as before,
the local variables 3 and 4 at 4 have the static type unus , the local variables
0 and 1 at 4 have the static types C and unus , respectively, covering those
at 13, and in particular, the local variable 2 at 4 takes its static type C at 3,
since 2 6∈ mlvsin(mod , 5) holds. Note that the local variable 2 at 13 has the
static type unus : it is easy to see that it does not directly affect the static
type of the local variable 2 at 4.

8 Properties of the algorithm analyzer

8.1 Basic properties

Lemma 3. If a typing rule is satisfied under σ, then the typing rule is pre-
satisfied under σ. If a typing rule is pre-satisfied under σ, then the typing
rule is applicable under σ|FV(AC)∪{Φ}.

Proof. Follows directly from the definitions. �

Each typing rule has the property that if it is applicable or pre-satisfied
under a variable assignment σ, then the entire variable assignment σ can be
uniquely determined by the variable assignment restricted to FV(AC)∪{Φ}.

Lemma 4. For each typing rule and any variable assignments σ1 and σ2,
under which the typing rule is applicable or pre-satisfied, if σ1(X) = σ2(X)
for all X ∈ FV(AC) ∪ {Φ}, then σ1 = σ2 holds.

25

Proof. It is straightforward to check the following:

1. If the typing rule is not (T-11), then σ1(P) = σ2(P) and σ1(Φ) = σ2(Φ)
imply that σ1 = σ2.

2. If the typing rule is rule (T-11), then σ1(P) = σ2(P), σ1(Φ) = σ2(Φ) and
σ1(P

′) = σ2(P
′) imply that σ1 = σ2.

�

Each typing rule has the property that the relation ⊒ on those variable as-
signments σ, under which the rule is applicable or pre-satisfied, is determined
by the relation ⊒ on σ(Φ).

Lemma 5. For each typing rule and any variable assignments σ1 and σ2,
under which the typing rule is applicable or pre-satisfied, σ1 ⊒ σ2 holds if and
only if σ1(Φ) ⊒ σ2(Φ) holds, and σ1 ⊐ σ2 holds if and only if σ1(Φ) ⊐ σ2(Φ)
holds.

Proof. The proof follows by an easy examination of each typing rule. �

It would be desirable to have the property that if a typing rule is applicable
at a program point pp with respect to a program type prgty, then it remains
applicable at pp with respect to every program type prgty ′ with prgty′ ⊒
prgty. In reality we have the property for all typing rules except rule (T-11).

Lemma 6. Assume that a typing rule is applicable under a variable assign-
ment σ. Let prgty′ be an arbitrary program type with prgty′ ⊒ σ(Φ). Then the
following always hold:

1. If the typing rule is not rule (T-11), then there is always a variable as-
signment σ′ with σ′(Φ) = prgty′ and σ′ ⊒ σ such that the typing rule is
applicable under σ′.

2. If the typing rule is rule (T-11), then there is always a variable assignment
σ′ with σ′(Φ) = prgty′ and σ′ ⊒ σ such that rule (T-11) is applicable
under σ′ or rule (T-10) is applicable but not pre-satisfied at a program
point with respect to prgty ′

Proof. The proof of 1 follows by an easy examination of each typing rule.
The proof of 2 is slightly more complex, since the AC part of rule (T-11)
requires the existence of a ret that uses a local variable with a corresponding
subroutine type. This condition need not remain to hold if the program type
becomes bigger. However, if this condition no longer holds, then (T-10) is no
longer pre-satisfied at the program point of the ret. �

If rule (T-10) is applicable but not pre-satisfied with respect to a program
type in an ascending chain of program types, then it is applicable but not
pre-satisfied with respect to each program type after the program type.

26

Lemma 7. If rule (T-10) is applicable but not pre-satisfied with respect to
a program type prgty1, and if prgty2 is a program type with prgty2 ⊒ prgty1,
then rule (T-10) is applicable but not pre-satisfied with respect to prgty2.

Proof. Assume that rule (T-10) is applicable but not pre-satisfied at pp with
respect to prgty1. Then prgty1(pp) 6= ⊥ holds, and there is a variable as-
signment σ1 such that σ1(P) = pp, σ1(Φ) = prgty1, σ1(IND) = ind and
Mth(pp) = ret ind hold for some ind , lvsty1(ind) 6= ⊥ for the component
lvsty1 in prgty1(pp), and at least one of the following is true:

1. lvsty1(ind) is not of the form sbr(· · ·).
2. lvsty1(ind) = lvsty ′

1(ind
′) for some pp′ and ind ′ withMth(pp′) = ret ind ′,

pp 6= pp′ and prgty1(pp
′) 6= ⊥, where lvsty ′

1 is in prgty1(pp
′).

By Lemma 6, there is a variable assignment σ2 such σ2 ⊒ σ1 holds and
rule (T-10) is applicable under σ2. This means that σ2(P) = pp, σ2(Φ) =
prgty2, prgty2(pp) 6= ⊥, σ2(IND) = ind and lvsty2 ⊒ lvsty1 for the lvsty2 in
prgty2(pp).

In the case 1 above, by lvsty1(ind) 6= ⊥ and Lemma 1(3), lvsty 2(ind) is
not of the form sbr(· · ·). Thus rule (T-10) is applicable but not pre-satisfied
at pp with respect to prgty2.

Assume that the case 1 is not true, i.e. that lvsty1(ind) is of the form
sbr(· · ·). Then the case 2 must be true, i.e. lvsty1(ind) = lvsty′1(ind

′) holds
for some pp′ and ind ′ as required in the case 2, where lvsty ′

1 is in prgty1(pp
′).

From now on we assume that lvsty 2(ind) is of the form sbr(· · ·); otherwise
we know that rule (T-10) is not pre-satisfied at pp with respect to prgty2 and
thus we are done.

Now consider whether lvsty2(ind) = lvsty ′
2(ind

′) holds for the same pp′

and ind ′ in the 2 and lvsty′2 in prgty2(pp
′). If it holds, then rule (T-10) is

applicable but not pre-satisfied at pp with respect to prgty2, and thus we
are done. If it does not hold, then since lvsty2(ind) is of the form sbr(· · ·),
lvsty′2(ind

′) is not. Since Mth(pp′) = ret ind ′, rule (T-10) is applicable but
not pre-satisfied at pp′ with respect to prgty2. Hence, the assertion of the
lemma always holds. �

Let us now state a property of the operation ⊓ on variable assignments.

Lemma 8. For every typing rule, if the typing rule is applicable under a vari-
able assignment σ and pre-satisfied under two variable assignments σi with
σi|FV(AC)∪{Φ} ⊒ σ for i = 1, 2, then σ1 ⊓ σ2 denotes a variable assignment,
and the typing rule is pre-satisfied under σ1 ⊓ σ2.

Proof. The proof follows by examining each typing rule. Let σ′ denote σ1⊓σ2.
By the assumption given in the assertion of the lemma and the definition of
σ1 ⊓ σ2, we have that σ′

|FV(AC)∪{Φ} ⊒ σ and σi ⊒ σ′, in particular, σi(P) =

σ′(P) = σ(P) and σi(Φ) ⊒ σ′(Φ) ⊒ σ(Φ) for i = 1, 2.

27

Consider rule (T-10). It is obviously applicable under σ′
|FV(AC)∪{Φ}. Since

rule (T-10) is pre-satisfied under σi and σi ⊒ σ′ holds for i = 1, 2, by
Lemma 7, rule (T-10) is pre-satisfied under σ ′.

Since σ′
|FV(AC)∪{Φ} ⊒ σ, by Lemma 6(2), there is a variable assignment

σ′′ such that σ′′(Φ) = σ′(Φ), σ′′(P) = σ(P) and σ′′(P ′) = σ(P ′) hold, and
by the proof for rule (T-10), rule (T-11) is applicable and thus pre-satisfied
under σ′′. By Lemma 4(2), we have that σ ′′ = σ′.

The proofs for other typing rules are easy. �

For a program type prgty, we define that reachprgty(pp, pp
′) holds if and

only if there are a typing rule and a variable assignment σ such that the rule
is applicable under σ, σ(Φ) = prgty, σ(P) = pp and σ(Pp) = pp′ for some
Φ(Pp)⊒Ptty ∈ SC.

In general, we write reach∗
prgty(pp, pp

′) to denote that reachprgty(ppi, ppi+1)
hold for i = 1, · · · , n with n ≥ 0 with pp = pp1 and ppn+1 = pp′. Note that if
n = 0 then pp = pp′.

Intuitively, the relation reach∗
prgty(pp, pp

′) means that there may exist an
execution path from the program point pp to the program point pp ′ with
respect to the program type prgty. The program type prgty is necessary
in determining the path, since a ret needs a static type of the given local
variable to determine the successor program point.

The following lemma states that the reachability defined as above is pre-
served under the increase of the involved program type unless rule (T-10) is
applicable but not pre-satisfied.

Lemma 9. If reachprgty(pp, pp
′) holds for two program points pp and pp′

and a program type prgty, then reachprgty′(pp, pp
′) holds for every program

type prgty ′ with prgty′ ⊒ prgty, unless rule (T-10) is applicable but not pre-
satisfied at a program point with respect to prgty′.

Proof. Follows from the definition of reachprgty and reach′
prgty, and Lemma 6.

�

As another property of the reachability, the following lemma states that
if the method Mth has a program type, then each program point reachable
from the beginning of Mth with respect to the program type has a program
point type that is not ⊥ (and thus does not contain ⊥, either).

Lemma 10. Let prgty be a program type of the method Mth. If reach∗
prgty(−1, pp)

holds for a program point pp ≥ 0, then prgty(pp) 6= ⊥.

Proof. Follows directly from the definition of reach∗
prgty and the forms of the

typing rules. �

As will be shown later, one reason to let the algorithm analyzer start
with the program type ⊥ is to ensure that it computes the smallest program

28

type of the method Mth, if there is any. A nice by-product is that if analyzer
yields a prgty, then a program point pp with prgty(pp) = ⊥ is always one
that is not reachable in Mth . This means that analyzer also computes dead
code in Mth.

The procedure find a subst always yields a variable assignment that is
the smallest one in some sense, or a failure.

Lemma 11. Let find a subst take as arguments a typing rule and a variable
assignment σ such that the rule is applicable under σ. If there is a variable
assignment σ′ such that σ′

|FV(AC)∪{Φ} ⊒ σ holds and the typing rule is pre-

satisfied under σ′, then the procedure yields the smallest one among all these
variable assignments; otherwise, i.e. if there are no variable assignments like
σ′ in the above, then the procedure yields a failure.

Proof. Follows directly from the description in Figure 13 and Lemma 8. �

It is quite easy to prove that the sequence of intermediate program types
is an ascending chain.

Lemma 12. If analyzer does not yield a failure, then it produces a finite as-
cending chain of intermediate program types prgty0 ⊏ prgty1 ⊏ · · · ⊏ prgtyn.

Proof. Assume that prgtyk is the last obtained intermediate program type in
the execution of analyzer . Choose a typing rule and a variable assignment σ
as required in analyzer . By Lemma 11, if it does not fail, then find a subst in
apply a rule yields a variable assignment σ′ with σ′(Φ) ⊒ σ(Φ). Furthermore,
if it does not fail, apply a rule yields the program type

prgtyk+1 = σ′(Φ)[σ′(Pp) 7→σ′(Φ(Pp)) ⊔ σ′(Ptty) | Φ(Pp)⊒Ptty ∈ SC]

Since σ′(Φ(Pp)) ⊔ σ′(Ptty) ⊒ σ′(Φ(Pp)) always holds, prgtyk+1 ⊒ σ′(Φ) and
thus prgtyk+1 ⊒ σ(Φ) = prgtyk. Thus if prgtyk+1 6= prgtyk, then prgtyk+1 ⊐

prgtyk.
The chain prgty0 ⊏ prgty1 ⊏ · · · is always finite, since there are only

finitely many program types. �

For the further discussion, we need the following lemmas.

Lemma 13. Assume that there are a typing rule and two variable assign-
ments σ and σ′ such that the typing rule is applicable under σ, find a subst

takes the typing rule and σ as arguments and yields σ′ as result. Then for all
program points pp, if σ′(Φ)(pp) contains sbr(sb) for some sb, then σ(Φ)(pp)
contains sbr(sb), too.

Proof. By Lemma 11, σ ′
|FV(AC)∪{Φ} ⊒ σ, where σ′(P) = σ(P) and σ′(Φ) ⊒

σ(Φ). Let pp be an arbitrary program point, σ′(Φ)(pp) = (lvsty′, stkty′, · · ·)

29

and σ(Φ)(pp) = (lvsty, stkty, · · ·). Assume that lvsty ′(ind) = sbr(sb) for some
ind and sb but lvsty′(ind) 6= lvsty(ind). Now by the ⊒ relation on static
types, lvsty(ind) = ⊥ and thus σ(Φ)(pp) = ⊥. (Note that we could also have
assumed that an entry in stkty ′ is sbr(sb) but the entry at the same place in
stkty is. Then σ(Φ)(pp) = ⊥ should be true, too.)

Now let prgty′′ be the program type obtained from σ ′(Φ) such that prgty′′(pp) =
⊥ and prgty ′′(pp′) = σ′(Φ)(pp′) for all pp′ with pp′ 6= pp. Then it is easy
to check that if a typing rule and a variable assignment σ can be used,
there is always a variable assignment σ′′ such that σ′′

|FV(AC)∪{Φ} ⊒ σ with

σ′′(P) = σ(P). Hence find a subst must yield σ′′ as a result. The con-
tradiction implies that the assertion of the lemma holds. (Actually, since
σ(Φ)(pp) = ⊥, we can only use a typing rule with σ(P) 6= pp except that the
rule is rule 7. In fact, rule 10 is the only typing rule talking about a subrou-
tine type at program points P ′ that are not P . But since Φ(P ′) = Π ′[LT ′]
in the condition part of the constraint ∀P ′∀IND ′∀Π ′∀LT ′. · · · implies that
Φ(P ′) 6= ⊥ the rule allows σ(Φ)(P ′) = ⊥.) �

A program point type is said to contain a subroutine type sbr(sb) if and
only if the program point type is of the form (lvsty , stkty, · · ·) and lvsty or
stkty contains sbr(sb).

A program point type is said to record a subroutine sb if and only if the
program point type is of the form (· · · ,mod) and sb ∈ Dom(mod) holds.

Lemma 14. For any intermediate program type prgtyk generated by the al-
gorithm analyzer , if there is a program point pp such that prgtyk(pp) contains
a subroutine type sbr(sb) for some subroutine sb, then at least one of the fol-
lowing two assertions holds:

1. There are program points ppi for all i = 1, · · · , n+1 with n ≥ 0, sb = pp1
and pp = ppn+1 such that reachprgtyk

(ppi, ppi+1) hold for i = 1, · · · , n,
and prgtyk(ppi) record sb for i = 1, · · · , n+ 1. (Intuitively, this assertion
means that there is a path from sb to pp that is completely inside the
subroutine sb.)

2. Rule (T-10) is applicable but not pre-satisfied at some program point with
respect to prgtyk.

Proof. Let pp be a program point and sb a subroutine. We proceed by induc-
tion on the number k. First of all, since prgty0(pp) = ⊥, prgty0(pp) does not
contain sbr(sb). Thus the assertion of the lemma holds trivially for prgty0.
Assume that the assertion holds for prgtyg. Now we prove that the assertion
holds for prgtyg+1.

By Lemma 12, prgty g+1 ⊐ prgtyg .

In general, if the assertion 2 holds for prgtyg , then by Lemma 7, the
assertion 2 holds for prgtyg+1 . Thus we need only to consider the induction
assumption where the assertion 2 does not hold for prgtyg .

30

Assume that prgtyg+1(pp) contains sbr(sb). We distinguish between the
cases whether prgtyg(pp) contains sbr(sb) or not. If it does, then by in-
duction assumption, the assertion 1 holds for prgtyg , pp0, · · · , pph+1. Since
reachprgtyg (ppi, ppi+1), by Lemma 9, reachprgtyg+1

(ppi, ppi+1), or the asser-

tion 2 holds for prgtyg+1. Remember that for any mod and mod ′, mod ′ ⊒

mod implies that Dom(mod ′) = Dom(mod). Thus by prgtyg+1 ⊐ prgtyg , if
prgtyg(ppi) records sb then prgtyg+1(ppi) does. Hence the assertion 1 holds
for prgtyg+1 , pp0, · · · , pph+1, or the assertion 2 holds for prgtyg+1 .

By the way how analyzer works, there are a typing rule and two variable
assignments σ and σ′ such that σ(Φ) = prgtyg holds, the typing rule is
applicable under σ, find a subst takes the typing rule and σ as arguments
and yields σ′ as result, σ′ ⊒ σ holds, and apply a rule yields

prgtyg+1 = σ′(Φ)[σ′(Pp) 7→σ′(Φ(Pp))⊔ σ′(Ptty) | Φ(Pp)⊒Ptty ∈ SC]

with σ′(Φ(Pp)) ⊔ σ′(Ptty) 6= ⊤.

Now assume that prgtyg(pp) does not contain sbr(sb). Then σ′(Φ)(pp)
does not contain sbr(sb); otherwise, by Lemma 13, prgty g(pp) would contain
sbr(sb). Since σ′(Φ)(pp) does not contain sbr(sb), there is Φ(Pp)⊒Ptty ∈ SC
in the typing rule such that σ′(Pp) = pp; otherwise, prgtyg+1(pp) = σ′(Φ)(pp)
would hold, and σ′(Φ)(pp) would contain sbr(sb).

Since there is Φ(Pp)⊒Ptty ∈ SC in the typing rule such that σ′(Pp) = pp,
prgtyg+1(pp) = σ′(Φ)(pp)⊔ σ′(Ptty). Since prgtyg+1(pp) contains sbr(sb) but
σ′(Φ)(pp) does not, by Lemma 1, σ ′(Φ)(pp) = ⊥ and prgtyg+1(pp) = σ′(Ptty).
Thus σ′(Ptty) contains sbr(sb). Now we consider what the typing rule is:

– The typing rule cannot be rule (T-8) nor (T-10), since they have no Ptty .
It cannot be rule (T-7), either, since the Ptty never contains sbr (sb).

– Assume that the typing rule is any typing rule that is not rule (T-7),
(T-8), (T-9), (T-10) or (T-11). Then by the form of the typing rule,
since σ′(Ptty) contains sbr(sb), σ′(Φ(P)) contains sbr(sb). By Lemma 11,
σ(Φ(P)), i.e. prgtyg(σ(P)), contains sbr(sb). By induction assumption,
the assertion 1 holds for prgtyg , pp1, · · · , pph+1 with pp1 = sb and pph+1 =
σ(P). Let pph+2 = σ(Pp). Then prgtyg+1(pph+2) = σ′(Ptty). Since the
typing rule is applicable under σ with σ(P) = pph+1 and σ(Pp) = pph+2,
reachprgtyg

(pph+1 , pph+2). Since reachprgtyg
(ppi, ppi+1) for i = 1, · · · , h+

1, by prgtyg+1 ⊐ prgtyg and Lemma 9, reachprgtyg+1
(ppi, ppi+1) for i =

1, · · · , h+1 or the assertion 2 holds for prgtyg+1 . Since prgtyg(ppi) records
sb for i = 1, · · · , h + 1, by prgtyg+1 ⊐ prgtyg, prgtyg+1(ppi) records sb

for i = 1, · · · , h + 1. By the form of Ptty , prgty g+1(pph+2) records sb.
Hence the assertion 1 holds for prgtyg+1, pp1, · · · , pph+2, with pp1 = sb

and pph+2 = σ(Pp) = pp, or 2 holds for prgtyg+1.

– Assume that the typing rule is rule (T-9). We consider whether σ(SB) =
sb holds for the SB in the rule. If σ(SB) = sb, then pp = sb holds, thus
the assertion 1 holds trivially. If σ(SB) 6= sb, since σ′(Ptty) contains

31

sbr(sb), σ′(Φ(P)) contains sbr(sb). Now the proof in the previous case
applies here.

– Assume that the typing rule is rule (T-11). Since σ′(Ptty) contains sbr(sb),
σ′(Φ(P)) or σ′(Φ(P ′)) for P and P ′ in the rule contains sbr (sb). By
Lemma 13, prgty g(σ(P)) or prgtyg(σ(P

′)) contains sbr(sb).
• Assume that prgty g(σ(P)) contains sbr(sb). By induction assump-

tion, the assertion 1 holds for prgtyg, pp1, · · · , pph+1 with sb = pp1
and pph+1 = σ(P). Let pph+2 = σ(Pp).
Since rule (T-11) is applicable under σ, reachprgtyg

(σ(P), σ(Pp)), i.e.
reachprgtyg

(pph+1 , pph+2). Thus by prgtyg+1 ⊐ prgtyg and Lemma 9,
reachprgtyg+1

(ppi, ppi+1) hold for i = 1, · · · , h + 1, or the assertion 2
holds for prgtyg+1.
Again by prgtyg+1 ⊐ prgtyg, since the assertion 1 holds as above,
prgtyg+1(ppi) records sb for i = 1, · · · , h+1. Since prgtyg+1(σ(Pp)) =
σ′(Ptty) and σ′(Ptty) contains sbr(sb), by the form of the Ptty, sb 6∈
sbsin(σ′(M), σ′(SB)) and thus sb ∈ Dom(modtill (σ′(M), σ′(SB)))
hold, where prgtyg+1(pph+1) is of the form (· · · , σ′(M)). Therefore,
prgtyg+1(pph+2) records sb.
Hence, the assertion 1 holds for prgtyg+1, pp1, · · · , pph+2, with sb =
pp1 and pph+2 = σ(Pp) = pp, or the assertion 2 holds for prgtyg+1 .

• Assume that prgtyg(σ(P
′)) contains sbr(sb). Let pp′ stand for σ(P ′)

and sb′ for σ(SB) for the P ′ and SB in rule (T-11). By induction
assumption, the assertion 1 holds for prgty g and pp1, · · · , pph+1 with
sb = pp1 and pph+1 = pp′.
Since rule (T-11) is applicable under σ, by the form of the AC in
rule (T-11), prgtyg(σ(P)) contains sbr(sb′), and Mth(pp′) = jsr sb′

holds. Since prgtyg(σ(P)) contains sbr(sb′), by induction assumption,
the assertion 1 holds for prgtyg, pp

′
1, · · · , pp

′
f+1 and with pp′1 = sb′

and pp′f+1 = σ(P). Since Mth(pp′) = jsr sb′, rule (T-9) is applicable
at pp′ with respect to prgtyg, and thus prgtyg(pp

′, sb′). Let pp′′i for
i = 1, · · · , h + f + 2 such that pp′′i = ppi for i = 1, · · · , h + 1 and
pp′′h+1+i = pp′i for i = 1, · · · , f + 1. Thus reachprgtyg

(pp′′i , pp
′′
i+1) for

i = 1, · · · , h+ f + 1 with sb = pp′′1 and pp′′h+f+2 = σ(P).
Since Mth(pp′) = jsr sb′, assuming that prgtyg(pp

′) = (· · · ,mod)

and prgtyg(sb
′) = (· · · ,mod ′), by the form of rule (T-9), mod ′ =

mod + (sb′, {}). Since prgtyg(pp
′) records sb, sb 6∈ sbsin(mod ′, sb′)

and sb ∈ Dom(modtill (mod ′, sb′)). Since prgtyg(pp
′
i) record sb′ for all

i = 1, · · · , f + 1, prgtyg(pp
′
i) record sb for all i = 1, · · · , f + 1.

By prgtyg+1 ⊐ prgtyg, the assertion 1 holds for prgtyg+1, pp
′′
1 , · · ·,

pp′′h+f+2 with pp′′1 = sb and pp′′h+f+2 = σ(P) = σ(Pp) = pp, or the
assertion 2 holds for prgtyg+1 ,

�

Roughly speaking, rule (T-11) considers three program points P , SB and
P ′. The boolean function monoton assure imposes a relation between (the

32

static types at) the program points P and P ′. We break down the relation
into two simpler relations: one between P and SB , and the other between
SB and P ′. We model the relation between P and SB using the boolean
function prim monoton assure defined in Figure 16. The boolean function
prim monoton assure is simpler than the boolean function monoton assure,
since prim monoton assure considers program points within one subroutine
and thus can be defined independently of the variable assignment used in the
application of rule (T-11).

Input: A program type prgty, a program point pp and a subroutine sb.
Output: true or false.
Body: Assume that prgty(pp) = (lvsty, · · · ,mod) and prgty(sb) = (lvsty′′, · · ·). If
sb ∈ Dom(mod) and

∀0 ≤ j < LocN .j 6∈ mlvsin(sb,mod) ⇒ lvsty(j) ⊒ lvsty
′′(j)

hold, then the current function yields true; otherwise it yields false.

Figure 16: The boolean function prim monoton assure

The next lemma states a condition that ensures that the boolean function
prim monoton assure yields true.

Lemma 15. Assume that prgty is a fixed point and that pp1, · · · , ppn+1 are
program points such that reachprgty(ppi, ppi+1) hold for i = 1, · · · , n, prgty(ppi)
records pp1 for i = 1, · · · , n+ 1, and mod1 = [· · · , (pp1, {})] for prgty(pp1) =
(· · · ,mod1). Then prim monoton assure(prgty, ppn+1, pp1) yields true.

Proof. Let prgty(ppi) = (lvstyi, · · · ,mod i) for i = 1, · · · , n+ 1. Let sb denote
pp1. Since prgty(ppi) record sb for i = 1, · · · , n + 1, sb ∈ Dom(mod i) hold
and mlvsin(mod i, sb) are defined for all i = 1, · · · , n+ 1.

Since prgty is a fixed point, by the forms of all those typing rules that may
induce reachprgty(ppi, ppi+1), mlvsin(mod i+1, sb) ⊇ mlvsin(mod i, sb) hold for
all i = 1, · · · , n. In particular, if the typing rule is rule (T-11), then the term
addmlvs(mlvsin(M, SB),modtill(M, SB)) in the rule assures the assertion.

Now we prove that

∀0 ≤ j < LocN .j 6∈ mlvsin(mod i, sb) ⇒ lvstyi(j) ⊒ lvsty1(j)

hold for all i = 1, · · · , n+ 1. We proceed by induction on n.
If n = 0, then the assertion holds trivially. Assume that the assertion

holds for n = m − 1 with m ≥ 1. Now let n = m. Let j be an arbi-
trary number with 0 ≤ j < LocN and j 6∈ mlvsin(sb,modm+1). Since
mlvsin(mod i+1, sb) ⊇ mlvsin(mod i, sb) for i = 1, · · · , m, j 6∈ mlvsin(mod i, sb)
hold for all i = 1, · · · , m + 1. Now consider all those typing rules that may
induce reachprgty(ppm, ppm+1).

33

If the typing rule is not rule (T-11), then it is straightforward to see
that lvstym+1(j) ⊒ lvstym(j) holds. By induction assumption, lvstym(j) ⊒
lvsty1(j). Thus lvstym+1(j) ⊒ lvsty1(j).

Assume the typing rule is rule (T-11). Since prgty is a fixed point, there is
a variable assignment σ with σ(Φ) = prgty, σ(P) = ppm, σ(P ′) + 1 = ppm+1

andMth(σ(P ′)) = jsr σ(SB) such that rule (T-11) is satisfied under σ. Since
mod1 = [· · · , (pp1, {})] and prgty(ppi) record sb for i = 1, · · · , m + 1, sb ∈
Dom(modtill(modm, σ(SB))), and thus σ(SB) ∈ sbsin(modm, sb). Therefore,
there is k with 1 ≤ k ≤ m such that ppk = σ(P ′) and ppk+1 = σ(SB). Since
rule (T-11) is satisfied under σ,

lvstym+1 ⊒
lvstyk[i 7→ turnUnus(lvstym(i), sbsin(modm, σ(SB)) | i∈mlvsin(modm, σ(SB))])

holds. Since j 6∈ mlvsin(modm+1 , sb) holds, lvstym+1(j) ⊒ lvstyk(j). By in-
duction assumption, lvstyk(j) ⊒ lvsty1(j). Thus lvstym+1(j) ⊒ lvsty1(j).

�

Now we formally state that the restriction of the application of rule (T-11)
in the algorithm analyzer is not a serious restriction.

Lemma 16. Assume that analyzer terminates with a program type prgty. If
there is a variable assignment σ with σ(Φ) = prgty such that rule (T-11) is
applicable under σ, then monoton assure(σ) yields true.

Proof. Since analyzer terminates with prgty, all typing rules that are appli-
cable are pre-satisfied.

Given the notation in rule (T-11), since rule (T-11) is applicable under σ,
prgty(σ(P)) = (σ(LT), · · ·), σ(LT (IND)) = sbr(σ(SB)) and Mth(σ(P ′)) =
jsr σ(SB) hold. By Lemma 14, there exist ppi for all i = 1, · · · , n+ 1 with
n ≥ 0, σ(SB) = pp1 and σ(P) = ppn+1 such that reachprgtyk

(ppi, ppi+1) hold
for i = 1, · · · , n, and prgtyk(ppi) record sb for i = 1, · · · , n+ 1.

Let pp0 denote σ(P ′). Let prgty(ppi) be of the form (lvsty i, · · · ,mod i)
for i = 0, · · · , n + 1. Since Mth(pp0) = jsr pp1, mod1 = [· · · , (pp1, {})]. By
Lemma 15, prim monoton assure(prgty , ppn+1, pp1) yields true.

Since Mth(pp0) = jsr pp1, by the form of rule (T-9), lvsty1 ⊒ lvsty0.
Therefore

∀0 ≤ j < LocN .j 6∈ mlvsin(pp1,modn+1) ⇒ lvstyn+1(j) ⊒ lvsty0(j)

holds. Hence, monoton assure(σ) yields true. �

8.2 Correctness of the algorithm analyzer

Now we can prove that analyzer yields a fixed point.

34

Lemma 17. If analyzer terminates with a program type prgty, then prgty is
a fixed point.

Proof. We need to prove that whenever a typing rule is applicable under a
variable assignment σ and σ(Φ) = prgty holds, there is a variable assignment
σ′ such that the typing rule is satisfied under σ′ and σ′

|FV(AC)∪{Φ} = σ holds.
Assume that there is a typing rule and a variable assignment σ as required.

By Lemma 16, either the typing rule is not rule (T-11), or monoton assure(σ)
yields true. Thus analyzer must have called apply a rule and find a subst,
find a subst must have computed a variable assignment σ ′, and apply a rule

must have yielded

σ′(Φ)[σ′(Pp) 7→σ′(Φ(Pp))⊔ σ′(Ptty) | Φ(Pp)⊒Ptty ∈ SC]

which is equal to prgty and saitisfies that σ′(Φ(Pp)) ⊔ σ′(Ptty) 6= ⊤. By
Lemma 11, σ ′

|FV(AC)∪{Φ} ⊒ σ and the typing rule is pre-satisfied under σ′. By

the standard property of ⊔, σ′(Φ(Pp)) ⊒ σ′(Ptty) and σ′(Φ) = prgty = σ(Φ)
hold. The fact that σ′(Φ(Pp)) ⊒ σ′(Ptty) hold for all Φ(Pp) ⊒ Ptty ∈ SC
implies that the typing rule is satisfied under σ′. By Lemma 5, σ ′(Φ) = σ(Φ)
implies that σ′

|FV(AC)∪{Φ} = σ. Thus the assertion of the lemma holds. �

The correctness of analyzer is formulated in the following theorem.

Theorem 18. (Correctness) If analyzer yields a program type prgty, then
the method Mth has the program type prgty.

Proof. Let us use the notations in the definition of program types of Mth (in
Section 5). Consider an arbitrary typing rule and a variable assignment σ

with Dom(σ) = Q ∪ {Φ} and σ(Φ) = prgty such that AC is satisfied under
σ. Thus the typing rule is applicable under σ. By Lemma 17, prgty is a fixed
point. By the definition of fixed points, there is a variable assignment σ′

such that the typing rule is satisfied under σ′ and σ′
|FV(AC)∪{Φ} = σ holds.

Therefore, Dom(σ′) = Q ∪Q′ ∪ {Φ} holds and CC ∪ SC is satisfied under σ′.
Since the typing rule and σ have been arbitrarily chosen, the assertion of the
theorem holds. �

8.3 Termination of the algorithm analyzer

The termination of the algorithm analyzer is easy to prove.
First of all, the termination of find a subst and apply a rule can be easily

established.

Lemma 19. If all defined functions used in typing rules are terminating,
then find a subst is terminating.

35

Proof. Follows from the facts that there are only finitely many variable as-
signments and that the check of constraints is terminating. �

Lemma 20. If all defined functions used in typing rules are terminating,
then apply a rule is terminating.

Proof. Follows from the fact that the check of constraints is terminating and
from Lemma 19. �

Theorem 21. (Termination) If all defined functions used in typing rules are
terminating, then analyzer is terminating.

Proof. Follows easily from Lemmas 20 and 12. �

8.4 Completeness of the algorithm analyzer

The first thing is to prove that each program type of Mth is a fixed point.

Lemma 22. If the method Mth has a program type, then the program type
is a fixed point.

Proof. Let us use the notations at the end of Section 5. Assume that the
method Mth has a program type prgty. Consider an arbitrary typing rule
and an arbitrary σ with σ(Φ) = prgty such that the typing rule is applicable
under σ. Then Dom(σ) = Q ∪ {Φ} holds and AC is satisfied under σ. Since
the method Mth has the program type prgty, there is a variable assignment
σ′ such that Dom(σ′) = Q ∪Q′ ∪ {Φ} and σ′

|Q∪{Φ} = σ hold and CC ∪ SC is

satisfied under σ′. Thus the typing rule is satisfied under σ′. Hence, prgty is
a fixed point restricted to the typing rule and σ. Since the typing rule and σ

have been arbitrarily chosen, the assertion of the lemma holds. �

Now we prove that if the method Mth has a program type prgty, then
analyzer will yield a program type prgty ′ with prgty ⊒ prgty ′. In order to do
this, we first prove that apply a rule is monotone in a certain sense.

The procedure apply a rule is said to bemonotone with respect to a typing
rule and a set of variable assignments if and only if, for all variable assign-
ments σ1 and σ2 from the set such that the typing rule is applicable under σ1

and σ2, apply a rule yields prgty′i for the typing rule and σi for both i = 1, 2,
if σ1 ⊒ σ2, then prgty′1 ⊒ prgty′2.

Lemma 23. If it does not terminate with failure, apply a rule is monotone
with respect to each typing rule that is not rule (T-11) and the set of all
possible variable assignments.

36

Proof. Consider an arbitrary typing rule that is not rule (T-11). Assume that
σ1 and σ2 are two variable assignments with σ1 ⊒ σ2 such that the typing
rule is applicable under σ1 and σ2.

First, apply a rule calls find a subst. Let find a subst take the typing
rule and σ1 (or σ2). If it does not fail, then by Lemma 11, find a subst yields
the smallest one σ′

1 (or σ′
2, respectively) among all variable assignments σ ′′

1

(or σ′′
2 , respectively) such that the typing rule is pre-satisfied under σ′′

1 (or
σ′′
2 , respectively), and

σ′′
1 |FV(AC)∪{Φ} ⊒ σ1 (or σ′′

2 |FV(AC)∪{Φ} ⊒ σ2, respectively)

holds. Since the set of all σ′′
1 is a subset of all σ′′

2 , σ
′
1 ⊒ σ′

2 holds.
Second, by examining each typing rule, it is easy to check that if Φ(Pp)⊒

Ptty ∈ SC, then FV(Pp) does not contain variables whose sorts are based on
static types. By the definition of σ′

1 ⊒ σ′
2, we know that σ′

1(X) = σ′
2(X) for

all X ∈ FV(Pp). Thus σ1(Pp) = σ2(Pp).
Third, by examining each typing rule, it is easy to check that σ′

1(Ptty) ⊒
σ′
2(Ptty) holds for each Φ(Pp)⊒Ptty ∈ SC.
Hence, we finally have that

σ′
1(Φ)[σ

′
1(Pp) 7→σ′

1(Φ(Pp)) ⊔ σ′
1(Ptty) | Φ(Pp)⊒Ptty ∈ SC]

⊒ σ′
2(Φ)[σ

′
2(Pp) 7→σ′

2(Φ(Pp)) ⊔ σ′
2(Ptty) | Φ(Pp)⊒Ptty ∈ SC]

�

Lemma 24. If it does not terminate with failure, apply a rule is monotone
with respect to rule (T-11) and the set of all those variable assignments σ

such that monoton assure(σ) yields true.

Proof. Assume that σi for i = 1, 2 are variable assignments with σ1 ⊒ σ2 such
that rule (T-11) is applicable under σi and monoton assure(σi) yield true for
i = 1, 2.

Assume that the procedure find a subst yields σ′
i for i = 1, 2 as described

in the proof of Lemma 23. Furthermore, the proof of Lemma 23 applies here,
except the proof of σ′

1(Ptty) ⊒ σ′
2(Ptty). To prove that σ′

1(Ptty) ⊒ σ′
2(Ptty),

let us use the notations in rule (T-11) and the notations satisfying that

sb = σ′
i(SB)

σ′
i(LT) = lvstyi, σ′

i(LT
′) = lvsty′i,

σ′
i(ST) = stkty i, σ′

i(ST
′) = stkty′i,

σ′
i(M) = mod i, σ′

i(M
′) = mod ′

i,

σi(Φ(P)) = (lvsty i, stktyi,mod i) σi(Φ(P
′)) = (lvsty ′

i, stkty
′
i,mod ′

i)

for i = 1, 2. Since σ′
1(Φ(P)) ⊒ σ′

2(Φ(P)) and σ′
1(Φ(P

′)) ⊒ σ′
2(Φ(P

′)), we have

lvsty1 ⊒ lvsty2, stkty1 ⊒ stkty2, mod1 ⊒ mod2,

lvsty ′
1 ⊒ lvsty′2, stkty

′
1 ⊒ stkty ′

2, mod ′
1 ⊒ mod ′

2.

37

Let us define ti, si and mi for i = 1, 2 as follows:

ti = lvsty′i[j 7→ turnUnus(lvsty i(j), sbsin(mod i, sb)) | j ∈ mlvsin(mod i, sb)]
si = turnUnus(stkty i, sbsin(mod i, sb))
mi = addmlvs(mlvsin(mod i, sb),modtill(mod i, sb))

Then the key is to prove that t1 ⊒ t2, s1 ⊒ s2 and m1 ⊒ m2.
Since mod1 ⊒ mod2, we have that mlvsin(mod1, sb) ⊇ mlvsin(mod2, sb),

sbsin(mod1, sb) = sbsin(mod2, sb) andmodtill(mod1, sb) ⊒ modtill(mod2, sb).
In order to prove that t1 ⊒ t2, we prove that t1(j) ⊒ t2(j) for each j. We

need only to distinguish between three cases for j:

– If j 6∈ mlvsin(mod i, sb) for i = 1, 2, then ti(j) = lvsty′i(j). By lvsty ′
1 ⊒

lvsty′2, t1(j) ⊒ t2(j).
– If j ∈ mlvsin(mod1, sb) but j 6∈ mlvsin(mod2, sb), then

t1(j) = turnUnus(lvsty1(j), sbsin(mod1, sb)) and
t2(j) = lvsty ′

2(j).

By Lemma 2, t1(j) ⊒ lvsty1(j) holds. Since lvsty1 ⊒ lvsty2, lvsty1(j) ⊒
lvsty2(j). Since monoton assure(σ2) yields true, lvsty2(j) ⊒ lvsty′2(j).
Hence t1(j) ⊒ lvsty′2(j) = t2(j).

– If j ∈ mlvsin(mod i, sb) for i = 1, 2, then

ti(j) = turnUnus(lvsty i(j), sbsin(mod i, sb)).

We need only to consider the following cases:
• Assume that lvsty1(j) = sbr(sb′). By lvsty1(j) ⊒ lvsty2(j) 6= ⊥,

lvsty2(j) = sbr(sb′). Since sbsin(mod1, sb) = sbsin(mod2, sb), t1(j) =
t2(j).

• Assume that lvsty1(j) 6= sbr(sb′). If lvsty2(j) = sbr(sb′), then by
lvsty1(j) ⊒ lvsty2(j), lvsty1(j) = unus . Hence t1(j) ⊒ t2(j). If lvsty2(j) 6=
sbr(sb′), then t1(j) = lvsty1(j) ⊒ lvsty2(j) = t2(j) hold.

The proof for s1 ⊒ s2 is similar to and simpler than that for t1 ⊒ t2.
The proof for m1 ⊒ m2 is straightforward. �

Now we prove that if there is a fixed point, then all intermediate program
types produced by analyzer are smaller than the fixed point.

Lemma 25. Assume that prgtyk for k = 0, 1, · · ·, be the sequence of inter-
mediate program types produced by analyzer. Let prgty be a fixed point. Then
prgty ⊒ prgtyk holds for all k = 0, 1, · · ·.

Proof. We proceed by induction on k.
If k = 0, then prgty ⊒ prgty0 = ⊥. As the induction assumption we

assume that prgty ⊒ prgtyk.

38

Assume that analyzer produces an intermediate program type prgty k+1.
This means that there are a typing rule and a variable assignment σ with
σ(Φ) = prgtyk such that the rule is applicable under σ, if the rule is rule (T-
11) then themonoton assure(σ) yields true, and apply a rule yields prgtyk+1.
By Lemma 6, there is a variable assignment σ ′ such that σ′(Φ) = prgty and
σ′ ⊒ σ hold and the typing rule is applicable under σ′, unless rule (T-10)
is applicable but not pre-satisfied at a program point with respect to prgty.
Since prgty is a fixed point, the “unless”-case is impossible. Thus apply a rule

yields prgty for the typing rule and σ′. Since σ′ ⊒ σ, by Lemmas 23 and 24,
prgty ⊒ prgtyk+1. �

In order to show that if it is possible for analyzer to yield a failure then
the method Mth has no program types, we need the following lemma:

Lemma 26. For any typing rule and any variable assignment σ1, if the typ-
ing rule is applicable under σ1 and apply a rule yields a failure for the typing
rule and σ1, then for any program type prgty ′ with prgty′ ⊒ σ1(Φ), there is
a variable assignment σ2 with σ2(Φ) = prgty ′ such that apply a rule yields a
failure for the same typing rule or rule (T-10) and σ2.

Proof. Assume that there are a typing rule, σ1 and prgty′ as required. By
Lemma 6, either

1. there is σ2 with σ2(Φ) = prgty′ and σ2 ⊒ σ1 such that the typing rule is
applicable under σ2, or

2. rule (T-10) is applicable but not pre-satisfied at a program point with
respect to prgty′.

The case 2 directly implies the assertion of the lemma.

Consider the case 1. In general, there are only two possibilities where
apply a rule yields a failure for the typing rule and σ1. The first is when
find a subst yields a failure for the typing rule and σ1, i.e. when there are
no σ′

1 such that σ′
1|FV(AC)∪{Φ} ⊒ σ1 holds and the typing rule is pre-satisfied

under σ′
1. Since σ2 ⊒ σ1, there are no σ′

2 such that σ′
2|FV(AC)∪{Φ} ⊒ σ2 holds

and the typing rule is pre-satisfied under σ′
2. Hence find a subst yields a

failure for the typing rule and σ2.

The second possibility is that find a subst yields σ′
1 for the typing rule

and σ1, but σ′
1(Φ(Pp)) ⊔ σ′

1(Ptty) = ⊤ for some Φ(Pp) ⊒ Ptty ∈ SC. If
find a subst yields a variable assignment σ′

2 for the typing rule and σ2, then
since σ′

2 ⊒ σ′
1, σ

′
2(Φ(Pp))⊔σ′

2(Ptty) = ⊤. Hence apply a rule yields a failure
for the typing rule and σ2. �

We are ready to prove the completeness, i.e that if Mth is statically well-
typed, then analyzer always yields a program type of Mth. Furthermore, the
yielded program type is the smallest one among all program types of Mth.

39

Theorem 27. (Completeness) If Mth has a program type prgty, then analyzer
will yield a program type prgty′ of Mth with prgty ⊒ prgty′.

Proof. Assume that Mth has a program type prgty . By Lemma 22, prgty
is a fixed point. By Lemma 25, all intermediate program types prgty k for
k = 0, 1, · · ·, produced by analyzer satisfy that prgty ⊒ prgtyk. Since prgty is a
fixed point, by Lemma 26, analyzer does not yield a failure. By Theorems 21,
the algorithm will yield a program type prgtyn for some finite n. Note that
prgty ⊒ prgtyn. By Theorem 18, prgtyn is a program type of Mth. �

Note that Theorem 27 implies that if Mth has a program type, then
analyzer will yield the smallest one.

9 Related work

Bertelsen formalized JVM instructions using state transitions [2]. Cohen de-
scribed a formal semantics of a subset of the JVM, but runtime checks are
used to assure type-safe execution [3]. Both approaches did not consider static
type check, thus did not directly correspond to bytecode verification.

Stata and Abadi [17] proposed a type system for subroutines, provided
lengthy proofs for the soundness of the system and clarified several key se-
mantic issues about subroutines. Freund and Mitchell [5] made a significant
extension of Stata and Abadi’s type system by considering object initial-
ization. Hagiya and Tozawa [8] presented another type system for subrou-
tines, where the soundness proof is extremely simple. Qian [13] presented
a constraint-based typing system for objects, primitive values, methods and
subroutines and proved the soundness. Pusch [12] formalized a subset of JVM
in the theorem prover Isabelle/HOL and reached a higher degree of reliabil-
ity. All this work basically aimed at achieving a sound specification, which
defines what types memory locations should have, but did not consider how
to develop a provably correct implementation to compute canonical types
for memory locations. Note that Hagiya and Tozawa discussed issues on an
implementation of their type system, but did not formally describe the imple-
mentation. In fact, since they did not consider objects, their implementation
did not encounter the problems we have here.

Goldberg [7] directly used dataflow analysis to formally specify bytecode
verification focusing on type-correctness and global type consistency for dy-
namic class loading. He successfully formalized a way to relate bytecode ver-
ification and class loading. Since he did not consider subroutines, he did not
encounter the problems we discuss in this paper.

Saraswat [14] studied static type-(un)safety in Java in the presence of
more than one class loader. We do not consider class loaders in this paper.

The Kimera project [15] was quite effective in detecting flaws in com-
mercial bytecode verifiers. Following the comparative testing approach, they
wrote a reference bytecode verifier and tested commercial bytecode verifiers

40

against it. Since it was built by a simple organization of implementations of
individual axioms distilled from the OJVMS, their reference bytecode verifier
could be easier understood, revised and debugged, and thus reached a higher
degree of correctness than the commercial ones. However, since the axioms
are written in English, they might still be hard to reason about, and the cor-
rectness of the reference bytecode verifier could not be formally established.

10 Conclusion

Practically, we have shown an approach in which a core of a bytecode verifier
can be built. We see no fundamental difficulties to apply the approach to
build a bytecode verifier for the entire JVM. Since the correctness, termina-
tion and completeness of the bytecode verifier can be formally proved, we
could reach a higher degree of reliability. Since the fixed part of the bytecode
verifier are basically the algorithm and procedures in Section 7, which are
parameterized by the description of (the typing rules of) a formal specifica-
tion, many changes in the formal specification may cause no or only small
changes in the fixed part of the bytecode verifier or the formal proofs, and
thus automatically lead to bytecode verifiers for revisions of the formal speci-
fication. Therefore, our bytecode verifier could be used as a prototype to test
the behaviors of a formal specification.

Theoretically, we have shown results on the existence and effective com-
putation of the smallest program type for JVM programs, corresponding to
the results on the existence and the effective computation of principal types
for ML programs.

References

1. A. Aho, R. Sethi, and J. Ullman. Compilers — Principles, Techniques, and

Tools. Addison-Wesley Publishing Company, 1986.
2. P. Bertelsen. Semantics of java byte code. http://www.dina.kvl.dk/˜pmb/,

1997.
3. R. Cohen. The Defensive Java Virtual Machine specification. Technical report,

Computational Logic inc., 1997.
4. P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for

static analysis of programs bu construction of approximation of fixpoints. In
Proc. 4th ACM Symp. Principles of Programming Languages, pages 238–258,
1977.

5. S. Freund and J. Mitchell. A type system for object initialization in the java
bytecode language (summary). Electronic Notes in Theoretical Computer Sci-

ence, 10, 1998. http://www.elsevier.nl/locate/entcs/volume10.html.
6. J. Gallier. Logic for Computer Science - Foundations of Automatic Theorem

Proving. John Wiley & Sons, 1987.
7. A. Goldberg. A specification of Java loading and bytecode verification. In

Proc. 5th ACM Conference on Computer and Communications Security, 1998.
To appear.

41

8. M. Hagiya and A. Tozawa. On a new method fot dataflow analysis of Java Vir-
tual Machine subroutines. In Proc. 1998 Static Analysis Symposium. Springer-
Verlag LNCS, 1998. To appear.

9. J. Jaffar and M. Maher. Constraint logic programming: A survey. J. of Logic

Programming, pages 503–581, 1994.
10. G. McGraw and E. Felten. Java Security. Wiley Computer Publishing, 1997.
11. Neil D.Jones and F. Nielson. Abstract interpretation: a semantics-based tool

for program analysis. In T. M. S.Ãbramsky, Dov M. Gabbay, editor, Handbook

of Logic in Computer Science, vol. 4, Semantic Modelling. Oxford University
Press, 1995.

12. C. Pusch. Formalizing the Java Virtual Machine in Isabelle/HOL.
Technical report, TUM I9816, Technische Unversität München, 1998.
http://www4.informatik.tu-muenchen.de/˜isabelle/bali/.

13. Z. Qian. A formal specification of Javatm virtual machine instructions for ob-
jects, methods and subroutines. In J. Alves-Foss, editor, Formal Syntax and

Semantics of JavaTM. Springer Verlag LNCS, 1998. To appear.
14. V. Saraswat. Java is not type-safe. Technical report, AT&T Research, 1997.

http://www.research.att.com/˜vj/bug.html.
15. E. Sirer, S. McDirmid, and B. Bershad. A Java system security architecture.

http://kimera.cs.washington.edu/, 1997.
16. G. Smolka, W. Nutt, J. Goguen, and J. Meseguer. Order-sorted equational

computation. In H. Aı̈t-Kaci and M. Nivat, editors, Resolution of Equations in

Algebraic Structures, volume 2, pages 297–367. Academic Press, 1989.
17. R. Stata and M. Abadi. A type system for Java bytecode subroutines. In Proc.

25st ACM Symp. Principles of Programming Languages, 1998.

42

