
KES.U.96.8

Kestrel Institute

Re�nement of

Parameterized Algebraic Speci�cations

by

Yellamraju V. Srinivas

September 1996

Revised January 1997

To appear in

Proceedings of the IFIP TC2 Working Conference on Algorithmic

Languages and Calculi (17-22 February 1997, Le Bischenberg, France).

c

IFIP 1997. Published by Chapman & Hall.

Kestrel Institute � 3260 Hillview Avenue � Palo Alto, CA 94304 � (415) 493-6871

Re�nement of

Parameterized Algebraic Speci�cations

Yellamraju V. Srinivas

Kestrel Institute

3260 Hillview Avenue, Palo Alto, CA 94304, USA

Email: srinivas@kestrel.edu, Tel: (415)493-6871, Fax: (415)424-1807

Abstract

A re�nement relation for parameterized algebraic speci�cations is introduced

in which the body speci�cation is re�ned covariantly (i.e., specialized) while

the parameter speci�cation is re�ned contravariantly (i.e., generalized). This

re�nement is similar to the subtyping relation between function types. As-

suming a few relatively weak axioms about parameterized speci�cations, re-

�nement is shown to satisfy the expected properties for software development

in-the-large: independent re�nement of body and parameter, and closure un-

der sequential composition, instantiation and a suitable form of `horizontal'

composition.

Keywords

Parameterized speci�cations, mixed-variance re�nement, compositionality

1 INTRODUCTION

The primary subject of this paper is a general notion of re�nement for pa-

rameterized speci�cations. Many notions of re�nement have been previously

proposed in the literature (Ehrig & Kreowski 1982, Ganzinger 1983, Goguen

& Meseguer 1982, Sannella & Tarlecki 1988, Sannella & Wirsing 1982, Ehrig

& Mahr 1990, Ehrig & Gro�e-Rhode 1994). In many of these, the parameter is

not re�ned; in some, the parameter is re�ned, either in the same direction as

the body (covariant re�nement) or in the opposite direction (mixed-variance

re�nement). We investigate the properties of a somewhat more exible mixed-

variance re�nement relation.

Consider, for example, a speci�cation for sorting, which is parameterized on

a total order. After re�nement, we will have a program, say mergesort. Such

a program is typically parameterized, not on a total order, but the signature

of a total order, i.e., a type and a binary relation; this is because most pro-

gramming languages cannot express the requirement that the relation satisfy

the axioms of a total order. Indeed, `merge' and `mergesort' may be de�ned as

operations on sequences given any binary relation; although these functions

2 Re�nement of Parameterized Algebraic Speci�cations

will always produce a result, the results may not be meaningful. However,

when `merge' is given sorted sequences and a total order as arguments, it will

produce a sorted sequence. To show the correctness of such a re�nement, we

need a re�nement relation between parameterized speci�cations in which the

parameter can be changed.

The re�nement relation that is described in this paper is similar to the

subtyping relation between function types: the body is specialized while the

parameter is generalized. In our example above, mergesort is a valid re�nement

of the sorting speci�cation, if after instantiation by a total order, mergesort

is a re�nement of sorting.

Our notion of re�nement is mostly independent of the semantics of param-

eterized speci�cations. We show that, assuming a few relatively weak axioms

about parameterized speci�cations, re�nement satis�es the expected proper-

ties for software development in-the-large: independent re�nement of body

and parameter, and closure under sequential composition, instantiation and

a suitable form of horizontal composition. The existence of such a re�nement

calculus is especially pleasing, given that several semantics have been proposed

for parameterized speci�cations (Ehrig et al. 1981, Bidoit 1987, Wirsing 1986).

2 SPECIFICATIONS, MORPHISMS, INTERPRETATIONS

We will assume a category of speci�cations and morphisms in which �nite col-

imits exist. The constructions and calculations in this paper are based on this

category and sub-categories consisting of morphisms with special properties.

We only discuss models briey; for this purpose, we assume a (contravariant)

functor Mod which assigns to each speci�cation a category of models and to

each morphism �:A ! B a functor _j

�

:Mod (B) ! Mod (A) called reduct

functor.

Example speci�cations use a speci�c logic, namely the logic of Specware,

a formal software development system currently being developed at Kestrel

(Srinivas & J�ullig 1995). A speci�cation in Specware is a �nite presentation

of a theory in higher-order logic, i.e., a �nite collection of sorts, operations,

and axioms (Lambek & Scott 1986). A speci�cation morphism in Specware

is a �nite map from sorts to sorts and operations to operations such that the

ranks of operations are preserved and axioms translate to theorems.

2.1 Re�nement by Interpretations

The general notion of re�nement is that a speci�cation B re�nes a speci�-

cation A if there is a construction which produces models of A from models

of B (Sannella & Tarlecki 1988). Speci�cation morphisms serve this purpose

because associated with every morphism �:A ! B there is a reduct func-

tor _j

�

which produces models of A from models of B. Morphisms, however,

Speci�cations, Morphisms, Interpretations 3

are too weak to represent re�nements which normally occur during software

development. So, we use a more general notion, interpretations, which are

speci�cation morphisms from the source speci�cation to a de�nitional exten-

sion (see below) of the target speci�cation. Methodologically, we believe that

two di�erent kinds of arrows are useful in software developement: a simple

arrow (morphism) for structuring speci�cations, and a more exible arrow

(interpretation) for re�ning speci�cations.

2.2 De�nitional Extensions

De�nitional extensions are a subclass of morphisms, those which extend a

speci�cation with only de�ned sorts and operations, while otherwise leaving

the speci�cation unchanged. Model theoretically, the reduct functor corre-

sponding to a de�nitional extension is an isomorphism.

Di�erent logics may have di�erent notions of de�nability. For example, in

Specware, to de�ne an operation f :A ! B in a speci�cation S, we must

exhibit a formula ' of S which denotes the graph of f . The formula ' must

contain exactly two free variables x:A, y:B and must be provably functional

in S:

S ` 8x:A � 9!y:B � '(x; y):

S can then be extended with the operation f and its de�ning axiom

8x:A; y:B � f(x) = y () '(x; y):

2.3 Axioms for de�nitional extensions

Rather than formally de�ning de�nitional extensions, we will assume the fol-

lowing axioms which will be su�cient for our constructions and calculations:

1. An identity morphism is a de�nitional extension.

2. A de�nitional extension is an epimorphism.

3. De�nitional extensions are closed under composition.

4. Pushouts preserve de�nitional extensions.

Figure 1 renders these axioms pictorially. De�nitional extensions are indicated

in diagrams

�

by
d

and pushouts by .

�

All diagrams are assumed to be commutative unless stated otherwise. Labels on arrow

shafts (e.g.,
d

,

p

) are properties of arrows, whereas labels above or below

(e.g.,

x

) are names of arrows.

4 Re�nement of Parameterized Algebraic Speci�cations

d

i

f

g

i; f = i; g) f = g

d

d d

d

d

Figure 1 Axioms for de�nitional extensions.

Alternatively, these axioms will be theorems if we assume that the model

functor Mod maps pushouts to pullbacks and if we de�ne a de�nitional ex-

tension to be a morphism whose image via Mod is an isomorphism.

2.4 Interpretations

Definition 2.1: Interpretation. An interpretation �:A) B from a speci�-

cation A (called domain or source) to a speci�cation B (called codomain or

target) is a pair of morphisms A B

+

B
d

with common codomain

B

+

(called mediating speci�cation or simply mediator), such that the target-

to-mediator morphism is a de�nitional extension. 2

Interpretations are a suitable notion of re�nement because models of the

source speci�cation can be constructed from models of the target speci�ca-

tion by �rst expanding them along the de�nitional extension and then taking

reducts.

Speci�cations and interpretations form a category with composition de�ned

as in Figure 2. We use the facts that de�nitional extensions are closed under

composition and are preserved by pushouts. Equality of interpretations is

de�ned by reducing it to equality of morphisms using the construction in

Figure 3. In other words, the mediator speci�cation may contain extra de�ned

sorts and operations which are not in the image of the source-to-mediator

morphism.

The category of speci�cations and interpretations is �nitely cocomplete if

the category of speci�cations and morphisms is. Both categories have the

same initial object. Pushouts of interpretations are constructed as shown in

Figure 4 (note that a morphism may be construed as an interpretation, by

pairing it with an identity de�nitional extension). A proof of universality is

given in the appendix.

Speci�cations, Morphisms, Interpretations 5

A A

B

+

B

d

B

C

+

d

C

d

d

C

Figure 2 Composition of interpretations.

B

1

+

d

A

=? B

12

+

B

d

d

A =? B

B

2

+

d

Figure 3 Equality of interpretations.

A

C

+

C

d

A C

B

+

B

d

D B D

Figure 4 Pushout of interpretations.

Note. Diagrams on the left are in the category of speci�cations and mor-

phisms; those on the right are in the category of speci�cations and interpre-

tations.

6 Re�nement of Parameterized Algebraic Speci�cations

3 PARAMETERIZED SPECIFICATIONS

A parameterized speci�cation is a speci�cation morphism with special prop-

erties. The domain is called the parameter and the codomain the body of

the parameterized speci�cation. The morphism shows how the parameter is a

part-of (or �ts into) the body.

The parameter represents the variable part and may be instantiated by pro-

viding a morphism into an instantiating (or actual) speci�cation. The result

of this instantiation is obtained by computing the pushout of the parame-

terizing morphism and the instantiating morphism. Since the parameter is a

speci�cation, it can contain axioms which will impose semantic constraints on

any speci�cation that is used to replace the parameter.

This approach to parameterization is similar to that adopted in CLEAR

(Burstall & Goguen 1977). Semantically, a parameterized speci�cation repre-

sents some avor of function mapping models of the parameter to models of

the body. For example, with intial semantics for speci�cations, a parameter-

ized speci�cation can denote a free functor (Ehrig et al. 1981). Or with loose

semantics, it may denote a class of functors (Bidoit 1987, Ehrig & Gro�e-

Rhode 1994).

Rather than assume a particular semantics, we will assume some axioms

about parameterized speci�cations, and use these axioms in de�ning and rea-

soning about re�nement. In the rest of the paper, the phrase `parameterized

speci�cation' will be abbreviated by `pspec'.

3.1 Axioms for pspecs

1. An identity morphism is a pspec.

2. Pspecs are closed under composition.

3. A de�nitional extension is a pspec.

4. Pushouts preserve pspecs.

Pspecs are indicated in diagrams by

p

.

3.2 Instantiation with interpretations

While reasoning with re�nements of pspecs, it is convenient to be able to in-

stantiate a pspec with an interpretation rather than a morphism, as shown in

Figure 5. Syntactically, this means that some of the vocabulary in the param-

eter is not already present in the instantiating speci�cation, so it needs to be

extended before the parameter can be mapped via a morphism. Semantically,

an interpretation represents a restriction of the model class, so instantiation

with an interpretation is similar to that by a morphism.

Parameterized Speci�cations 7

S P

p

S(A)

A

+

p

A

p

d

S P

p

S(A)

A

p

Category of morphisms Category of interpretations

Figure 5 Instantiation of pspecs with interpretations.

Notation. The instantiation of a pspec s: P

p

S with an interpreta-

tion a:P) A will be written as s(a) and will ambiguously denote either

the pushout speci�cation S(A) or the resulting pspec A

p

S(A) . The

notation S(A), with S and A being speci�cations rather than morphisms, will

sometimes be used to denote the pushout speci�cation when the parameteri-

zation and instantiation morphisms are clear from the context.

Instantiation with interpretations emphasizes the asymmetry between the

parameterization and instantiation morphisms: the former is like a `part-of'

relation while the latter is like an `is-a' relation. Yet instantiations behave

like pushouts; indeed, they are pushouts in the category of speci�cations and

interpretations. We record below a well known property of pushouts that we

will subsequently use in our constructions.

Lemma 3.1: Cascaded instantiations. In the commuting diagram below,

1. if both the squares are instantiations, then the outer rectangle is also one,

and

2. if the left square and the outer rectangle are instantiations, then the right

square is also one.

P

p

A

p

B

p

S

S(A) S(B)

2

8 Re�nement of Parameterized Algebraic Speci�cations

spec Elem

sort Elem

end-spec

spec Seq

sorts Elem;Seq

op []:Seq

op _: _:Elem;Seq! Seq

axiom a:S 6= []

axiom a:S = b:T) S = T

axiom f []; _: _ g construct Seq

end-spec

spec Tot

sort Elem

op _ � _:Elem;Elem! Bool

axiom x � x

axiom x � y ^ y � x) x = y

axiom x � y ^ y � z) x � z

axiom x � y _ y � x |totality

end-spec

spec Sorting

import Seq(Tot)

op ordered?:Seq! Bool

de�nition of ordered? is

ordered?([])

ordered?(a: [])

ordered?(a: b:S)

i� a � b ^ ordered?(S)

end-de�nition

op perm?:Seq;Seq! Bool

|de�nition omitted

op sort:Seq! Seq

axiom sort(S) = T

i� perm?(S; T) ^ ordered(T)

end-spec

Elem

p

Seq

Tot

p

p

Seq(Tot)

d

Sorting

Figure 6 A parameterized speci�cation for sorting.

Example 3.1: Parameterized speci�cations. Figure 6 shows two parameter-

ized speci�cations, one for sequences and one for sorting.

The speci�cation for sequences, Seq, is parameterized on the type of the

elements. The parameter speci�cation Elem postulates a sort for the elements

but leaves the sort unconstrained. The speci�cation Seq contains two oper-

ations for constructing sequences, two axioms which characterize equality of

sequences, and an induction axiom.

To specify sorting, we need sequences in which the elements have a total

order. Such sequences are obtained by instantiating Seq with the speci�cation

for a total order, Tot. The speci�cation Sorting extends this instantiation

with predicates used to de�ne sorting. Sorting is itself parameterized with

Tot. 2

Re�nement of Parameterized Speci�cations 9

4 REFINEMENT OF PARAMETERIZED SPECIFICATIONS

As noted in the introduction, we will consider re�nements in which the body

is re�ned covariantly while the parameter is re�ned contravariantly. Semanti-

cally, a pspec behaves like a function from models of the parameter to models

of the body. Such a function can be re�ned to, or realized by, another function

which has a larger domain. Hence, in a pspec re�nement, the parameter is re-

laxed or re�ned contravariantly. Since the target pspec has a less constrained

parameter, it must �rst be instantiated with the source parameter. With the

parameters matched, the bodies may then be related by an interpretation.

Definition 4.1: Pspec interpretation. A pspec interpretation s

p

s

0

from

a pspec s: P

p

S to a pspec s

0

: P

0

p

S

0

is a pair of interpretations,

h�:P

0

) P; �:S) s

0

(�)i, where � re�nes the parameter contravariantly and

� re�nes the body of the source pspec into the instantiation of the target

pspec with �, such that s;� = s

0

(�). 2

Figure 7 renders this de�nition pictorially, and also shows two special cases

of pspec interpretations in which either the body or the parameter is re�ned

via the identity. Every pspec interpretation can be decomposed into a pair

consisting of a body re�nement followed by a parameter re�nement. This

decomposition will be used subsequently to build up other constructions with

pspec interpretations.

s

h�;�i

p

S

�

P

s

p

s

0

(�)

p

S

0

(P)

s

0

S

0

P

0

s

0

p

�

Special Cases

Body re�nement Parameter re�nement

(covariant) (contravariant)

S P

p

p

S

0

T

0

(Q) Q

p

T

0

Q

0

p

Figure 7 Re�nement of pspecs.

10 Re�nement of Parameterized Algebraic Speci�cations

spec Tot-Sig

sort Elem

op _ � _:Elem;Elem! Bool

end-spec

spec MSort

import Seq(Tot-Sig)

op merge:Seq;Seq! Seq

de�nition of merge is

merge([]; T) = T

merge(S; []) = S

merge(a:S; b:T) =

if a � b then a: merge(S; b:T)

else b: merge(a:S; T)

end-de�nition

op split:Seq! Seq;Seq

|de�nition omitted

op msort:Seq! Seq

de�nition of msort is

msort(S) =

if S = [] then []

else let hS

1

; S

2

i = split(S) in

merge(msort(S

1

);msort(S

2

))

end-de�nition

end-spec

Elem

p

Seq

Tot-Sig

p

p

Seq(Tot-Sig)

d

MSort

Sorting Tot

p

p

MSort(Tot)

MSort Tot-Sig

p

Figure 8 Pspec interpretation for sorting.

Example 4.2: Pspec interpretation. Figure 8 shows a pspec interpretation

from the pspec for sorting to a mergesort speci�cation parameterized on the

signature of a total order, i.e., a sort together with a binary relation.

The top right part of the �gure shows the construction of the target pspec

MSort: Seq is instantiated with the signature of a total order, Tot-Sig, and

then extended with de�nitions of split, merge and mergesort. Note that this

mergesort operation, although a total function, is not guaranteed to produce a

sequence which is ordered, because the � operation may not be a total order.

Yet, this is the mergesort operation that is implemented in most programming

languages.

The bottom right part of the �gure shows a pspec interpretation. The target

parameter Tot-Sig is re�ned into the source parameter Tot via an inclusion

morphism. Once the two parameters are connected, the sorting speci�cation

can be re�ned into the instantiation of the target pspec, MSort(Tot). The

latter speci�cation has enough axioms about � to show the correctness of the

re�nement. 2

Instantiation of Pspec Interpretations 11

5 INSTANTIATION OF PSPEC INTERPRETATIONS

Instantiating a pspec yields another pspec. This process can be lifted to pspec

interpretations: any interpretation of the original pspec yields an interpreta-

tion of the instantiated pspec.

Figure 9 shows the e�ect of instantiation on a pspec interpretation. In

the left half of the �gure, we only consider a body re�nement. Universality

of instantiation yields a unique interpretation from the instantiation of the

source pspec, S(A), to the instantiation of the target pspec, S

0

(A). In the

right half of the �gure, this is combined with parameter re�nement. Using

lemma 3.1, composing the parameter re�nement with the instantiation yields

another parameter re�nement.

P

p

p

S A

p

p

S(A)

S

0

S

0

(A)

P

p

p

S A

p

p

S

0

(P)

P

0

p

id

S(A)

S

0

id

S

0

(A)

P

0

p

S

0

Figure 9 Instantiation of pspec interpretations.

5.1 Independent re�nement of pspec and actual

The main reason for parameterizing a speci�cation is the possibility of inde-

pendently re�ning the parameterized speci�cation and the instantiating (or

actual) speci�cation, and later combining the two re�nements, with the pa-

rameter capturing the interface between the two. In Figure 10, we show how to

parallely compose a pspec interpretation and an interpretation of the actual

to obtain an interpretation of the instantiation. The body interpretation is

�rst transferred along the instantiation (as in Figure 9). The resulting pspec,

A

p

S

0

(A) , is then instantiated using the interpretation of the actual.

The result, as shown in the right half of the �gure, is an interpretation from

12 Re�nement of Parameterized Algebraic Speci�cations

P

p

p

S A

p

p

S

0

(P)

P

0

p

S(A)

S

0

S

0

(A)

A

0

p

S

0

(A

0

)

P

p

p

S A

p

S

0

(P)

P

0

p

S(A)

S

0

A

0

p

S

0

(A

0

)

Figure 10 Parallel composition of pspec and actual interpretations.

the instantiation of the source pspec with the actual to the instantiation of

the target pspec with the re�nement of the actual.

The information in the parallel composition of a pspec interpretation and

an actual interpretation is completely contained in the body interpretation of

the pspec and the interpretation of the actual. In the right half of Figure 10,

just as S(A) is covered by the pushout morphisms S ! S(A) A and S

0

(A

0

)

is covered by the pushout morphisms S

0

! S

0

(A

0

) A

0

, so is the parallely

composed interpretation S(A)) S

0

(A

0

) covered by the morphism pair from

S) S

0

(P) and the morphism pair from A) A

0

.

5.2 Instantiation with sharing

In the instantiations we have considered until now, the only part shared by

the body and the actual is the parameter. Sometimes, the body and actual

share more: e.g., both may import a standard speci�cation such as that of

integers. In this case, a simple instantiation will create two copies of the

integer speci�cation in the instantiated speci�cation. We can avoid this by

explicitly indicating the extra sharing, via morphisms, and taking the colimit

of the larger diagram. In the top part of Figure 11, we explicitly indicate extra

sharing via two morphisms from the shared speci�cation C. The e�ect of this

sharing is a (coequalizing) morphism from the unshared instantiation S(A)

to S(A)

C

in which the two copies of C are collapsed.

Now, to parallely compose the pspec and actual re�nements, we have to

ensure that the shared part is re�ned similarly in both the body and the

actual. This compatibility requirement is satis�ed by exhibiting morphisms

�

�

A morphism of interpretations is a pair of speci�cation morphisms, one between the do-

A Category of Pspec Interpretations 13

P

p

p

C

S

C

0

A

p

S

0

(P)

P

0

p

S(A)

S

0

S(A)

C

A

0

p

S

0

(A

0

)

S

0

(A

0

)

C

0

Figure 11 Re�nement of shared instantiation.

from the interpretation of the shared part to the interpretations of the body

and actual. Then, the target also becomes a shared instantiation, S

0

(A

0

)

C

0

,

and we get an interpretation from S(A)

C

by universality. The construction is

similar to the parallel composition of a diagram re�nement, as described in

(Srinivas & J�ullig 1995).

6 A CATEGORY OF PSPEC INTERPRETATIONS

It is easy to see that body interpretations and parameter interpretations are

each closed under sequential composition. Figure 12 shows the sequential,

or vertical, composition of (general) pspec interpretations. The main part

of the construction is conversion of a parameter interpretation followed by

a body interpretation into a body interpretation followed by a parameter

interpretation. This is done by instantiating the second body interpretation

with the �rst parameter interpretation (as in Figure 9). Thus pspecs and

pspec interpretations form a category, with the obvious identity arrows, and

associativity following from the associativity property for interpretations and

pushouts.

To de�ne equality of pspec interpretations, we have to handle isomorphisms

between instantiations of the target pspec. Given two pspecs, s: P

p

S

mains and one between the codomains, such that the resulting square commutes in the

category of speci�cations and interpretations.

14 Re�nement of Parameterized Algebraic Speci�cations

and s

0

: P

0

p

S

0

, two pspecs interpretations, h�:P

0

) P; �:S) s

0

(�)i

and h�

0

:P

0

) P; �

0

:S) s

0

(�

0

)i, are equal if � = �

0

and � = �

0

; i where

i: s

0

(�

0

)

�

s

0

(�) is the isomorphism between the instantiations of the tar-

get pspec with the two (equal) parameter interpretations.

S P

p

p

S

0

(P)

S

0

P

0

p

p

S

00

(P

0

)

S

00

P

00

p

S

0

(P)

P

p

p

S

00

(P)

S

0

P

0

p

p

S

00

(P

0

)

S P

p

p

p

S

0

(P)

S

00

(P)

P

0

p

S

00

(P

0

)

S

00

P

00

p

Figure 12 Sequential (vertical) composition of pspec interpretations.

7 HORIZONTAL COMPOSITION OF PSPEC

INTERPRETATIONS

Consider an instantiation of a pspec by the body of another pspec. The re-

sult is another pspec parameterized on the parameter of the second pspec. A

typical example is Set(Seq(X)). Any instantiation of such a `iterated' pspec

satis�es an associativity law, e.g., Set(Seq(Nat)) = (Set(Seq))(Nat); the for-

mer is cascaded instantiation while the latter is an instantiation of an iterated

pspec. This associativity law is depicted in Figure 13 and follows from the

properties of pspecs and instantiations.

We now consider the construction of an interpretation for an iterated pspec

from interpretations of the component pspecs. This construction is always

possible for body re�nements, as shown in the top half of Figure 14. The

source iterated pspec Q

p

T

p

S(T) is obtained by instantiating the

outer pspec P

p

S with the body of the inner pspec Q

p

T . The

speci�cation S

0

(T

0

) is obtained by instantiating the target of the outer pspec

re�nement, P

p

S

0

, with the inner pspec re�nement, P) T) T

0

.

Universality of S(T) yields a unique interpretation from S(T) to S

0

(T

0

), and

Horizontal Composition of Pspec Interpretations 15

P

p

Q

p

S T

p

A

p

S(T) T (A)

p

Q

p

(S(T))(A) = S(T (A))

P

p

S(T)

A

p

S

T (A)

p

(S(T))(A) S(T (A))

Figure 13 Associativity of instantiation.

hence a body re�nement from the source iterated pspec Q

p

S(T) to the

target iterated pspec Q

p

S

0

(T

0

) .

If parameter re�nements are included, then the parameter re�nement of the

outer pspec must factor through the body re�nement of the inner pspec. In

this case, the two target pspecs can be connected to form an iterated pspec

and the two pspec interpretations can be combined horizontally, as shown in

the bottom half of Figure 14. First, the outer body re�nement is transferred

to the iterated pspec using the construction in the top half of the �gure.

Then, a target iterated pspec is constructed by connecting the two target

pspecs, P

0

p

S

0

and Q

0

p

T

0

, with an interpretation P

0

) T

0

; this

interpretation is obtained by factoring the composition P

0

) P) T) T

0

(Q)

through the morphism T

0

! T

0

(Q).

�

The outer target pspec P

0

p

S

0

is

then instantiated to obtain the speci�cation S

0

(T

0

). Universality of S

0

(T

0

)

yields a unique morphism to S

0

(T

0

(Q)) and also makes the square from T

0

to S

0

(T

0

(Q)) a pushout, hence producing a pspec re�nement from the source

iterated pspec Q

p

S(T) to the target iterated pspec Q

0

p

S

0

(T

0

) .

�

If this factoring is not possible, then the two pspec interpretations cannot be horizontally

composed.

16 Re�nement of Parameterized Algebraic Speci�cations

P

p

p

Q

p

p

S T

p

S

0

S(T)

T

0

p

S

0

(T

0

)

P

p

p

Q

p

p

S T

p

S

0

(P)

P

0

p

S(T) T

0

(Q)

p

Q

0

p

S

0

S

0

(T

0

(Q))

T

0

p

S

0

(T

0

)

Figure 14 Construction of interpretations for iterated pspecs.

7.1 Commutativity of horizontal composition and

instantiation

Given an associative instantiation such as Set(Seq(Nat)) = (Set(Seq))(Nat),

we can obtain an interpretation of the resulting speci�cation into two ways: by

�rst re�ning the inner instantiation and then the outer, or by �rst composing

the two pspec re�nements and then re�ning the instantiation of the iterated

pspec. We now show that both paths yield the same interpretation; in other

words, associativity of instantiation lifts to pspec interpretations, or horizontal

composition of pspec interpretations commutes with instantiation.

In Figure 15, we extend the horizontal composition shown in Figure 14

with instantiations. The top plane shows the associative construction of the

instantiation S(T (A)) (cf. Figure 13). Similarly, the bottom plane shows the

decomposition of S

0

(T

0

(A

0

)).

The top right cube shows the construction of the re�nement from T (A) to

Concluding Remarks 17

T

0

(A

0

) by parallely composing the re�nements of Q

p

T and A (cf. Fig-

ure 10). The top left and middle cubes together re�ne S(T (A)) by composing

the re�nements of P

p

S and T (A).

Now consider the decomposition (S(T))(A). By omitting the middle and top

right cubes, we have a re�nement of an iterated pspec (cf. Figure 14). The

middle and top right cubes together parallely compose the resulting pspec

re�nement with the re�nement of A.

P

p

p

Q

p

p

S T

p

A

p

S

0

(P)

P

0

p

S(T) T

0

(Q)

p

Q

0

p

T (A)

p

S

0

S

0

(T

0

(Q))

T

0

p

S(T (A))

A

0

p

S

0

(T

0

) T

0

(A

0

)

p

S

0

(T

0

(A

0

))

Figure 15 Associative instantiation of iterated pspec interpretations.

8 CONCLUDING REMARKS

We have introduced a re�nement arrow of mixed variance for parameterized

speci�cations and demonstrated several key properties of this arrow. These

properties are evidence that covariant re�nement of the body and contravari-

ant re�nement of the parameter yields a natural re�nement relation for pa-

rameter speci�cations. This naturalness is further reinforced by the commonly

used mixed variance subtyping relation between function types. Indeed, pa-

rameterized speci�cations are semantically functions which map models of the

parameter to models of the body.

The constructions in this paper are based on relatively weak assumptions

about parameterized speci�cations. The most important assumption is that

of being preserved by pushouts. Closure under composition is a kind of tran-

sitivity property that seems to be basic. Closure under de�nitional extensions

states that the distinction between theories and presentations is not critical.

18 Re�nement of Parameterized Algebraic Speci�cations

However, more investigation may reveal the need for stronger assumptions

about parameterized speci�cations. For example, conservative extensions sat-

isfy the axioms (in logics with an interpolation property), but it is not clear

if it is useful to construe them as parameterized speci�cations.

Finally, we would like to contrast the morphisms and diagrams approach

adopted here with the lambda-abstraction approach to parameterization that

is used by some authors. Diagram chasing is sometimes more involved than

manipulating expressions; consider, for example, re�nement of iterated pspecs.

However, it appears that the exibility given by explicit morphisms is almost

always required in practice. Real software is incredibly detailed and demands

powerful bookkeeping tools.

8.1 Related Work

A re�nement arrow of mixed variance was described by Ehrig & Mahr (1990)

and by Sannella & Wirsing (1982). Using the notation of this paper, their

re�nement arrow is a pair of interpretations such that the square in the left

half of Figure 16 commutes.. Such a square can be decomposed into a body

re�nement followed by a parameter re�nement, as shown in the right half of

Figure 16. Thus, this re�nement arrow is somewhat less general than ours: in

ours, the body interpretation need not factor through the target instantiation.

We believe that, in most cases, it is not possible to �nd an interpretation di-

rectly between the source and target bodies. Indeed, the purpose of connecting

the two parameters and instantiating the target pspec is to provide a su�-

ciently strong base for re�ning the body of the source pspec (cf. Figure 8).

S P

p

S P

p

p

S

0

(P)

S

0

P

0

p

S

0

P

0

p

Figure 16 Another re�nement arrow for pspecs.

Ehrig & Gro�e-Rhode (1994) adopt an axiomatic approach to parameter-

ized speci�cations to abstract away from the various semantics: a pspec de-

notes a class of functors closed under composition and amalgamated extension.

This is similar to our axioms about pspecs, provided they are transferred to

the semantic level via a model functor Mod which transforms pushouts to

pullbacks. They consider covariant re�nement in this framework. Covariant

re�nement can be treated as instantiation followed by body re�nement, and

Appendix: Pushout of Interpretations 19

its properties follows from this decomposition. On the other hand, mixed-

variance re�nement seems to be fundamental, in the sense that it cannot be

built up from other primitive notions.

Acknowledgements

Discussions with Richard J�ullig clari�ed and simpli�ed some of the concepts

in this paper; in particular, the use of interpretations to instantiate parame-

terized speci�cations was proposed by him. This work was supported by the

O�ce of Naval Research contract N00014-93-C-0274.

9 APPENDIX: PUSHOUT OF INTERPRETATIONS

Lemma 9.1: Epimorphism pushout. In any category, if an arrow factors via

an epimorphism as in the diagram on the left below, the factoring is also a

pushout, as in the diagram on the right below.

if

A

g

f

C

h

then

A

g

f

C

h

B B

id

B

Proof. Given any cocone B

j

�! E

k

 � C, we must �nd a unique arrow

B

w

�! E such that j = id

B

;w and k = h;w (see diagram below). The former

equation uniquely determines w to be equal to j. The latter equation follows

from the following calculation:

f ; j = g; k |cocone into E

() (g;h); j = g; k |hypothesis about f

() h; j = k |since g is epi

() h;w = k |since j = w

A

g

f

C

h

k

B

id

j

B

w

E

2

20 Re�nement of Parameterized Algebraic Speci�cations

Corollary 9.2: Factoring a de�nitional extension.

if

A

d

d

C

then

A

d

d

C

d

B B

Proof. A de�nitional extension is an epimorphism, so the triangle on the

left is a pushout, and pushouts preserve de�nitional extensions. 2

Corollary 9.3: Extra de�nitions in interpretation mediator.

B

1

+

d

if A B

d

d

then A

=

B

B

2

+

2

Corollary 9.4: Factoring via a de�nitional extension. The commuting di-

agram of morphisms on the left below may be construed as the commuting

diagram of interpretations on the right below.

if

A

d

C

then

A C

B B

2

Lemma 9.5: Universality of interpretation pushout. The pushout of two in-

terpretations, constructed as shown in Figure 4, is universal.

Proof.

Existence of witness. In the diagram on the left below, B

f

(= A

g

=) C are

the two given interpretations, and the morphisms B

g

0

�! D

f

0

 � C form the

pushout cocone (in the category of interpretations). Given any other cocone

B

j

=) A

k

(= C, we must �nd an interpretation w:D) E which factors this

cocone through the pushout cocone.

In the diagram on the right below, the pushout and the given cocone are

expanded out to show the e�ect of the equation f ; j = g; k. From the de�-

nitions of composition and equality for interpretations, we get the (pushout)

speci�cations E

3

, E

4

and E

5

and the equation (A ! B

+

! E

3

! E

5

) =

Appendix: Pushout of Interpretations 21

(A ! C

+

! E

4

! E

5

). Universality of D (in the category of morphisms)

yields the witness morphism D ! E

5

.

We thus get the witness interpretation w: (D ! E

5

 E) (in the category

of interpretations). It is a straightforward diagram chase and application of

Corollary 9.3 to check that this witness satis�es the required properties of

g

0

;w = j and f

0

;w = k.

A

g

f

C

+

C

d

f

0

k

B

+

D

w

B

d

g

0

j

E

A

C

+

C

d

B

+

D

B

d

E

5

E

4

d

E

2

d

E

3

d

E

1

d

E

d

d

d
d d

Uniqueness of witness. Suppose there are two interpretations v; w:D) E

which factor the cocone hj; ki through the pushout cocone hg

0

; f

0

i, as shown

in the diagram below. We will show that these two interpretations are equal,

thus making the witness unique.

A

f

g

C

+

C

d

f

0

k

B

+

D

?

w

v

B

d

g

0

j

E

Using Corollary 9.4, we can construct from the given cocone hj; ki another

cocone hj

0

; k

0

i from the morphism pair B

+

 A ! C

+

to E, such that the

two interpretations v and w factor this cocone through the pushout cocone

B

+

! D C

+

. This construction is shown in the diagram on the left below.

22 Re�nement of Parameterized Algebraic Speci�cations

In the diagram on the right below, the interpretations are expanded and

forced to have a common mediator, E

8

. Universality of the pushout D (in the

category of morphisms) implies that the two morphisms D ! E

6

! E

8

and

D ! E

7

! E

8

are equal, because they both factor the cocone h(B

+

! E

3

!

E

8

); (C

+

! E

4

! E

8

)i. Thus the two interpretations v: (D ! E

6

 E) and

w: (D ! E

7

 E) are equal.

A

C

+

k

0

C

B

+

j

0

D

?

w

v

B

E

A

C

+

B

+

D

?

E

7

d

E

4

d

E

6

d

E

8

E

3

d

E

d

d d

d d

2

REFERENCES

Bidoit, M. (1987), The strati�ed loose approach: A generalization of initial and

loose semantics, in `Recent Trends in Data Type Speci�cation', Vol.

332 of Lecture Notes in Computer Science, Springer-Verlag, Gullane,

Scotland, pp. 1{22.

Burstall, R. M. & Goguen, J. A. (1977), Putting theories together to make

speci�cations, in `Proc. 5th Int. Joint Conf. on Arti�cial Intelligence',

pp. 1045{1058.

Ehrig, H. & Gro�e-Rhode, M. (1994), `Functorial theory of parameterized

speci�cations in a general speci�cation framework', Theoretical Com-

puter Science 135, 221{266.

Ehrig, H. & Kreowski, H. J. (1982), Parameter passing commutes with im-

plementation of parameterized data types, in `9

th

ICALP', Vol. 140

of Lecture Notes in Computer Science, Springer-Verlag, Aarhus, Den-

mark, pp. 197{211.

Ehrig, H., Kreowski, H. J., Thatcher, J., Wagner, E. & Wright, J. (1981),

Parameter passing in algebraic speci�cation languages, in `Proceed-

ings, Workshop on Program Speci�cation', Vol. 134 of Lecture Notes

in Computer Science, Springer-Verlag, Aarhus, Denmark, pp. 322{369.

Appendix: Pushout of Interpretations 23

Ehrig, H. & Mahr, B. (1990), Fundamentals of Algebraic Speci�cation 2: Mod-

ule Speci�cations and Constraints, Vol. 21 of EATCS Monographs on

Theoretical Computer Science, Springer-Verlag, Berlin.

Ganzinger, H. (1983), `Parameterized speci�cations: Parameter passing and

implementation with respect to observability', ACM Transactions on

Programming Languages and Systems 5(3), 318{354.

Goguen, J. A. & Meseguer, J. (1982), Universal realization, persistent inter-

connection and implementation of abstract modules, in `9

th

ICALP',

Vol. 140 of Lecture Notes in Computer Science, Springer-Verlag,

Aarhus, Denmark, pp. 265{281.

Lambek, J. & Scott, P. J. (1986), Introduction to Higher Order Categorical

Logic, Cambridge University Press, Cambridge.

Sannella, D. & Tarlecki, A. (1988), `Towards formal development of programs

from algebraic speci�cations: Implementations revisited', Acta Infor-

matica 25, 233{281.

Sannella, D. & Wirsing, M. (1982), Implementation of parameterized speci�-

cations, in `9

th

ICALP', Vol. 140 of Lecture Notes in Computer Science,

Springer-Verlag, Aarhus, Denmark, pp. 473{488. Extended abstract.

Srinivas, Y. V. & J�ullig, R. (1995), Specware:

tm

formal support for composing

software, in B. Moeller, ed., `Proceedings of the Conference on Mathe-

matics of ProgramConstruction', Springer-Verlag, Berlin, pp. 399{422.

Lecture Notes in Computer Science, Vol. 947.

Wirsing, M. (1986), `Structured algebraic speci�cations: A kernel language',

Theoretical Computer Science 42, 123{249.

