
1

DREMS: A Model-Driven Distributed Secure

Information Architecture Platform for Managed

Embedded Systems

Tihamer Levendovszky∗, Abhishek Dubey∗ William R. Otte∗, Daniel

Balasubramanian∗, Alessandro Coglio†, Sandor Nyako∗, William Emfinger∗,

Pranav Kumar∗, Aniruddha Gokhale∗, and Gabor Karsai∗

∗ ISIS/EECS, Vanderbilt University, Institute for Software-Integrated Systems,

Vanderbilt University, 1025 16th Ave S, Ste 102

Nashville, TN 37235, USA

Email:{tihamer,dabhishe,wotte,daniel,snyako,emfinger,

pkumar,gokhale,gabor}@isis.vanderbilt.edu
† Kestrel Institute, 3260 Hillview Avenue

Palo Alto, CA 94304

Email: coglio@kestrel.edu

November 7, 2013 DRAFT



2

Abstract

Architecting software for a cloud computing platform built from mobile embedded devices incurs

many challenges not present in traditional cloud computing. Effective management of constrained

resources, application isolation without adversely affecting performance are both needed. This paper

describes a practical design- and run-time solution that incorporates modern software development prac-

tices and technologies along with novel approaches to address the challenges. Concievably, the patterns

and principles manifested in our system can serve as guidelines for current and future practitioners in

this field.

Index Terms

D.2.6.b Graphical environments, D.4.7.e Real-time systems and embedded systems, D.4.6.d Infor-

mation flow controls

I. THE EMERGING REALM OF MOBILE AND EMBEDDED CLOUD COMPUTING

Mobile cloud computing infrastructures supporting the vision of Internet of Things (IoT) [1]

provide services beneficial to our society. For example, a cloud of smart phones can run soft-

ware that shares the sensing and computing resources of nearby devices, providing increased

situational awareness in a disaster zone. A cluster of small collaborating satellites can provide

increased reliability at reduced launch costs for scientific missions. For instance, NASA’s Edison

Demonstration of SmallSat Networks, as well as TanDEM-X, PROBA-3, and Prisma from the

European Space Agency all use clusters of small satellites.

Unlike traditional computing clouds that draw a clear distinction between a cloud provider

and user, these roles will be interchangeable in the participating resources in mobile clouds [2].

Additionally, the need to scale up on demand is often the motivation for using a traditional

cloud, whereas a mobile embedded cloud is motivated by the need for on-demand collaboration.

Table I presents associated requirements and challenges that are not fully addressed by existing

cloud computing platforms. This paper describes an architecture called Distributed REaltime

Managed System (DREMS) [3] that addresses these requirements. It consists of two main parts:

(1) A design-time toolsuite for modeling, analysis, synthesis, integration, debugging, testing,

and maintenance of application software built from reusable components; (2) a run-time software

platform for deploying, managing, and operating application software on a network of embedded,

November 7, 2013 DRAFT



3

TABLE I

SUMMARY OF ARCHITECTURAL DECISIONS IN DREMS

Requirement Design Principle Approach Section

1. Rapid application

development, software reuse

Component-based software

engineering

Novel component model Sec III

2. Multiple application

interaction Semantics

Separation of concerns Rich set of component

interaction ports with

operations scheduled

independently

Sec III

3. Managed concurrency and

synchronization for robustness

Single-threaded components Concurrency managed by OS

and middleware, not

component business logic

Sec II and

Sec III

4. Resource management and

application isolation with

performance guarantees

Spatial and temporal separation Applications are run in

isolated partitions

Sec II

5. Secure information flows Multi-level security with

multi-domain labels,

temporal/spatial isolation,

Mandatory Access Control

Architectural support for

separation, MLS (based on

label checking), and

constrained information flows

Sec IV

6. Managed and secure

application deployment and

configuration

Modeling and automation Model-driven middleware

services to provide secure

deployment and configuration

Sec V

7. Producible verified systems Catch defects early in the

development cycle

Model-based system design

and generative development

Sec V

mobile nodes. The platform reduces the complexity and increases the robustness of software

applications by providing reusable technological building blocks in the form of an operating

system, middleware, and application management services (see Figure 1).

II. RUNTIME SOFTWARE PLATFORM: OS AND MIDDLEWARE

DREMS provides a runtime platform for applications in the form of an operating system (OS)

and middleware. The DREMS OS – a set of extensions to the Linux kernel – provides all the

critical low-level services to support resource management (including spatial and temporal par-

titioning of the memory and the CPU), actor management (discussed below), secure information

flows (labeled and managed, as discussed in next section), and fault tolerance.

November 7, 2013 DRAFT



4

Fig. 1. DREMS architecture. The top-right portion shows the internals of one node.

Software applications running on DREMS are distributed. To facilitate isolation (Requirement

4), the components that make up an application are encapsulated in process-like containers called

actors that run concurrently (on the same node) or in parallel (on different nodes). This is similar

to the notion of concurrent communicating objects described in [4].

Actors are specialized OS processes; they have a persistent identity that allows their transparent

migration between computing nodes. They also have strict limits on the resources that they can

use. There are two main types of actors: application actors and platform actors. Application

actors are built for specific applications, while platform actors provide system-level services.

The OS guarantees performance isolation between actors of different applications (Require-

ment 4). This is done by (a) providing separate, protected address spaces per actor; (b) enforcing

that a peripheral device can be accessed by only one actor at a time; and (c) facilitating temporal

isolation between actors by the scheduler. The temporal isolation is provided via ARINC-653

[5] style partitions - periodically repeating fixed intervals of the CPU’s time exclusively assigned

November 7, 2013 DRAFT



5

to a group of cooperating actors of the same application. The scheduler guarantees that actors

in distinct temporal partitions cannot inadvertently interfere with each other via CPU usage.

Readers are referred to [3] for further details on spatial and temporal isolation, both of which

are standard mechanisms.

III. COMPONENT MODEL: BUILDING BLOCKS FOR APPLICATION DEVELOPMENT

To address Requirement 1, DREMS uses a component-oriented approach for application de-

velopment [6]. It is accepted that component-based software development promotes rapid

application development and reuse [7]. Components have identity, state, support various opera-

tions, and interact via ports. A DREMS component supports four basic types of communication

ports providing a range of interaction semantics (Requirement 2): Facets that are collections of

operations (interfaces) provided by a component and Receptacles that are collections of operation

required. These two ports can be used to implement synchronous and asynchronous point to

point interactions. In addition, Publisher and Subscriber ports provide a way for components

to interact in a global data space defined over Topics. Conceptually this is similar to the OMG

CORBA Component Model (CCM) [8].

However, there are some key differences. The DREMS component model provides ports for

accessing I/O devices and timers. Ports are implemented using connectors [9] that enable the use

of a variety of communication mechanisms, including CORBA and DDS. Furthermore, security

using labeled communication (Section IV) is a fundamental part of all component interactions.

Another key distinction is the threading model: DREMS meets Requirement 3 by enforcing

that component activities are scheduled by the midleware as non-preemptible, single-threaded

operations that necessitate no synchronization code from the developer. Note that components

do run concurrently.

IV. SECURE TRANSPORT: A SECURE ACTOR TO ACTOR COMMUNICATION CHANNEL

DREMS provides a security architecture (Requirements 4 and 6) based on (1) spatial and

temporal separation among the actors, (2) fine grained actor privileges that control what system

services can be used by an actor, (3) ensuring that only one actor actively controls a device at a

time, and (4) a novel communication mechanism among nodes called ‘secure transport’, which

supports the exchange of messages among actors according to a Multi-Level Security (MLS)

November 7, 2013 DRAFT



6

policy. The combination of separation and MLS guarantee, for example, that an erroneous or

malicious actor cannot read information at a higher classification level than its own.

To enforce these rules systemwide, application actors are not permitted to either create new

actors or configure secure transport – these activities are performed by the trusted platform

actors.

A. Endpoints and flows

Actors interact only in controlled ways, which is especially important when they belong to

different organizations (e.g. countries). To exchange messages, actors do not reference each

other directly. They reference local endpoints through which messages are sent and received. An

endpoint is analogous to a socket handle in traditional networking systems.

Endpoints in different actors are connected by flows, i.e. “pipes” through which messages are

transferred (Figure 2). A flow is a connectionless logical association between endpoints: unicast

flows connect a source endpoint to a destination endpoint; multicast flows connect a source

endpoint to multiple destination endpoints. Both endpoints and flows are created and assigned

(only) by trusted platform actors.

Performing message exchanges via endpoints and flows (instead of addressing actors directly)

has the following advantages:

• It supports fine-grain communication constraints: two actors can communicate only if there

are suitable endpoints and flows.

• It increases decoupling between senders and receivers, which only operate on their local

endpoints, without explicit knowledge of the flows attached to those endpoints. For example,

the flow connecting a client to a failed server can be switched over to an alternative server

transparently to the client.

B. Multi-Level Security (MLS) policy

MLS [10] is a well-established concept. It is based on linearly ordered hierarchical classi-

fication levels (e.g. Unclassified < Confidential < Secret < Top Secret) and non-hierarchical

need-to-know categories (e.g. mission identifiers). Each organization defines its own levels and

categories, i.e. its own labeling domain. In typical systems, which operate in a single labeling

domain, a label is a pair LC where L is a level and C is a set of zero or more categories, e.g. in

November 7, 2013 DRAFT



7

Fig. 2. Transfer of a message via secure transport. The message goes through a flow that connects an endpoint of the sending

actor to an endpoint of the receiving actor. The rules on labels and label sets of actors, endpoints, and messages, guarantee the

satisfaction of the MLS policy. The MLS rules are illustrated using Venn diagrams.

the US domain, the label TS{x, y} consists of the level Top Secret and identifiers for missions

X and Y.

To support communication among actors from different organizations that can share the

common embedded system infrastructure, DREMS uses the novel concept of multi-domain labels

[11]. A multi-domain label has the form [D1]L1C1 . . . [Dp]LpCp, where D1, . . . , Dp are p ≥ 1

distinct (identifiers of) domains and each LiCi is a label (as defined in single-domain systems)

in domain Di. For example, the label [US]TS{x}[NATO]CTS{x} is used for data that is both

US Top Secret and NATO Cosmic Top Secret for joint mission X.

The DREMS secure transport security policy follows the standard MLS requirement [10] that

information can only flow “up”, according to the dominance relation. For example, a principal

with Top Secret clearance can read Unclassified messages but not vice versa. Data exchanged

among different organizations carries labels with levels and categories from all the organizations’

November 7, 2013 DRAFT



8

domains. Formally, a label L dominates a label L′, written L w L′, if and only if L has at least

all the domains of L′ (and possibly others) and, for each common domain, the level L in L is

at least as high as the level L′ in L′ (i.e. L ≥ L′) and the category set C in L contains the

category set C ′ in L′ (i.e. C ⊇ C ′).

Each actor has an immutable set of labels, which describe the clearance of the actor, i.e.

which information the actor is allowed to read and write. The label set is assigned to the actor

by (only) trusted platform actors.

Each endpoint EA also has an immutable set of labels L̃EA
, which must be contained in the

label set L̃A of the (unique) actor A that owns the endpoint (i.e. L̃EA
⊆ L̃A). The label set is

assigned to the endpoint by (only) trusted platform actors.

Each message sent via secure transport has an immutable label, which describes the sensitivity

of the message. The label is assigned by the actor that creates and sends the message. An actor

A can send a message M with label LM through an endpoint EA with label set L̃EA
only if

LM ∈ L̃EA
.

Figure 2 shows all of these MLS rules. These rules follow the standard MLS policy [10],

adapted to secure transport. When actor A attempts to send message M with label LM through

endpoint EA, secure transport checks that LM ∈ L̃EA
. When M is received through endpoint EB

of actor B, secure transport checks that L w LM for some label L ∈ L̃EB
.

C. Networks

When a flow connects endpoints on different nodes, secure transport uses IPv6 [12] to transfer

messages across the network, which may involve various wireless networking devices. Without

proper protection, messages traveling through the network could be seen or modified, defeating

the MLS policy. IPsec [13] and other measures are used to protect the confidentiality of messages

(and their labels).

V. MODEL-DRIVEN APPLICATION DEVELOPMENT, INTEGRATION, AND DEPLOYMENT

To simplify development and promote producible and verified systems (Requirement 7),

we have developed a model-based framework for DREMS for developing and integrating ap-

plications. This approach uses models to represent the software, the hardware platform, and

the mapping between the two. The validation of well-formedness constraints over the models

November 7, 2013 DRAFT



9

makes the early detection of integration errors possible. Code generators then translate the

validated high-level models into low-level artifacts, such as program code and deployment plans

to configure the system.

System integration and deployment (Requirement 6) are also simplified with this approach.

Once individual application models are combined, the global system configuration can be gener-

ated the same way as a single application configuration. Global system properties, such as timing,

can be checked using the integrated models. The graphical modeling language as a technique,

along with reusability via templates in the modeling language, also addresses rapid application

development (Requirement 1).

Parts A and B of Figure 3 summarize the model-driven development process. During steps 1

and 2, data types are created and used to define the structure and interfaces of individual software

components. Multiple implementations of the same component type can co-exist, providing the

application developer with alternative implementations. The behavioral logic of the components

is entered in step 3 that utilizes model-generated skeleton files. Once a component has been

implemented, it can be reused across different applications across different projects. Applications

are defined by wiring instances of different components together (step 4).

After all applications are modeled, the system integrator performs steps 5 through 7 (described

in part B of Figure 3). Well-formedness (Requirement 7) is ensured by a design constraint checker

that analyzes the models and reports violations, including details about the constraints violated

and the modeling elements involved.

The deployment plan describes all aspects of the application, including the binary libraries

required for each component and the meta-data describing those libraries, the secure transport

configuration, and the component interactions. This plan is provided to the runtime platform’s

deployment and configuration service that is responsible for deploying and activating the appli-

cation on the distributed platform (see example in part C of Figure 3).

VI. EXAMPLE

To demonstrate the DREMS, a complex, multi-node experiment was conducted on a testbed

of fanless computing nodes, each containing an Intel Atom N270 clocked at 1.6 GHz and with

1 GB of RAM. The nodes are connected via a private subnet which has a network control node

November 7, 2013 DRAFT



10

Fig. 3. Application development (A), system integration (B), and deployment on a three-node cluster of embedded processors.

The simulator image shows three satellites, while the other display shows the deployment model of the experiment (C).

November 7, 2013 DRAFT



11

running dummynet [14], allowing full control of the bandwidth, latency, and packet loss on any

network link (see bottom of Figure 3).

On this testbed, a cluster of three satellites was emulated, each running a copy of a cluster

flight control application (CFA). CFA consists of three actors replicated on each satellite: Or-

bitalMaintenance,ModuleProxy, and CommandProxy. ModuleProxy connects to the Orbiter space

flight simulator [15], which simulates the satellite hardware and orbital behavior. CommandProxy

receives commands from the ground network. OrbitMaintenance keeps track of every satellite’s

position and updates the cluster with its current position.

Each node publishes a state vector describing its position and subscribes to the state vectors

of all other satellites. Individual state vectors are periodically updated on each satellite through

an AMI interface from ModuleProxy to OrbitMaintenance. This interaction represents the flight

hardware periodically updating the control software with a new satellite state. The connection

between Orbiter and ModuleProxy facilitates periodically getting position data from the satellite

sensors.

When OrbitMaintenance receives a command from CommandProxy, it publishes the command

as a Satellite Command topic. The OrbitMaintenance actor on each satellite subscribes to the

Satellite Command topic, and upon reception of the topic, instructs the satellite thrusters to fire

(via an AMI call to ModuleProxy), which activates the satellite thruster in the simulation.

Despite the complexity of the application, only 405 total lines of code (0.41% of the application

code) were written by hand between the four components. The other 99.59% is generated code

that governs all communications, timing, and interactions.

VII. DISCUSSION

There certainly exist state-of-the-art development environments and run-time platforms that

address some of the needs discussed earlier. There are model-based development environments

for embedded systems (e.g., Mathworks’s toolsuites, IBM’s UML tools, etc.), there are various

real-time operating system products with sophisticated development toolchains (e.g., Integrity by

Green Hills), and there are systems that support Multi-Level Security (e.g., SELinux). However,

to the best of our knowledge we are not aware of any single development environment and

run-time platform that holistically provides all these capabilities in one package.

November 7, 2013 DRAFT



12

In our experiments, we found that emerging cloud paradigms for mobile devices can be

supported through a managed runtime platform with integrated support for multi-level security

and advanced component models. A model-based development environment that abstracts the

runtime platform and automatically generates the required interface code eases the burden of

developing applications for a new platform.

Sidebar 1: Further Reading

• DREMS page at ISIS: http://www.isis.vanderbilt.edu/DREMS

• F6 Project Page at Kestrel Institute: http://www.kestrel.edu/home/projects/f6/

• Generic Modeling Environment project page: http://www.isis.vanderbilt.edu/Projects/gme

Acknowledgments: This work was supported by the DARPA System F6 Program under

contract NNA11AC08C. Any opinions, findings, and conclusions or recommendations expressed

in this material are those of the author(s) and do not reflect the views of DARPA. The authors

thank Olin Sibert of Oxford Systems and all the team members of our project for their invaluable

input and contributions to this effort.

November 7, 2013 DRAFT

http://www.isis.vanderbilt.edu/DREMS
http://www.kestrel.edu/home/projects/f6/
http://www.isis.vanderbilt.edu/Projects/gme


13

REFERENCES

[1] Luigi Atzori, Antonio Iera, and Giacomo Morabito. The Internet of Things: A Survey. Computer Networks, 54(15):2787–

2805, 2010.

[2] Owen Brown, P Eremenko, and C Roberts. Cost-benefit analysis of a notional fractionated satcom architecture. In Proc.

of the 24th AIAA International Communications Satellite Systems Conference, AIAA-2006-5328, San Diego, CA, 2006.

[3] Abhishek Dubey, William Emfinger, Aniruddha Gokhale, Gabor Karsai, William Otte, Jeff Parsons, Csanad Szabo,

Alessandro Coglio, Eric Smith, and Prasanta Bose. A Software Platform for Fractionated Spacecraft. In Proceedings

of the IEEE Aerospace Conference, 2012, pages 1–20, Big Sky, MT, USA, March 2012. IEEE.

[4] Rajesh K. Karmani and Gul Agha. Actors. In Encyclopedia of Parallel Computing, pages 1–11. 2011.

[5] ARINC Incorporated, Annapolis, Maryland, USA. Document No. 653: Avionics Application Software Standard Inteface

(Draft 15), January 1997.

[6] William R. Otte, Abhishek Dubey, Subhav Pradhan, Prithviraj Patil, Aniruddha Gokhale, Gabor Karsai, and Johnny

Willemsen. F6COM: A Component Model for Resource-Constrained and Dynamic Space-Based Computing Environment.

In Proceedings of the 16th IEEE International Symposium on Object-oriented Real-time Distributed Computing (ISORC

’13), Paderborn, Germany, June 2013.

[7] Clemens Szyperski. Component Technology: What, Where, and How? In Proceedings of the 25th International Conference

on Software Engineering, ICSE ’03, pages 684–693, Washington, DC, USA, 2003. IEEE Computer Society.

[8] Object Management Group. Light Weight CORBA Component Model Revised Submission, OMG Document realtime/03-

05-05 edition, May 2003.

[9] William R. Otte, Aniruddha Gokhale, Douglas C. Schmidt, and Johnny Willemsen. Infrastructure for Component-based

DDS Application Development. In Proceedings of the 10th ACM international conference on Generative programming

and component engineering, GPCE ’11, pages 53–62, New York, NY, USA, 2011. ACM.

[10] D. Elliott Bell and Leonard J. LaPadula. Secure computer systems: Mathematical foundations. Technical Report 2547,

Volume I, MITRE, 1973.

[11] Olin Sibert. Multiple-domain labels. Presented at the F6 Security Kickoff, 2011.

[12] RFC 2460: Internet Protocol, version 6 (IPv6) specification, December 1998.

[13] S. Kent and K. Keo. IETF RFC 4301: Security architecture for the internet protocol, dec 2005.

[14] Marta Carbone and Luigi Rizzo. Dummynet revisited. SIGCOMM Comput. Commun. Rev., 40(2):12–20, April 2010.

[15] Bruce Irving. Playing in space: Interactive education with the orbiter space flight simulator. In International Space

Development Conference (ISDC) 2007, 2007.

November 7, 2013 DRAFT



14

VIII. AUTHOR INFORMATION

Tihamer Levendovszky is a Research Assistant Professor at Vanderbilt Uni-

versity. He received his PhD from the Budapest University of Technology and Economics. His

interests include model-based engineering and performance analysis of software systems.

Abhishek Dubey is a Research Scientist at ISIS at Vanderbilt University. He

received his PhD in Electrical Engineering from Vanderbilt University. His interests include

distributed fault-tolerant real-time systems and autonomic computing.

William R. Otte is a Research Scientist at ISIS at Vanderbilt University.

He received his PhD in Computer Science from Vanderbilt University. His interests include

middleware for real-time embedded systems and deployment and their configuration.

Daniel Balasubramanian is a Research Scientist at ISIS at Vanderbilt Univer-

sity. He received his PhD in Computer Science from Vanderbilt University. His interests include

the lightweight application of formal methods and analysis to model-based development.

November 7, 2013 DRAFT



15

Alessandro Coglio is a Principal Scientist at Kestrel Institute. He received a

degree in Informatics Engineering from University of Genoa, Italy. His interests are formal meth-

ods and tools to develop correct-by-construction software via formal specification, refinement,

and theorem proving.

Sandor Nyako is a Senior Research Engineer at Vanderbilt University. He

received his BSc degree at Eotvos Lorand University, Hungary. Sandor has over 13 years of

experience in the telecom, finance and computer entertainment fields.

William Emfinger is a Graduate Research Assistant at ISIS at Vanderbilt

University. His research focuses on networking for critical systems. He received his B.E. in

Electrical Engineering and Biomedical Engineering from Vanderbilt University in 2011.

Pranav Srinivas Kumar is a Graduate Research Assistant at ISIS at Vanderbilt

University. His research focuses on modeling, analysis and verification techniques for distributed

component-based software applications. He received his B.E. in Electronics and Communications

Engineering from Anna University, India in 2011.

November 7, 2013 DRAFT



16

Aniruddha S. Gokhale is an Associate Professor in the Department of Electrical

Engineering and Computer Science, and Senior Research Scientist at ISIS, Vanderbilt University.

He received his PhD from Washington University, St. Louis. Dr. Gokhale is a Senior member

of both IEEE and ACM.

Gabor Karsai is Professor of Electrical and Computer Engineering and Com-

puter Science at Vanderbilt University and Senior Research Scientist at ISIS. He conducts

research in model-integrated computing (MIC), design automation for model-driven development

processes, automatic program synthesis, and the application of MIC in various government and

industrial projects. He is a senior member of the IEEE Computer Society.

November 7, 2013 DRAFT


	I The emerging realm of mobile and embedded cloud computing
	II Runtime software platform: OS and middleware
	III Component model: Building blocks for application development
	IV Secure Transport: A secure actor to actor communication channel
	IV-A Endpoints and flows
	IV-B Multi-Level Security (MLS) policy
	IV-C Networks

	V Model-Driven application development, integration, and deployment
	VI Example
	VII Discussion
	References
	VIII Author Information

