
CONCURRENCY AND COMPUTATION: PRACTICE AND EXPERIENCE
Concurrency Computat.: Pract. Exper. 2003; 15:155–179 (DOI: 10.1002/cpe.714)

Improving the official
specification of Java bytecode
verification

Alessandro Coglio∗,†

Kestrel Institute, 3260 Hillview Avenue, Palo Alto, CA 94304, U.S.A.

SUMMARY

Bytecode verification is the main mechanism to ensure type safety in the Java Virtual Machine. Inadequacies
in its official specification may lead to incorrect implementations where security can be broken and/or
certain legal programs are rejected. This paper provides a comprehensive analysis of the specification,
along with concrete suggestions for improvement. Copyright c© 2003 John Wiley & Sons, Ltd.

KEY WORDS: Java; bytecode verification; specification

1. INTRODUCTION

Java programs [1,2] are normally compiled to class files, which are executed by the Java Virtual
Machine (JVM) [3]. A class file contains substantially the same information as the Java class or
interface from which it is generated, except that each method’s code is replaced by a sequence of
platform-independent, assembly-like instructions called ‘bytecodes’‡. Bytecodes are typically executed
by direct interpretation or just-in-time compilation to native machine code.

Java is designed to be type-safe, i.e. the type of a value determines the operations allowed on the
value. For instance, to forge object references from integers or to access arrays outside their bounds is
not allowed. Besides supporting a better programming discipline and making programs more robust,
type safety is the basis of Java security [4].

Java compilers perform most of the needed type safety checks; only those properties that cannot be
statically checked in general (e.g. that arrays are accessed within their bounds) are deferred to run time.
Nonetheless, the JVM has typically no guarantees that incoming class files (e.g. Web applets from

∗Correspondence to: Alessandro Coglio, Kestrel Institute, 3260 Hillview Avenue, Palo Alto, CA 94304, U.S.A.
†E-mail: coglio@kestrel.edu
‡The term ‘bytecode’ is often abused so as to denote the language of bytecodes, including the ancillary information in class files.
This paper also conforms to this abuse.

Received 8 January 2002
Copyright c© 2003 John Wiley & Sons, Ltd. Revised 17 August 2002



156 A. COGLIO

remote Internet sites) have been generated by trustworthy compilers. The JVM must independently
ensure type safety, without relying on compilers.

If a Java program is successfully compiled, the JVM must be able to re-establish the type safety
properties established by the compiler. It would be disappointing if the JVM refused to run the
generated code due to the ‘violation’ of a property that the compiler has assessed as satisfied.

Bytecode verification is the main mechanism to ensure type safety in the JVM. Prior to execution,
incoming code is screened by the bytecode verifier in order to establish that certain type safety
properties will be satisfied when the code is run. This relieves the JVM from checking such properties
at run time, dramatically improving performance.

Since Java security is based on type safety, a correct implementation of bytecode verification is of
paramount importance to the security of an implementation of the JVM. Holes in bytecode verification
constitute potential points of attack exploitable by malicious programs to overthrow the other security
mechanisms of the JVM [5]. A correct implementation of bytecode verification is also important to
guarantee that code compiled from legal Java programs is accepted and executed by the JVM.

The official specification of the JVM [3], which includes bytecode verification, is written in
informal English prose. Most of this specification is rather clear, but there are some inadequacies.
Their presence is particularly problematic for security-critical features such as bytecode verification,
because erroneous interpretation can lead to erroneous implementation.

This paper exposes and analyzes the inadequacies in the official specification of bytecode
verification, providing concrete suggestions for improvement. All the inadequacies that the author is
currently aware of are covered. Certain aspects of bytecode verification, which are directly relevant to
the analysis and improvement of its specification, are extensively treated in other papers; this paper
only provides an overview of such aspects, referring the reader to those other papers for details.

The next section clarifies the role of bytecode verification in the JVM, also identifying which parts of
the JVM specification describe bytecode verification. The analysis and the suggested improvements are
presented in Sections 3, 4, and 5, which correspond to the three parts of the specification. Related work
is discussed in Section 6. The official JVM specification is denoted by ‘JS’; individual chapters or
(sub-)sections are denoted by appending their number, e.g. ‘JS3.1’.

The goal of this paper, like others in the field, is to improve the understanding, assurance, and
usability of Java. The need and desire to improve JS, in particular the description of bytecode
verification, ‘ideally to the point of constituting a formal specification’, is explicitly stated in the
Appendix of JS; this paper contributes to that goal.

2. ROLE OF BYTECODE VERIFICATION

2.1. Class file verification

JS4 describes the format of valid class files. Class files may come from a variety of sources, such as
the local file system or a network connection; they may even be constructed or instrumented on the fly.
Ultimately, they are presented to the core class creation mechanisms of the JVM as byte sequences,
from which the JVM creates (internal representations of) classes and interfaces. Class file verification
is the process of checking that a byte sequence constitutes a valid class file.

Copyright c© 2003 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2003; 15:155–179



SPECIFICATION OF BYTECODE VERIFICATION 157

Class file verification is described in JS4.9.1 as consisting of four passes. Passes 1 and 2 check
the format of the class file, excluding those byte subsequences that constitute methods’ code.
The boundaries of such subsequences are identified during passes 1 and 2, but it is pass 3’s
responsibility to verify that each of them constitutes valid code for an individual method. Pass 4
consists of the checks performed by resolution, i.e. that symbolic references from instructions to
classes, interfaces, fields, and methods are correct.

Bytecode verification is pass 3, which is the most interesting and delicate one. The other passes are
relatively straightforward and do not present major difficulties.

2.2. Goal

The purpose of bytecode verification is checking whether a byte sequence constitutes valid code for a
method. The checking is performed with respect to contextual information that includes the method’s
signature and the constant pool of the class file.

An instruction consists of a one-byte opcode, which specifies an operation to be performed,
followed by zero or more bytes encoding operands, which specify data to be operated upon. Bytecode
verification must preliminarily check that the byte sequence constitutes an instruction sequence
(i.e. correct opcodes, etc.). Then, it must establish that the instruction sequence satisfies certain type
safety properties.

The exact type safety properties to establish can be determined from the specification of instructions
in JS6. That specification includes statements using ‘must’, such as ‘the top of the operand stack must
contain an integer’. As explained in JS6.1, the meaning of ‘must’ is that the execution engine expects
the expressed requirements to hold, and it is the task of class file verification to make sure they indeed
hold§.

Some of these requirements are checked by the resolution process, i.e. pass 4 of class file verification.
An example is that the method symbolically referenced by invokevirtual must exist, have the
indicated argument and return types, and be accessible from the class where invokevirtual occurs.

Passes 1 and 2 check certain ‘implicit’ requirements. An example is that the constant pool must be
well-formed. Another example is that there must be no circularities in the type hierarchy; this check
involves not only the class file under verification, but also the classes and interfaces currently loaded
in the JVM.

The remaining requirements are checked by bytecode verification, i.e. pass 3. An example is that
the index of a local variable used as an operand must be within the range of the local variables of the
method. Another example is that the top of the operand stack must contain an integer when certain
instructions are executed.

If the rectangular space in Figure 1 represents all possible code (i.e. all byte sequences), then the
larger, full-line oval delimits code that is acceptable by bytecode verification. This consists of all byte

§There are a few exceptions to this statement, i.e. sentences in JS6 that use ‘must’ for checks to be performed at run time.
For example, the specification of aastore states that the type of the object to store must be assignment compatible with the
component type of the array. However, the same specification states that a run time exception is thrown if that is not the case.
So, despite the use of ‘must’, it is clearly not the task of class file verification to check that property; this also applies to the other
sentences in JS6 where ‘must’ is used for a run time check.

Copyright c© 2003 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2003; 15:155–179



158 A. COGLIO

compiled
code

acceptable
code accepted

code

code

Figure 1. Requirements for bytecode verification.

sequences encoding instruction sequences that satisfy the type safety properties derived from JS6 that
must be checked by pass 3.

Unfortunately, it is undecidable whether a byte sequence is acceptable code. As is well-known in
program analysis, properties such as ‘the top of the operand stack always contains an integer when a
certain instruction is executed’ can be checked only approximately. Bytecode verification is bound to
be a decidable approximation of an ideal filter that exactly recognizes acceptable code: the mid-size,
dashed-line oval in Figure 1 delimits the code that is actually accepted by bytecode verification.

As explicitly stated in JS4.9 and as mentioned in Section 1, code generated by (correct) compilers
must be accepted by bytecode verification. The smaller, dotted-line oval in Figure 1 delimits code
generated by compilers.

The containment relationship among the ovals must be as indicated in the figure. Any choice of
the accepted code oval is fine, as long as it is contained in the acceptable code oval and contains the
compiled code oval. Failure of either containment would cause type unsafety or rejection of legal Java
programs.

While acceptable code can be characterized precisely from the specification of instructions in
JS6, compiled code depends on how compilers are implemented. Even if all current compilers used
common compilation strategies, future compilers might use different strategies to generate better code.
The compiled code oval is a moving target, not very suitable to universal characterization.

The best approach is to give a precise characterization of accepted code. JVM implementors should
write bytecode verifiers that exactly recognize the accepted code oval. The characterization also
constitutes a contract with compiler developers: as long as a compiler generates code that falls inside
the oval, that code will pass bytecode verification.

Copyright c© 2003 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2003; 15:155–179



SPECIFICATION OF BYTECODE VERIFICATION 159

The definition of accepted code should embody an optimal trade-off between two criteria:
(1) bytecode verification should be as simple and efficient as possible; and (2) it should accept as
much code as possible. Privileging the first criterion may limit future compilers or reject some code
from current compilers; privileging the second may make implementations more susceptible to errors
and hence to attacks exploiting the errors.

2.3. Specification

Bytecode verification is described in JS4.8 and JS4.9. JS4.8 presents constraints that a byte sequence
must satisfy in order to represent valid method code; they are divided into static and structural
constraints. JS4.9 explains, in a quite algorithmic way, how such constraints are checked.

3. STATIC CONSTRAINTS

Static constraints, presented in JS4.8.1, state the properties that a byte sequence must satisfy in order
to constitute an instruction sequence with correct opcodes and operands. All the instructions’ operands
are covered. The constraints are quite straightforward. Some involve the constant pool; for instance,
the operand of getfield must point to a field reference in the constant pool.

One constraint seems out of place, though. It states that new cannot be used to create an instance of
an interface or of an abstract class.

The constraint must indeed hold, but it is given in the context of restrictions on new’s operand.
Since new references a class by name (via an index into the constant pool), the name should be
resolved in order to determine whether it denotes an interface, an abstract class, or a non-abstract
class. Unlike all the other static constraints, this one cannot be checked locally to the class file.

Furthermore, the specification of new in JS6 states that an exception is thrown if the name resolves
to an abstract class or an interface. This means that the check is performed at resolution time.
Other instructions that reference classes, interfaces, fields, and methods in their operands require
checks similar to this one (e.g. the field referenced by getfield must not be static); they are given
as resolution time checks in JS6, not as static constraints.

For these reasons, the constraint on new described above should be removed from JS4.8.1.
Even though static constraints are derivable from JS6, it seems indeed useful to have all of them

collected in one place of JS, namely JS4.8.1.

4. STRUCTURAL CONSTRAINTS

Structural constraints, presented in JS4.8.2, state (for the most part) type safety properties that must
hold when instructions are executed. These constraints apply to instruction sequences; they assume
that static constraints are satisfied.

4.1. Terminology

Both static and structural constraints are meant to be checked statically, prior to executing the code.
Using the adjective ‘static’ only for the first kind of constraints sounds a little misleading and confusing.

Copyright c© 2003 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2003; 15:155–179



160 A. COGLIO

The terms ‘static’ and ‘structural’ could be replaced by something like ‘well-formedness’ and ‘typing’,
respectively. However, in the rest of this paper the adjectives ‘static’ and ‘structural’ will still be used.

4.2. Undecidability

Most structural constraints state properties that must hold when certain instructions are executed.
For example, when getfield is executed, the top of the operand stack must contain a reference
to an instance of a class that is assignment compatible with the class or interface referenced by the
operand. As mentioned in Section 2.2, precisely establishing this kind of property before execution is
undecidable. So, structural constraints define acceptable code, as opposed to accepted code (using the
terminology introduced in Section 2.2). Accepted code is defined by the algorithm described in JS4.9.
This point should be stated explicitly in JS4.8.2.

4.3. Redundancy

The first constraint in the list states that each instruction must be executed with appropriate number and
types of values in the operand stack and local variables. The notion of ‘appropriate’ can be determined
from JS6. For example, putfield requires the value stored in the field to be assignment compatible
with the type of the field.

The same requirement on putfield is stated explicitly by a separate constraint. Since it can be
derived from the first one, it is redundant.

Another constraint states that no instruction must pop more values from the operand stack than it
contains, i.e. no stack underflow must occur. Again, this is a simple consequence of the first constraint
in the list; each instruction requires the presence of a certain number of values in the operand stack,
and only those values are popped.

It could be argued that even the first constraint in the list is redundant. The specification of
instructions in JS6 includes the types of the values that each instruction expects to find in the operand
stack and local variables. As explained in JS6.1, it is the task of bytecode verification to ensure that
these expectations are met, i.e. that each instruction is executed with appropriate number and types of
values in the operand stack and local variables.

Despite this redundancy, it seems useful to have all the structural constraints collected in one
place, namely JS4.8.2. Unlike static constraints, which cover all the instructions’ operands, the
structural constraints currently present in JS4.8.2 do not cover all the instructions’ typing requirements.
Constraints for the missing instructions should be added. The first constraint, which subsumes the
others, should be eliminated or used as a summary statement before the list.

4.4. Unexplained restrictions

4.4.1. Uninitialized objects

A constraint states that no (reference to an) uninitialized object must be present in the operand stack or
local variables when a backward branch is taken, or in a local variable in code protected by an exception
handler. These requirements have no direct bearing on type safety: for type safety: it is sufficient that

Copyright c© 2003 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2003; 15:155–179



SPECIFICATION OF BYTECODE VERIFICATION 161

uninitialized objects are initialized before they are used, regardless of their presence when backward
branches are taken or in code protected by exception handlers.

JS4.8.2 provides no explanation for the constraint, which turns out to be a ‘forward reference’ to
the algorithm described in JS4.9, which statically checks that the constraint will be satisfied at run
time; see Section 5.8.2. Since structural constraints define acceptable code and not accepted code, the
constraint should be removed from JS4.8.2.

4.4.2. Subroutines

Some constraints state requirements on subroutines: subroutines cannot be called recursively; the
instruction following a jsr may be returned to only by a single ret; each return address may be
returned to at most once; etc. These requirements have no direct bearing on type safety, for which it is
sufficient that jsr does not cause an operand stack overflow and that a return address is present in the
local variable referenced by ret.

No explanation for these constraints is given in JS4.8.2. Like the one analyzed in Section 4.4.1, these
constraints are ‘forward references’ to the algorithm described in JS4.9; see Section 5.9.2. For the same
reason given in Section 4.4.1, they should be removed from JS4.8.2.

4.4.3. Operand stack size

A constraint states that if an instruction can be executed along different paths, the operand stack must
always have the same size prior to the execution of the instruction, regardless of the path taken. Again,
this requirement has no direct bearing on type safety: as long as the stack does not exceed the maximum
size for the method, it may have different sizes when a certain instruction is executed.

Again, no explanation is given in JS4.8.2, but the following explanation can be gathered from [6].
If the constraint is satisfied, every instruction always accesses the same elements of the stack when

it is executed. For instance, if the instruction is iadd and the stack size is always 3, the instruction
always reads the integers from the third and second elements of the stack (counting from the bottom)
and pushes their sum into the second element.

This invariant allows, in typical microprocessors, the stack elements to be implemented as native
registers, which are accessed directly. For instance, the iadd considered in the example above reads
the integers from the registers for the third and second stack elements, and writes their sum into the
register for the second stack element; in typical microprocessors, this operation is realized by a single
native machine instruction.

In other words, the constraint supports more efficient execution of bytecode instructions by means
of native machine instructions (e.g. resulting from just-in-time compilation). If the constraint were not
satisfied, the stack would have to be implemented explicitly with a current size that is incremented and
decremented, resulting in poorer performance.

This motivation for the above constraint is not totally obvious. In addition, it is irrelevant to certain
architectures where the JVM could be realized. For example, in a hardware JVM that directly executes
bytecode instructions, stack manipulation operations could be micro-coded and hence as fast as register
manipulation operations. This is not to say that the constraint should necessarily be eliminated, because

Copyright c© 2003 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2003; 15:155–179



162 A. COGLIO

its presence does not cause any problem in any architecture; some architectures may take advantage of
it. Anyhow, at least some explanation should be added to JS4.8.2.

4.4.4. Special method invocations

A constraint requires invokespecial to reference an instance initialization method or a method
in (a superclass of) the current class. Again, this requirement has no direct bearing on type safety: if
invokespecial references a non-instance initialization method that is not in (a superclass of) the
current class, the method is directly invoked, as specified in JS6; the method’s class is (a superclass of)
the target class, as ensured by bytecode verification.

No explicit explanation is given in JS4.8.2. Some explanation can be derived by considering the
circumstances in which compilers generate invokespecial. This instruction is used to compile
calls to constructors, calls to private methods, and calls with target super, for which (the typical
implementation of) the lookup procedure of invokevirtual is inappropriate. As a consequence of
this compilation strategy, invokespecial in compiled code always calls an instance initialization
method or a method in (a superclass of) the current class. Despite this compilation strategy, the above
constraint is irrelevant to type safety and should be removed from JS4.8.2.

4.5. Contradiction

Two constraints slightly contradict each other. One states that the fields of an uninitialized object
cannot be accessed; the object must be initialized first. The other states that the code of an instance
initialization method can store values in the fields of the object to be initialized, which, strictly
speaking, is still uninitialized.

Admittedly, this is not a very severe contradiction; the former constraint can be viewed as a broader
statement that is relaxed by the latter. However, the two statements could be re-worded, and perhaps
merged together, to clarify that the latter relaxes the former.

4.6. Incorrect wording

A constraint states the following requirement for getfield, putfield, invokevirtual, and
invokespecial: if the referenced field or method is protected and is declared in a superclass of
the current class, then the class of the object whose field or method is being accessed must be either
the current class or a subclass of it. This requirement derives from an analogous requirement for Java
[2]. It has to do with the principle that the protected members (and constructors) of an object may be
accessed from outside their package only by code that is responsible for the implementation of that
object.

The wording of the constraint is incorrect. A protected member is always accessible from within
the package where the member is declared, without restrictions; the requirement described above only
applies if the member is declared outside the package of the current class [2]. The constraint should
be re-written as follows: if the referenced member is protected and is declared in a superclass of the
current class that is in a different package, then the class of the object whose member is being accessed
must be either the current class or a subclass of it.

Copyright c© 2003 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2003; 15:155–179



SPECIFICATION OF BYTECODE VERIFICATION 163

A similarly incorrect wording is present in the specifications of getfield, putfield,
invokevirtual, and invokespecial in JS6; it should be similarly corrected.

4.7. Possibly static constraints

4.7.1. Method return instructions

A constraint requires each method return instruction (such as ireturn and freturn) to match the
method’s return type. This is a simple check which does not involve any type analysis. So, it could well
be moved into JS4.8.1, becoming a static constraint. Of course, type analysis is required to establish
that the operand stack always has a value of the right type when the instruction is executed. However,
this is a separate constraint.

4.7.2. Last instruction in the sequence

A constraint states that execution must never fall off the bottom of the code. This is also a simple
check that does not involve any type analysis; the last instruction of the sequence must be one that
cannot transfer control to the non-existent following one, directly or indirectly¶. In addition, some static
constraints require the operands of the control transfer instructions to point to instruction addresses,
and not outside the code or in the middle of an instruction; the requirement that execution cannot fall
off the end of code is definitely related to these requirements. For these reasons, the constraint above
could well become a static constraint too.

4.8. Heterogeneity

The structural constraints currently present in JS4.8.2 are somewhat heterogeneous. Most of them state
typing requirements that must hold when certain instructions are executed. Some state requirements
relating all possible executions, e.g. that the instruction following a jsr may be returned to by a single
ret. Others state requirements on instructions’ occurrences, e.g. that return instructions must match
the method’s return type.

Heterogeneity is not necessarily bad, but it contrasts with the homogeneity of static constraints,
which are all local checks on instruction opcodes and operands. However, if the suggestions in
Sections 4.4 and 4.7 to remove constraints from JS4.8.2 were followed, then the remaining structural
constraints would be quite homogeneous, all stating typing requirements that must hold when certain
instructions are executed; this is also true for the constraints that Section 4.3 suggests to add to JS4.8.2.
The only mild exception would be the constraint on the operand stack size analyzed in Section 4.4.3,
which relates all possible executions.

¶The ‘indirect’ case applies to jsr: control is transferred to the following instruction when returning from the called subroutine.
If ret does not occur in the code, then it is impossible to return to the instruction following a jsr. So, jsr could be allowed
as the last instruction if ret does not occur in the code. However, a method with jsr as the last instruction and without ret
is definitely pathological. Thus, not much is lost by requiring the stronger condition that the last instruction cannot be jsr,
regardless of the presence of ret in the code.

Copyright c© 2003 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2003; 15:155–179



164 A. COGLIO

5. VERIFICATION ALGORITHM
JS4.9 describes an algorithm for bytecode verification. The initial part of JS4.9.2 essentially explains
how to check static constraints and is quite straightforward; a mildly interesting point is the inclusion
of the check that execution cannot fall off the end of code, supporting the view of this requirement as
a static constraint, as argued in Section 4.7.2. The remaining part of JS4.9.2 explains how to check a
decidable approximation of structural constraints, by means of a data flow analysis [7]. Clarifications
concerning the treatment of certain instructions are given in JS4.9.3 through JS4.9.6.

5.1. Ambiguity of reference types

As stated in JS5.3, a class or interface in the JVM is identified by its (fully qualified) name plus its
defining class loader. However, classes and interfaces are symbolically referenced in class files by
name only. The description of the data flow analysis talks about ‘reference types’ that are assigned to
the operand stack and local variables, but it fails to clarify whether these reference types consist of
names only or names plus class loaders.

Since class loaders are run time objects that may be user-defined, the only way to know their
identities is to actually load the classes and interfaces. This counters the statement in JS2.17.1 that
classes and interfaces may be loaded lazily, when they are required for execution. Thus, the most
reasonable interpretation is that the reference types used by the algorithm consist of names only.

This is correct as long as there is an intended disambiguation of names, accompanied by mechanisms
to ensure consistent disambiguation between methods that exchange objects. Consider the following
example [5,8]. A method m1 has an argument of type C, whose disambiguation in m1 is a class c

(identified by the name C plus some loader). Another method m2 calls m1, passing an object of type C
to it. If C is disambiguated to a class c′ in m2, it must be c = c′; otherwise, type safety could be broken.

In the first edition of JS, these issues were not mentioned. Type safety bugs due to inconsistent
disambiguation of names were found in earlier implementations of the JVM [8]. Those bugs were
corrected by the introduction of loading constraints [9], described in JS5. Loading constraints ensure
that classes exchanging objects agree on the actual classes of the exchanged objects, not only on their
names. Loading constraints are external to bytecode verification; they are part of the class loading
mechanisms, which complement bytecode verification to ensure type safety, together with resolution
and other mechanisms.

Formal evidence that bytecode verification can use names only and rely on loading constraints to
ensure their consistent disambiguation is given in [10]. A name N used in a class c stands for the
class or interface NL, where L is the defining loader of c. The notation NL, used in JS5, denotes the
class or interface with name N and initiating loader L; the loaded class cache and the class creation
mechanisms of the JVM ensure that NL denotes a unique class or interface. A loading constraint has
the form NL = NL′

, expressing the fact that the two classes or interfaces with name N and initiating
loaders L and L′ (with L �= L′) must be the same class or interface.

JS4.9.2 should explicitly state that the reference types used by the algorithm consist of names only
and that the intended disambiguation of a name N is the class or interface NL, where L is the defining
loader of the class under verification.

Copyright c© 2003 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2003; 15:155–179



SPECIFICATION OF BYTECODE VERIFICATION 165

5.2. Subtype checking

During bytecode verification, a class or interface type C in the operand stack may be the target of
a member access instruction whose operand references D as the class or interface of the member
to be accessed. While the existence of the member is checked when the reference to the member is
resolved, bytecode verification must ensure that C is a subtype of D. According to JS4.9.1, this is done
by resolving the two names and checking that the required subtype relation holds between the actual
classes or interfaces‖. This strategy results in premature loading.

A better approach is to generate a subtype constraint of the form CL < DL, where L is the defining
loader of the class under verification [10,11]. Subtype constraints can be checked lazily when classes
and interfaces are loaded, analogously to the equality constraints introduced in [9]. Formal evidence
that type safety is guaranteed is given in [10].

There is nothing wrong with resolving names and checking the required subtype relation on the
actual classes or interfaces. However, the generation of subtype constraints is cleaner and allows lazier
loading. Thus, subtype constraints could well be added to JS.

5.3. Merging of reference types

JS4.9.2 prescribes that the result of merging two class types C and D is their first common superclass.
This requires resolving the two names to actual classes, and then traversing their ancestry to find the
first common superclass.

The interaction of this strategy with subtype checking causes a type safety bug [11,12], unless extra
precautions are taken. Suppose that the result of merging C and D is S and that this name is checked
against the name S referenced by a member access instruction: the check succeeds because the names
are equal. However, the first common superclass of CL and DL (where L is the defining loader of the
class under verification), despite having name S, may have a different defining loader from the class
SL whose member is accessed. See [11] for details.

The problem is that this merging strategy may break the property that a name N used in
bytecode verification stands for the class or interface NL, where L is the defining loader of the
class under verification. So, bytecode verification cannot use names only. Additional information is
needed to properly disambiguate names obtained by merging and to make correct type comparisons.
The additional information could be the defining loader of the first common superclass that results
from merging [11].

This problem is not mentioned in JS, but can be easily overlooked. For example, Sun’s Java 2 SDK
version 1.4 is affected by this bug. The problem and its solution should be discussed in JS.

A better strategy is to assign finite sets of reference types to the operand stack and local variables,
merging the sets by union [11,13,14]. For example, the result of merging {C} and {D} is {C,D}.
This avoids the above problem altogether, because no ‘new’ name is introduced by merging: a name N

‖Subtype checking is described in JS4.9.1, in the context of lazy loading. Indeed, the description could be moved or copied into
JS4.9.2, because it is an important part of the data flow analysis.

Copyright c© 2003 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2003; 15:155–179



166 A. COGLIO

always stands for the class or interface NL. In addition, no classes need to be loaded for merging. Given
its simplicity and advantages, this strategy could well be incorporated into JS.

5.4. Interface types

The first edition of JS prescribes that the result of merging two reference types is their first common
superclass or superinterface. This works fine for classes, but the first common superinterface of two
interfaces may not be unique because of multiple inheritance. In the second edition of JS the statement
has been changed to say that the result of merging two reference types is just their first common
superclass. Since java.lang.Object is considered a superclass of every interface, the result of
merging two interface types is always java.lang.Object.

This strategy requires a special treatment of java.lang.Object when it is the target of
invokeinterface. Since java.lang.Object may derive from merging two interface types,
bytecode verification should allow invokeinterface to operate on it. Otherwise, some compiled
code would be rejected. Normally, invokeinterface should be only allowed to operate on a
subtype of the interface referenced by invokeinterface, but java.lang.Object is not a
subtype of any interface. In order to maintain type safety, a run time check is necessary when
invokeinterface is executed.

This treatment of interface types is not particularly clean. Furthermore, JS does not make
its implications entirely clear, e.g. that java.lang.Object needs a special treatment.
The specification of invokeinterface in JS6 mentions the needed run time check (by saying
that an exception is thrown if the class of the target object does not implement the interface), but the
relation between this run time check and bytecode verification is not made explicit. These implications
should be discussed in JS.

The alternative merging strategy described in Section 5.3 automatically provides a clean and
sound treatment of interface types [11,13,14]. Interface names are treated exactly like class names∗∗.
Since merging is set union, multiple inheritance of interfaces is not a problem; there is no
need to use java.lang.Object as the result of merging. Therefore, no special treatment
of java.lang.Object is necessary and no run time checks need to be performed when
invokeinterface is executed. This is one more reason why this merging strategy could be
incorporated into JS.

5.5. Special names

Certain names denote system classes and interfaces that play special roles in the type
hierarchy or in class files: java.lang.Object denotes the root of the class hierarchy;
java.lang.String denotes the class of the strings in the constant pool referenced by ldc and
ldc w; java.lang.Throwable denotes the root of all classes whose instances can be thrown

∗∗In general, whether a name denotes a class or an interface can be only determined by resolving the name. For instance, if a
method has an argument of reference type R, that name may denote a class as well as an interface.

Copyright c© 2003 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2003; 15:155–179



SPECIFICATION OF BYTECODE VERIFICATION 167

as exceptions; and all arrays implement the interfaces denoted by java.lang.Cloneable and
java.io.Serializable.

Since a class or interface is identified by its name plus its defining loader, nothing prevents the
existence of user-defined classes and interfaces with these ‘special’ names and different loaders. JS1.4
says that the names in the package java that are used in JS denote the classes and interfaces as loaded
by the bootstrap class loader, i.e. the expected system classes and interfaces. However, JS does not
explicitly require a JVM implementation to forbid the existence of user-defined classes and interfaces
with the special names.

So, bytecode verification cannot always assume that, e.g. the name java.lang.Object denotes
the root of the hierarchy: such a name could resolve to a user-defined class. If bytecode verification
considered any reference type R to be a subtype of java.lang.Object, type safety could
be broken. It is necessary either to check that java.lang.ObjectL (where L is the defining
loader of the class under verification) is the root of the class hierarchy or to treat the name
java.lang.Object as a regular one [11].

This point is not discussed in JS, but can be easily overlooked. In Sun’s Java 2 SDK version 1.2,
type safety can be broken by means of user-defined classes with special names [11]. This bug has been
corrected in later versions of Sun’s Java 2 SDK by forbidding the existence of user-defined classes or
interfaces in the java package. JS should either state that user-defined classes or interfaces with the
special names are disallowed or discuss the implications for bytecode verification.

5.6. Protected fields and methods

A subtle and often neglected aspect of bytecode verification is the treatment of protected members.
As mentioned in Section 4.6, if the member accessed by an instruction is protected and is declared
in a superclass of the current class that is in a different package, then the class of the object whose
member is being accessed must be either the current class or a subclass of it. This requirement should
be somehow checked by bytecode verification, to avoid expensive run time checks.

A straightforward approach is to resolve the reference to the member and see if the member is
protected and declared in a superclass of the class under verification that belongs to a different package.
If that is the case, the class in the operand stack is checked to be the class under verification or a subclass
of it.

In certain cases, the requirement can be soundly checked by just inspecting the superclasses of the
class under verification. For example, if no superclass declares a protected member with the given name
and descriptor, the requirement is certainly satisfied [15]. Inspection of the superclasses does not cause
any additional loading because when a class is loaded all its superclasses are also loaded, as specified
in JS5.3.5. However, in general it is necessary to resolve the reference to the member, which may cause
loading.

An approach that allows lazier loading is to generate a conditional subtype constraint [15] of the
form if ProtCond(SL.n:d,CL), then DL < CL where C is the name of the class under verification,
L its defining loader, S the name of the referenced class, n the name of the referenced member,
d its descriptor, and D the class name in the operand stack (where D �= C; no constraint needs to
be generated if D = C). The notation SL.n:d denotes the member with name n and descriptor d in
class SL (if present; if not, the first member with name n and descriptor d found in the superclasses of
SL, according to the definition of field and method resolution in JS5.4.3.2 and JS5.4.3.3). The predicate

Copyright c© 2003 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2003; 15:155–179



168 A. COGLIO

ProtCond(m, c) holds on a member m and a class c when m is declared in a superclass of c, m is
protected, and m and c belong to different packages.

JS should discuss the treatment of protected members; conditional subtype constraints could be
incorporated.

5.7. Purely functional interface

By generating (unconditional and conditional) subtype constraints and by using sets of reference types
that are merged by union, bytecode verification never needs to load any class or interface and can be
made a purely functional component of the JVM. It is activated by passing a byte sequence as input,
purported to be method code, accompanied by contextual information such as the method’s signature
and the constant pool. The returned answer is either failure or success; in the latter case, a set of
(unconditional and conditional) subtype constraints is also returned.

This is in spirit with the statement in JS2.17.1 that classes and interfaces may be loaded as lazily
as desired, and with the statement in JS4.9.1 that bytecode verification avoids loading classes and
interfaces unless it has to. JS does not require classes and interfaces to be loaded as lazily as possible;
it allows them to be loaded as lazily as desired. Eager loading amounts to subtype constraints being
checked as soon as they are generated. So, the purely functional interface, while increasing the potential
laziness and the conceptual cleanness, does not preclude eager loading.

It turns out that people at Sun had independently devised subtype constraints, and implemented
an experimental verifier that generates such constraints [16]. However, they decided not to change
JS and their official verifier to avoid introducing more potential indeterminacy in the behavior of the
JVM. Since loading classes and interfaces may have visible effects, especially with user-defined class
loaders, certain programs may behave differently in implementations of the JVM that load classes and
interfaces with different laziness. This may also happen without subtype constraints, though, because
resolution may take place more or less lazily, as stated in JS2.17.1; subtype constraints would increase
the potential indeterminacy only slightly.

5.8. Object initialization

5.8.1. Basic approach

Bytecode verification must ensure that objects are initialized before they are used. JS4.9.4 prescribes
that the data flow analysis uses a special type for (references to) newly created but still uninitialized
objects. This ‘uninitialized type’ is changed to a regular class type when an instance initialization
method is invoked. Since several copies of the uninitialized object may be present in the operand
stack and local variables when the instance initialization method is invoked, all the occurrences of the
uninitialized type must be changed.

After an object is created and before it is initialized, another object of the same class may be created.
The data flow analysis must distinguish between types for the first object and types for the second
object. The strategy prescribed in JS4.9.4 is to index the type for an uninitialized object with the
address of the new that creates it. Since the two objects are created at different addresses, there will be
different types associated to them.

Copyright c© 2003 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2003; 15:155–179



SPECIFICATION OF BYTECODE VERIFICATION 169

5.8.2. Unnecessary checks

A potential source of trouble is the occurrence of new inside a loop. If the loop does not initialize
the object, how can the data flow analysis distinguish between objects created during two different
iterations through the loop? To avoid this problem, JS4.9.4 requires that no uninitialized type exists
in the operand stack or local variables when a backward branch is taken. For analogous reasons,
no uninitialized type must exist in a local variable in code protected by an exception handler
(no restrictions are given on the operand stack because the stack is emptied when an exception is
thrown; the thrown exception is then pushed onto the stack).

This provides some explanation for the structural constraint mentioned in Section 4.4.1, but these
restrictions on (types for) uninitialized objects are completely unnecessary not only as structural
constraints, but also in the data flow analysis.

Suppose that new occurs at address i. Consider a path from address 0 (i.e. the start of the method’s
code) to i, such that the path does not include i (except at the end)††. Clearly, no uninitialized type is
assigned to the operand stack or local variables at address 0. The data flow analysis propagates types
from 0 to i, transforming them according to the instructions encountered along the path. Since none
of those instructions has address i, no uninitialized type with index i can appear at i; it appears at
the instruction following i. Even if there are circular paths from i back to i, all the copies of the
uninitialized type with index i are eventually merged with the types at i, thus disappearing. Therefore,
no confusion can arise: an uninitialized type with index i always refers to the last object created by the
new at address i.

Consider, e.g. the code in Figure 2‡‡. Types are propagated from 0 to 3; no uninitialized type
appears at these instructions. The new instruction pushes onto the operand stack the uninitialized
type uninit[C]3. This type is moved into variable 2, where it stays throughout instructions 5, 6, and 7.
The backward branch from 7 to 2 causes the type uninit[C]3 to be merged with whatever type is
present in variable 2 at instructions 0, 1, and 2, which is certainly a different type: the result is the
type undef, denoting an unusable or undefined type. The object initialized by invokespecial is
the one created in the last iteration through the loop; those created during the previous iterations may
still exist (if garbage collection has not already destroyed them), uninitialized but inaccessible.

It can be formally proved that the restrictions on uninitialized types required in JS4.9.4 are indeed
unnecessary [17]. So, they should be removed from JS.

5.8.3. Interaction with subroutines

Consider the code in Figure 3, adapted from [18]. The subroutine creates a new object but invokes
no instance initialization method. The subroutine is called twice; the uninitialized object is saved into

††If there is no such path, then i is statically unreachable and hence irrelevant.
‡‡For the sake of readability, a few licenses are taken in this and other bytecode listings. First, instruction addresses are
consecutive numbers instead of code offsets. Accordingly, the operands of control transfer instructions are replaced by the
addresses of their target instructions. Moreover, the symbolic references in the constant pool are embedded as operands in place
of the constant pool indices.

Copyright c© 2003 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2003; 15:155–179



170 A. COGLIO

0: iconst_0
1: istore_1
2: iinc 1 1
3: new C
4: astore_2
5: iload_1
6: iconst_3
7: if_icmpne 2
8: aload_2
9: invokespecial C/<init>()V

10: return

Figure 2. Objects created but not initialized inside a loop.

0: jsr 9
1: astore_1
2: jsr 9
3: astore_2
4: aload_2
5: invokespecial C/<init>()V
6: aload_1
7: getfield C/f I
8: return
9: astore_0

10: new C
11: ret 0

Figure 3. Interaction between object initialization and subroutines.

variable 1 the first time and variable 2 the second time. Since invokespecial initializes only the
second object, getfield accesses an uninitialized object.

In the data flow analysis, variable 1 has type uninit[C]10 at address 2. As described in Section 5.9.1,
if a local variable is not modified inside a subroutine its type at a return address is propagated from the
matching jsr. Since variable 1 is not modified inside the subroutine, its type uninit[C]10 is copied
from address 2 to 3, where the top of the operand stack has also type uninit[C]10. At address 4
both variables 1 and 2 have type uninit[C]10, which is uniformly changed to a regular type by
invokespecial. The access by getfield is then erroneously deemed legal.

The problem is that types for previously created but still uninitialized objects can be propagated to
a return address from the matching jsr, invalidating the property that a type with index i is always
associated to the last object created by the new at address i [18]. This subtle point is not mentioned in
JS4.9.4, but can be easily overlooked, leading to incorrect implementations. For instance, Sun’s JDK
version 1.1.4 incorrectly accepts the code in Figure 3 [18]; this bug has been corrected in later versions.

A draconian solution is to prohibit uninitialized types from appearing at any jsr or ret, i.e. no
uninitialized object can enter or exit a subroutine [18].

Copyright c© 2003 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2003; 15:155–179



SPECIFICATION OF BYTECODE VERIFICATION 171

A more targeted solution is just to prevent uninitialized types from being propagated to a return
address from its matching jsr. This is realized by changing to undef the uninitialized types present at
the jsrwhen they are propagated to the return address. In Figure 3, instead of propagating uninit[C]10
for variable 1 from address 2 to 3, undef is assigned to variable 1 at address 3. This causes the aload
at address 6 to fail, rejecting the code. In other words, the previously created object in variable 1 is made
unusable by using type undef for it. The soundness of this approach can be formally proved [17].

The interaction between object initialization and subroutines should be discussed in JS, along with
the targeted solution just described.

5.9. Subroutines

5.9.1. Tracking modified variables

As explained in JS4.9.6, compilers may generate code where a local variable holds values of different
types (including undef) during different invocations of a subroutine. This means that the data flow
analysis assigns undef to the variable in the subroutine. If the variable is not modified inside the
subroutine, its type at each return address should be the same as the one at the matching jsr. However,
a simple-minded data flow analysis would propagate undef from ret to the return address, rejecting
some mundane compiled programs.

To avoid this problem, JS4.9.6 prescribes to keep track of the local variables (potentially) modified
inside each subroutine. This information is used to propagate types for local variables to return
addresses: if a variable is marked as modified, the type from ret is propagated; otherwise, the type
from jsr is propagated.

5.9.2. Disciplined use of return addresses

Consider the code in Figure 4, adapted from [19]. The subroutine is called twice. Variable 0 contains
an object of type D the first time, an integer the second time. Variable 1 contains integer 0 the first time,
integer 1 the second time. The subroutine tests the integer in variable 1: if it is 0 (i.e. at the first call)
it saves the return address 5 into variable 2 and returns; otherwise (i.e. at the second call), it discards
the new return address and returns to the previously saved one. After the second call, the integer in
variable 0 is used as an object reference by putfield.

In the data flow analysis, variable 0 is not modified inside the subroutine; if the type D for variable 0
were propagated from address 4 to 5, the program would be unsoundly accepted. In other words,
bytecode verification could be fooled by a devious program that makes an undisciplined use of return
addresses.

Actually, the program in Figure 4 is readily rejected by any data flow analyzer because there is a path
from address 0 to 19 (i.e. 0–4, then 14–15, then 18–19) that does not store any value into variable 2.
So, variable 2 does not have a return address type at address 19, causing ret to fail. Nonetheless, it is
possible to construct more involved programs that can fool data flow analyzers that do not ensure some
discipline in the use of return addresses; see [20] for some examples.

This danger is likely to be the reason behind the unexplained structural constraints about subroutines
mentioned in Section 4.4.2. These constraints are meant to ensure some discipline in the use of return

Copyright c© 2003 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2003; 15:155–179



172 A. COGLIO

0: getstatic C/f LD;
1: astore_0
2: iconst_0
3: istore_1
4: jsr 14
5: aload_0
6: iconst_0
7: putfield D/g I
8: iconst_3
9: istore_0

10: iconst_1
11: istore_1
12: jsr 14
13: return
14: iload_1
15: ifne 18
16: astore_2
17: ret 2
18: pop
19: ret 2

Figure 4. Undisciplined use of return addresses.

addresses, in order to avoid type safety problems. Since they concern the verification algorithm, they
should be moved into JS4.9.6.

Subroutines can be nested, e.g. in code generated from nested finally blocks. JS4.9.6 prescribes
to maintain, for each instruction address, a list of all subroutines (i.e. their starting addresses) needed to
reach that address. For each subroutine in the list, information is kept about the local variables modified
since the subroutine was called.

This may deceptively seem a simple strategy, easy to realize in a data flow analyzer. The jsr
instruction extends the list, first checking that the called subroutine is not in the list; this check prevents
recursive subroutine calls, as required by one of the structural constraints. The ret instruction shrinks
the list and uses the information about modified variables to propagate types from ret or jsr.

5.9.3. Complications

Consider the Java program in Figure 5, adapted from [21]. The bytecode for method m is shown in
Figure 6; variableb in the Java source is mapped to variable 0 in the bytecode. The subroutine generated
from the finally block can be exited via the branch generated from the continue statement [21].

A subroutine may also be exited via an exception, i.e. control is transferred from the subroutine to
a handler. This happens in bytecode generated from Java code where an exception is thrown inside a
finally block that occurs inside a try block [22].

The possibility that subroutines are not exited via retmakes the treatment of the lists of subroutines
less clear. It is not immediate for the data flow analysis to figure out whether a branch or thrown
exception is exiting a subroutine or not. The check for recursive subroutine calls also becomes

Copyright c© 2003 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2003; 15:155–179



SPECIFICATION OF BYTECODE VERIFICATION 173

class C {
static void m(boolean b) {

while (b) {
try {

b = false;
} finally {

if (b) continue;
}

}
}

}

Figure 5. A subroutine that can be exited via branching.

0: goto 14
1: iconst_0
2: istore_0
3: jsr 9
4: goto 14
5: astore_1 // exception handler protecting addresses 1 to 4
6: jsr 9
7: aload_1
8: athrow
9: astore_2

10: iload_0
11: ifeq 13
12: goto 14
13: ret 2
14: iload_0
15: ifne 1
16: return

Figure 6. Bytecode for the method in Figure 5.

problematic: for instance, in the program in Figure 6, if the (singleton) list containing the (only)
subroutine is propagated from address 12 to 14 and then back to 1, a recursive subroutine call is
erroneously detected at address 3.

A related problem is how to merge, at converging control paths, the lists of subroutines and their
associated information about modified variables. The case in which the lists to be merged contain
the same subroutines in the same order is easy: for each subroutine, the modified variables are
those modified in any path (i.e. the union is taken). However, if the lists have different sizes and/or
subroutines, it is not obvious how to merge them.

So, the combination of the structural constraints about subroutines in JS4.8.2 and the strategy
sketched in JS4.9.6 provide a blurry picture of how bytecode verification should treat subroutines.
It is unclear which requirements are necessary for which purpose and how to check them (e.g. recursive
subroutine calls). A detailed analysis of these requirements can be found in [20], where it is also shown
that some of them are unnecessary to guarantee type safety.

Copyright c© 2003 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2003; 15:155–179



174 A. COGLIO

class C {
static int m(boolean b) {

int i;
try {

if (b) return 1;
i = 2;

} finally {
if(b) i = 3;

}
return i;

}
}

Figure 7. A legal program rejected by most verifiers.

Since the involved subtleties are not obvious, the door is open to incorrect implementations where
type safety can be broken and/or certain compiled programs are rejected. For example, the off-card
verifier of Sun’s Java Card Development Kit version 2.1.2, developed by Trusted Logic, rejects the
bytecode in Figure 6 because of a false recursive subroutine call detected at address 3 [20,23].

5.9.4. Fundamental limit

Consider the Java program in Figure 7, adapted from [24]. It is reported in [24] that the resulting
bytecode is rejected by all the verifiers tried by the authors, including those in various versions of
Sun’s Java 2 SDK, Netscape, and Internet Explorer, as well as the Kimera verifier [25].

The bytecode for method m is shown in Figure 8; variables b and i in the Java source are respectively
mapped to variables 0 and 1 in the bytecode. Since inside the subroutine there is a path that stores
integer 3 into i, i is marked as modified by the subroutine. Its type at ret is thus propagated to return
addresses 5, 10, and 13. Since there is a path from address 0 to 20 (through the call from address 4)
that does not store any value in i, the type of i at ret is undef. This eventually causes the iload at
address 21 to fail.

The Java program in Figure 7 is legal: variable i is definitely assigned a value before it is used,
according to the rules of definite assignment of Java [2]. In the code in Figure 8, variable i is also
definitely assigned a value before it is used; but the data flow analysis cannot establish that [24].

This example exposes a fundamental limit of the approach to subroutines described in JS. This limit
is orthogonal to the unclear points of the description JS: in the example there is only one subroutine
that is always exited via ret. The limit is inherent to the approach of tracking modified variables and
selectively propagating types from ret and jsr.

5.9.5. Solution

An alternative approach to subroutines that overcomes the fundamental limit exposed above is
presented in [20,23]. The idea is the following; see [20,23] for details.

Copyright c© 2003 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2003; 15:155–179



SPECIFICATION OF BYTECODE VERIFICATION 175

0: iload_0
1: ifeq 7
2: iconst_1
3: istore_2
4: jsr 15
5: iload_2
6: ireturn
7: iconst_2
8: istore_1
9: jsr 15

10: goto 21
11: astore_3 // exception handler protecting addresses 0 to 10
12: jsr 15
13: aload_3
14: athrow
15: astore 4
16: iload_0
17: ifeq 20
18: iconst_3
19: istore_1
20: ret 4
21: iload_1
22: ireturn

Figure 8. Bytecode for the method in Figure 7.

For each instruction address, instead of inferring just one assignment of types to the operand stack
and local variables, the data flow analysis infers a set of such type assignments. Merging becomes set
union, and the effect of an instruction is simulated element-wise on each assignment in the set, resulting
in another set.

In addition, types for return addresses are indexed by return addresses, i.e. return addresses are
isomorphic to their types. The ret instruction filters a set of assignments by propagating to a return
address only those assignments that have the type of that return address in the variable referenced by
ret. The jsr instruction pushes onto the operand stack the type for its matching return address.

There is no need to track the variables modified inside subroutines or to enforce any discipline in
the use of return addresses; the treatment of jsr and ret is as simple as their run time behavior.
The filtering of type assignments by ret achieves the effect of preserving the types of local variables
(and operand stack as well) across subroutine calls that do not modify such variables.

The overhead of carrying around sets can be reduced by merging two or more type assignments into
one when they do not have distinct return address types in the same location. This optimization does
not result in a loss of precision because in that case the assignments would never be separated.

This approach is very easy to understand and implement as a data flow analysis that naturally
generalizes the data flow analysis described in JS4.9.2. Furthermore, it is fully backward compatible.
In fact, the set of accepted programs is very large; it has a simple characterization that arguably includes
all code generable by present and future compilers [20,23].

Copyright c© 2003 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2003; 15:155–179



176 A. COGLIO

Using sets of type assignments automatically achieves the same effect as using sets of reference
types for single operand stack elements and local variables, explained in Section 5.3. However, the use
of sets of reference types is still relevant in the context of the optimization to merge assignments that
do not contain distinct return address types in the same location, mentioned above.

With this approach, the problematic interaction between subroutines and object initialization
described in Section 5.8.3 can be easily eliminated. The idea is to index uninitialized types not with
new’s addresses, but with consecutive natural numbers: when an object of class C is created, the type
added to each assignment in the set is uninit[C]i , where i is the smallest natural number such that
uninit[C]i does not already appear in that assignment. Since no types are ever propagated from jsr,
no ambiguity can ever arise. See [26] for details.

Given its advantages, this approach to subroutines could replace the one in JS. This impacts on the
description of the whole data flow analysis, because sets of type assignments must be used, instead
of single type assignments. It also slightly impacts on the description of object initialization, as just
mentioned, but in a minor way; the essence of the approach (i.e. the indexing of uninitialized types to
accurately track aliases) is unchanged. The optimization of merging assignments that do not have
distinct return address types in the same location could be described in a separate section of JS;
although irrelevant for pure specification, it is useful for implementation purposes.

5.9.6. Can subroutines be eliminated?

As evidenced by the above discussions, subroutines are a major source of complexity for bytecode
verification. Even though the approach described in Section 5.9.5 is quite simple, it impacts on the
whole verification algorithm, requiring the use of sets of type assignments. If subroutines did not exist,
single type assignments would be sufficient; moreover, the harmful interaction with object initialization
described in Section 5.8.3 would not happen.

Subroutines were introduced in Java bytecode to avoid code duplication when compiling finally
blocks, but it has been found that very little space is actually saved in mundane code [21,27]. It is
widely conjectured that it might have been better not to introduce subroutines in the first place.

While future Java compilers could simply avoid the generation of subroutines, future versions of the
JVM must be able to accept previously compiled code that may have subroutines. In other words, the
need for backward compatibility prevents the total elimination of subroutines.

A possible approach is to in-line subroutines prior to bytecode verification. After in-lining, the
simpler data flow analysis with single type assignments can be run. However, in certain cases it is
not immediate how to determine subroutine boundaries for in-lining. For instance, the subroutine in
Figure 6 can be exited via a branch. In general, some analysis is needed to determine subroutines’
boundaries.

The question is whether it is better to in-line subroutines and then run a slightly simpler data flow
analysis, or to run directly a slightly more complex data flow analysis. In order to provide a proper
answer, formalizations of in-lining strategies are needed, along with experimental measures comparing
the two alternatives. To the author’s knowledge, there is currently no such work. A formalization of in-
lining should also include a proof of equivalence between programs with subroutines and their in-lined
versions, as well as a characterization of the programs with subroutines amenable to the formalized
in-lining strategy (ideally, all).

Copyright c© 2003 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2003; 15:155–179



SPECIFICATION OF BYTECODE VERIFICATION 177

6. RELATED WORK

There are a large number of publications [5,11–15,17–24,26–43] that clarify key issues in bytecode
verification, propose more precise descriptions of (aspects of) it, and expose certain inadequacies in
JS. There are also several publications [8,10,44–47] studying dynamic class loading and its close
relationship with bytecode verification.

To the author’s knowledge, this paper is the only work to provide a comprehensive analysis of
the official specification of bytecode verification and comprehensive suggestions for improvement.
Some details of the analysis and improvements, such as those concerning subroutines and class loading,
are thoroughly covered in other papers which are explicitly referenced by this paper. An early version
of this paper is [48].

A complete formalization of bytecode verification that follows the suggestions given in Section 5 is
presented in [26]. This formalization, or at least an informal description of it, could become part of JS.
Since the formalization is a simple data flow analysis, its description would be similar to the current
one.

In 2000, the author derived an implementation of bytecode verification from the formalization
in [26] by means of Specware [49], a tool for the formal specification and refinement of software.
This bytecode verifier can serve as a high-assurance reference implementation against which other
implementations can be tested.

In the Connected, Limited Device Configuration (CLDC) variant of the JVM [50], intended for
resource-constrained embedded systems, bytecode verification is split into an off-device and an on-
device phase, as proposed in [41]. Essentially, the off-device phase computes a solution to the data flow
analysis problem (i.e. a type assignment to the operand stack and local variables for each instruction
address) and enhances the class file with enough information for the on-device phase to reconstruct
and check the solution with a space-efficient and time-efficient linear scan of the code. This splitting
does not change the nature of the types and their manipulation; the only difference is that the solution
is computed, recorded, and checked. Thus, the core of the analysis of JS presented in this paper is
directly relevant to this approach to bytecode verification.

ACKNOWLEDGEMENTS

The author gives special thanks to Jim McDonald for contributing to the discovery of the incorrect wording
about protected members described in Section 4.6, Gilad Bracha for many useful discussions, and the anonymous
referees whose comments have been helpful in improving the accuracy and presentation of the paper.

REFERENCES

1. Arnold K, Gosling J, Holmes D. The JavaTM Programming Language (3rd edn). Addison-Wesley: Cambridge, MA, 2000.
2. Gosling J, Joy B, Steele G, Bracha G. The JavaTM Language Specification (2nd edn). Addison-Wesley: Cambridge, MA,

2000.
3. Lindholm T, Yellin F. The JavaTM Virtual Machine Specification (2nd edn). Addison-Wesley: Cambridge, MA, 1999.
4. Gong L. Inside JavaTM 2 Platform Security. Addison-Wesley: Cambridge, MA, 1999.
5. Dean D, Felten E, Wallach D. Java security: From HotJava to Netscape and beyond. Proceedings IEEE Symposium of

Security and Privacy, 1996; 190–200.

Copyright c© 2003 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2003; 15:155–179



178 A. COGLIO

6. Gosling J. Java intermediate bytecode. Proceedings of the Workshop on Intermediate Representations (IR’95) ACM
SIGPLAN Notices 1995; 30:111–118.

7. Nielson F, Nielson HR, Hankin C. Principles of Program Analysis. Springer: Berlin, 1998.
8. Saraswat V. Java is not type-safe. Technical Report, AT&T Research, 1997. http://www.research.att.com/vj/bug.html.
9. Liang S, Bracha G. Dynamic class loading in the JavaTM virtual machine. Proceedings of the 13th ACM Conference

on Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA’98) ACM SIGPLAN Notices 1998;
33:36–44.

10. Qian Z, Goldberg A, Coglio A. A formal specification of Java class loading. Proceedings of the 15th ACM Conference on
Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA’00) (ACM SIGPLAN Notices, vol. 35).
ACM Press: New York, 2000; 325–336. http://www.kestrel.edu/java. (Long Version)

11. Coglio A, Goldberg A. Type safety in the JVM: Some problems in Java 2 SDK 1.2 and proposed solutions. Concurrency
and Computation: Practice and Experience 2001; 13(13):1153–1171.

12. Tozawa A, Hagiya M. Careful analysis of type spoofing. Proceedings of Java-Informations-Tage 1999 (JIT’99). Springer:
Berlin, 1999; 290–296.

13. Goldberg A. A specification of Java loading and bytecode verification. Proceedings of the 5th ACM Conference on
Computer and Communications Security (CCS’98), 1998; 49–58.

14. Qian Z. A formal specification of JavaTM Virtual Machine instructions for objects, methods and subroutines. Formal
Syntax and Semantics of JavaTM (Lecture Notes in Computer Science, vol. 1523), Alves-Foss J (ed.). Springer: Berlin,
1999; 271–312.

15. Coglio A. Treatment of protected members in Java bytecode verification. Technical Report, Kestrel Institute.
http://www.kestrel.edu/java.

16. Bracha G. Private communication, June 2001.
17. Coglio A. Java bytecode verification: Another complete formalization. Technical Report, Kestrel Institute.

http://www.kestrel.edu/java.
18. Freund S, Mitchell J. A type system for object initialization in the Java bytecode language. ACM Transactions on

Programming Languages and Systems 1999; 21(6):1196–1250.
19. Stata R, Abadi M. A type system for Java bytecode subroutines. ACM Transactions on Programming Languages and

Systems 1999; 21(1):90–137.
20. Coglio A. Java bytecode subroutines demystified. Technical Report, Kestrel Institute. http://www.kestrel.edu/java.
21. O’Callahan R. A simple, comprehensive type system for Java bytecode subroutines. Proceedings of the 26th ACM

Symposium on Principles of Programming Languages (POPL’99), 1999; 70–78.
22. Freund S, Mitchell J. A type system for Java bytecode subroutines and exceptions. Technical Note STAN-CS-TN-99-91,

Computer Science Department, Stanford University, August 1999.
23. Coglio A. Simple verification technique for complex Java bytecode subroutines. Proceedings of the 4th ECOOP Workshop

on Formal Techniques for Java-like Programs, June 2002; http://www.kestrel.edu/java. (Long Version)
24. Stärk R, Schmid J. The problem of bytecode verification in current implementations of the JVM. Technical Report,

Department of Computer Science, ETH Zürich, 2000.
25. The Kimera project Web site. http://kimera.cs.washington.edu.
26. Coglio A. Java bytecode verification: A complete formalization. Technical Report, Kestrel Institute.

http://www.kestrel.edu/java.
27. Freund S. The costs and benefits of Java bytecode subroutines. Proceedings of OOPSLA’98 Workshop on Formal

Underpinnings of Java, 1998.
28. Casset L, Lanet JL. A formal specification of the Java bytecode semantics using the B method. Proceedings of the 1st

ECOOP Workshop on Formal Techniques for Java Programs, June 1999.
29. Coglio A, Goldberg A, Qian Z. Towards a provably-correct implementation of the JVM bytecode verifier. Proceedings of

OOPSLA’98 Workshop on Formal Underpinnings of Java, October 1998.
30. Fong P, Cameron R. Proof linking: Modular verification of mobile programs in the presence of lazy, dynamic linking. ACM

Transactions on Software Engineering and Methodology 2000; 9(4):379–409.
31. Freund S, Mitchell J. A formal framework for the Java bytecode language and verifier. Proceedings of the 14th ACM

Conference on Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA’99) ACM SIGPLAN
Notices 1999; 34:147–166.

32. Hagiya M, Tozawa A. On a new method for dataflow analysis of Java Virtual Machine subroutines. Proceedings of
the 5th Static Analysis Symposium (SAS’98) (Lecture Notes in Computer Science, vol. 1503). Springer: Berlin, 1998;
17–32.

33. Jones M. The functions of Java bytecode. Proceedings of OOPSLA’98 Workshop on Formal Underpinnings of Java, October
1998.

34. Klein G, Nipkow T. Verified lightweight bytecode verification. Proceedings of the 2nd ECOOP Workshop on Formal
Techniques for Java Programs, June 2000.

Copyright c© 2003 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2003; 15:155–179



SPECIFICATION OF BYTECODE VERIFICATION 179

35. Leroy X. Java bytecode verification: An overview. Proceedings of the 13th Conference on Computer Aided Verification
(CAV’01) (Lecture Notes in Computer Science, vol. 2102). Springer: Berlin, 2001; 265–285.

36. Nipkow T. Verified bytecode verifiers. Proceedings of the 4th Conference on Foundations of Software Science and
Computation Structures (FOSSACS’01) (Lecture Notes in Computer Science, vol. 2030). Springer: Berlin, 2001; 347–363.

37. Posegga J, Vogt H. Java bytecode verification using model checking. Proceedings of the OOPSLA’98 Workshop on Formal
Underpinnings of Java, October 1998.

38. Pusch C. Proving the soundness of a Java bytecode verifier specification in Isabelle/HOL. Proceedings of the 5th
Conference on Tools and Algorithms for the Construction and Analysis of Systems (TACAS’99) (Lecture Notes in Computer
Science, vol. 1579). Springer: Berlin, 1999; 89–103.

39. Qian Z. Standard fixpoint iteration for Java bytecode verification. ACM Transactions on Programming Languages and
Systems 2000; 22(4):638–672.

40. Requet A. A B model for ensuring soundness of a large subset of the Java Card virtual machine. Proceedings of the 5th
ERCIM Workshop on Formal Methods for Industrial Critical Systems (FMICS’00), April 2000; 29–45.

41. Rose E, Rose K. Lightweight bytecode verification. Proceedings of the OOPSLA’98 Workshop on Formal Underpinnings
of Java, October 1998.

42. Stärk R, Schmid J, Börger E. JavaTM and the JavaTM Virtual Machine: Definition, Verification, Validation. Springer:
Berlin, 2001.

43. Yelland P. A compositional account of the Java Virtual Machine. Proceedings of the 26th ACM Symposium on Principles
of Programming Languages (POPL’99), 1999; 57–69.

44. Drossopoulou S. An abstract model of Java dynamic linking and loading. Proceedings of the 3rd Workshop on Types In
Compilation (TIC’00) (Lecture Notes in Computer Science, vol. 2071). Springer: Berlin, 2001; 53–84.

45. Fong P, Cameron R. Proof linking: Distributed verification of Java classfiles in the presence of multiple classloaders.
Proceedings of the 1st Java Virtual Machine Research and Technology Symposium (JVM’01). USENIX, 2001; 53–66.

46. Jensen T, Le Métayer D, Thorn T. Security and dynamic class loading in Java: A formalisation. Proceedings 1998 IEEE
International Conference on Computer Languages (ICCL’98), 1998; 4–15.

47. Tozawa A, Hagiya M. Formalization and analysis of class loading in Java. Higher-Order and Symbolic Computation
(HOSC) 2002; 15:7–55.

48. Coglio A. Improving the official specification of Java bytecode verification. Proceedings of the 3rd ECOOP Workshop on
Formal Techniques for Java Programs, June 2001.

49. Kestrel Institute and Kestrel Technology LLC. SpecwareTM . http://www.specware.org.
50. Sun Microsystems. Connected, limited device configuration: Specification version 1.0a. http://java.sun.com/j2me.

Copyright c© 2003 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2003; 15:155–179


	1 INTRODUCTION
	2 ROLE OF BYTECODE VERIFICATION
	2.1 Class file verification
	2.2 Goal
	2.3 Specification

	3 STATIC CONSTRAINTS
	4 STRUCTURAL CONSTRAINTS
	4.1 Terminology
	4.2 Undecidability
	4.3 Redundancy
	4.4 Unexplained restrictions
	4.4.1 Uninitialized objects
	4.4.2 Subroutines
	4.4.3 Operand stack size
	4.4.4 Special method invocations

	4.5 Contradiction
	4.6 Incorrect wording
	4.7 Possibly static constraints
	4.7.1 Method return instructions
	4.7.2 Last instruction in the sequence

	4.8 Heterogeneity

	5 VERIFICATION ALGORITHM
	5.1 Ambiguity of reference types
	5.2 Subtype checking
	5.3 Merging of reference types
	5.4 Interface types
	5.5 Special names
	5.6 Protected fields and methods
	5.7 Purely functional interface
	5.8 Object initialization
	5.8.1 Basic approach
	5.8.2 Unnecessary checks
	5.8.3 Interaction with subroutines

	5.9 Subroutines
	5.9.1 Tracking modified variables
	5.9.2 Disciplined use of return addresses
	5.9.3 Complications
	5.9.4 Fundamental limit
	5.9.5 Solution
	5.9.6 Can subroutines be eliminated?


	6 RELATED WORK

