
CONCURRENCY AND COMPUTATION: PRACTICE AND EXPERIENCE
Concurrency Computat.: Pract. Exper. 2004; 16:647–670 (DOI: 10.1002/cpe.798)

Simple verification technique for
complex Java bytecode
subroutines

Alessandro Coglio∗,†

Kestrel Institute, 3260 Hillview Avenue, Palo Alto, CA 94304, U.S.A.

SUMMARY

Java is normally compiled to bytecode, which is verified and then executed by the Java Virtual Machine.
Bytecode produced via compilation must pass verification. The main cause of complexity for bytecode
verification is subroutines, used by compilers to generate more compact code. The techniques to verify
subroutines proposed in the literature reject certain programs produced by mundane compilers, are
difficult to realize within an implementation of the Java Virtual Machine or are relatively complicated.
This paper presents a novel technique which is very simple to understand, implement and prove sound. It is
also very powerful: the set of accepted programs has a simple characterization which most likely includes
all the code produced by current compilers and which enables future compilers to make more extensive use
of subroutines. Copyright c© 2004 John Wiley & Sons, Ltd.

KEY WORDS: Java; subroutines; bytecode verification

1. OVERVIEW

Java [1,2] is normally compiled to a platform-independent bytecode language, which is executed by
the Java Virtual Machine (JVM) [3]. For security reasons [4,5] the JVM verifies incoming code prior
to executing it, i.e. it checks certain type safety properties. Since compilers check equivalent properties
on Java source, code produced via compilation must pass verification.

The main cause of complexity for bytecode verification is subroutines. Subroutines are internal to
methods, invisible at the level of Java source. Compilers use them to generate more compact code
[3, Section 7.13]. Without subroutines, the simple data flow analysis described in [3, Section 4.9.2]
works beautifully well. With subroutines, in order to accept code produced by mundane compilers, a
more precise analysis of the flow of control is needed.

∗Correspondence to: Alessandro Coglio, Kestrel Institute, 3260 Hillview Avenue, Palo Alto, CA 94304, U.S.A.
†E-mail: coglio@kestrel.edu

Copyright c© 2004 John Wiley & Sons, Ltd. Accepted 13 June 2003

648 A. COGLIO

In addition to the ‘official’ technique to verify subroutines informally described in [3, Section 4.9.6]
and implemented in [6], several formal techniques have been proposed in the literature. Unfortunately,
most of them (including the official one) reject certain programs produced by mundane compilers;
the remaining techniques are difficult to realize within a JVM implementation or are relatively
complicated. See Section 4 for details.

This paper presents a novel technique which is remarkably simple to understand, implement and
prove sound. It is also extremely powerful in the sense that it accepts a quite large set of bytecode
programs: accepted code has a very simple characterization which most likely includes all the code
produced by current compilers and which enables future compilers to make a more extensive use of
subroutines. While ‘perfect’ bytecode verification, like other forms of static analysis, is undecidable,
the new technique can be argued to embody an optimal trade-off between power and simplicity.

The rest of this section summarizes the mathematical notations used in the paper. Section 2 describes
subroutines and the key issues in their verification. Section 3 presents the new technique and its
properties. Related work is discussed in Section 4. Appendix A collects the proofs of lemmas and
theorems.

Mathematical notation

N = {0, 1, 2, . . . } is the set of natural numbers.
If A and B are sets, A → B is the set of all total functions from A to B. The notation f : A → B

is equivalent to f ∈ A → B. If f is a function, D(f) is the domain of f . The lambda notation
λx.f (x) defines a function f , when D(f) is clear from the context. If f : A → B , a ∈ A and b ∈ B,
f {a �→ b} is the function f ′ : A → B defined by f ′ = λx.(if x = a then b else f (x)), i.e. obtained
by ‘overwriting’ the value of f at a to be b.

If r ⊆ A × A is a binary relation over a set A, r+ ⊆ A × A is its transitive closure and r∗ ⊆ A × A

is its reflexive and transitive closure.
If A is a set, Pω(A) is the set of all finite subsets of A.
If A is a set, A∗ is the set of all finite sequences of elements of A. If s ∈ A∗, |s| ∈ N is the length

of s. A sequence s ∈ A∗ is also regarded as a function s : {i ∈ N | i < |s|} → A (and vice versa) and
s(i) is written as si ; note that the elements of s are numbered from 0 to |s| − 1, not from 1 to |s|.
The notation [s0, . . . , s|s|−1] displays all the elements of a sequence s in order. If a ∈ A and s ∈ A∗,
the notation a ∈ s stands for (∃i ∈ D(s). si = a). If s ∈ A∗ and a ∈ A, s · a is the sequence obtained
by appending a to the right of s. A+ = {s ∈ A∗ | |s| 	= 0} is the set of all non-empty sequences in A∗.
If s ∈ A+, last(s) is the last (i.e. rightmost) element of s. If n ∈ N, A∗(n) = {s ∈ A∗ | |s| ≤ n} is the
set of all sequences in A∗ of length at most n.

If A and B are sets, AT � BU is the disjoint union of A and B using subscripts T and U to tag the
elements from A and B. So, if a ∈ A and b ∈ B then aT, bU ∈ AT � BU. This generalizes to three or
more sets.

A lattice is a quadruple 〈L,,�,�〉 where: L is a set; ⊆ L × L is a partial order relation over L,
i.e. it is reflexive (x x), anti-symmetric (if x y and y x, then x = y) and transitive (if x y

and y z, then x z); � : L × L → L is a binary operation over L, called meet, which returns the
greatest lower bound of its arguments (x � y x, x � y y and if z x and z y, then z x � y);
and � : L × L → L is a binary operation over L, called join, which returns the least upper bound of its
arguments (x � y � x, x � y � y and if z � x and z � y, then z � x � y). Both � and � can be shown

Copyright c© 2004 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2004; 16:647–670

VERIFICATION OF JAVA BYTECODE SUBROUTINES 649

to be commutative (x � y = y � x), idempotent (x � x = x) and associative ((x � y) � z = x � (y � z)).
If L is finite, it contains a top element � such that � � x for all x ∈ L, as well as a bottom element ⊥
such that ⊥ x for all x ∈ L.

2. SUBROUTINES

This section defines the syntax and semantics of a simple language L with subroutines, similar to the
languages used in [7–11], along with a notion of type safety. The key issues in verification are then
discussed. L is an abstraction of Java bytecode, which is much richer. This simpler language exposes
the essence of problems and solutions, because the omitted features are orthogonal.

2.1. A simple language with subroutines

The instructions of L are drawn from

Instr = {halt, push0, inc, div, pop} ∪ {if0 j | j ∈ N}
∪ {load x | x ∈ VN} ∪ {store x | x ∈ VN}
∪ {jsr s | s ∈ N} ∪ {ret x | x ∈ VN}

where VN is a finite set of variable names whose exact definition is immaterial.
A program in L is a finite, non-empty sequence of instructions,

P ∈ Instr+

satisfying the following requirements:

1. (if0 j) ∈ P ⇒ j ∈ D(P);
2. (jsr s) ∈ P ⇒ s ∈ D(P);
3. last(P) = halt ∨ (∃x. last(P) = ret x);
4. (∃x.(ret x) ∈ P) ⇒ (∃s. (jsr s) ∈ P).

The first three requirements constrain the flow of control never to go outside P during execution
(see below)‡. The fourth requirement, which is reasonable, slightly simplifies verification, but it can
easily be removed [12] if desired. The elements of D(P) are called the addresses of P . The addresses in

S = {s ∈ D(P) | (jsr s) ∈ P } and C = {c ∈ D(P) | ∃s.Pc = jsr s}
are called subroutine addresses and calling addresses§.

The values on which P operates are drawn from

Val = IntI � FltF � CC

‡While in the JVM these requirements are checked by the bytecode verifier, they have been incorporated into the definition of
programs because they are straightforward to check.
§The notation for S and C does not reflect their dependence on P , which is left implicit for readability. This also applies to other
mathematical entities introduced below.

Copyright c© 2004 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2004; 16:647–670

650 A. COGLIO

where Int and Flt are sets of integers and floats whose precise definition is immaterial, as long as the
following requirements are satisfied:

1. 0 ∈ Int;
2. ι ∈ Int ⇒ inc(ι) ∈ Int;
3. ι, ι′ ∈ Int ⇒ div(ι, ι′) ∈ Flt.

The functions inc and div capture increment by 1 and division; for simplicity, div yields a result (e.g. 0)
even if the divisor is 0.

Values are stored in two areas: variables and stack. While the latter is accessed in a last-in, first-out
fashion, the former are directly accessed via the names in VN. Contents of the variables and stack are
thus captured by

Var = VN → Val and Stk = Val∗(max)

where max is a limit to the size of the stack whose exact definition is immaterial.
States of execution are elements of

Stt = (D(P) × Var × Stk) ∪ {Err}
Err is the error state, which arises when some type-unsafe operation is attempted (see below). The first
component of a state of the form 〈i, vr, sk〉 is the program counter, i.e. the address of the instruction
about to be executed; the other two components are the current contents of the variables and stack.
The initial state is

Init = 〈0, λx.0I, []〉 ∈ Stt

Execution is formalized by a transition relation

�⊆ Stt × Stt

defined as the smallest satisfying the last two rules in Figure 1, which reference another relation
�0 ⊆ Stt × Stt, defined as the smallest satisfying the other rules in Figure 1. Each of the rules defining
�0 describes the execution of an instruction; each instruction execution is a transition, as expressed
by (OK). There is no rule for halt: the program terminates when halt is reached. Each of the rules
defining �0 includes type safety checks (some in the form of patterns at the left of the �0 symbol)
ensuring that no stack overflow or underflow occurs and that no operation is performed on values of
the wrong type (e.g. it is not possible to ‘increment a float’). If such checks are not satisfied, (ER)
is applicable: its second condition requires that none of the rules defining �0 be applicable, which
happens exactly when some type safety condition for the instruction at the program counter is not
satisfied. The application of (ER) causes the state to become Err, from which no further transition can
take place.

Typical implementations of the JVM do not perform these type safety checks for performance
reasons. It is the task of bytecode verification to statically ensure that these checks would succeed
if they were performed at run-time. The outcome of performing an operation on values of the wrong
types is undefined [3, Section 6.1]; Err is an abstraction of the undefined state into which a JVM
implementation would move. The following formal notion of type safety is thus introduced:

TypeSafe(P) ⇔ Init 	�+ Err

Copyright c© 2004 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2004; 16:647–670

VERIFICATION OF JAVA BYTECODE SUBROUTINES 651

Pi = push0
|sk| < max

〈i, vr, sk〉 �0 〈i + 1, vr, sk · 0I〉 (PH)

Pi = inc

〈i, vr, sk · ιI〉 �0 〈i + 1, vr, sk · inc(ι)I〉 (IN)

Pi = div

〈i, vr, sk · ιI · ι′I〉 �0 〈i + 1, vr, sk · div(ι′, ι)F〉 (DV)

Pi = pop

〈i, vr, sk · v〉 �0 〈i + 1, vr, sk〉 (PP)

Pi = load x

|sk| < max

〈i, vr, sk〉 �0 〈i + 1, vr, sk · vr(x)〉 (LD)

Pi = store x

〈i, vr, sk · v〉 �0 〈i + 1, vr{x �→ v}, sk〉 (ST)

Pi = if0 j

〈i, vr, sk · ιI〉 �0 〈(if ι = 0 then j else i + 1), vr, sk〉 (IF)

Pi = jsr s

|sk| < max

〈i, vr, sk〉 �0 〈s, vr, sk · iC〉 (JS)

Pi = ret x

vr(x) = cC

〈i, vr, sk〉 �0 〈c + 1, vr, sk〉 (RT)

stt �0 stt′

stt � stt′
(OK)

Pi 	= halt
	 ∃ i ′, vr′, sk′. 〈i, vr, sk〉 �0 〈i ′, vr′, sk′〉

〈i, vr, sk〉 � Err
(ER)

Figure 1. Rules defining the operational semantics of L.

The jsr and ret instructions realize subroutines by saving addresses and later returning to them.
However, there is no explicit notion of subroutine as a textually delimited piece of code: jsr and ret
may be scattered here and there in P . While compilers usually produce code where the address range
of each subroutine is clearly identifiable, certain Java programs result in bytecode where subroutines

Copyright c© 2004 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2004; 16:647–670

652 A. COGLIO

can be exited implicitly via branching or exceptions (see Section 4), making the determination of their
boundaries more difficult.

2.2. Requirements for verification

The purpose of verification is to establish whether a program in L is type-safe. Verification must
be sound: if a program is accepted then it is definitely type-safe. Due to the usual undecidability
problems, verification is bound to be incomplete: some type-safe programs are unjustly rejected.
Anyhow, verification must accept at least all the programs in L that are abstractions of bytecode
produced by Java compilers.

The last requirement is not as easy to assess because there is currently no precise characterization
of the output of Java compilers, which is furthermore susceptible to change as compilers evolve.
As advocated in [13], a solution is to use a precise characterization of a set of bytecode programs
as a ‘contract’ between compiler developers and JVM developers: the former shall write compilers
whose produced programs belong to the set and the latter shall write bytecode verifiers that accept any
program belonging to the set. The current lack of such a contract may be related to the fact that existing
bytecode verifiers reject certain programs produced by existing compilers (see Section 4).

2.3. Complexity caused by subroutines

In [3, Section 4.9.2] a technique for bytecode verification is informally described which is a (forward)
data flow analysis [14]. This technique is implemented in [6] and formalized in [15]. The analysis
assigns to each address i ∈ D(P) type information vti and sti for the variables and stack: vti is a
function from VN to types and sti is a sequence of types of length at most max. Types include int for
integers, flt for floats and any for all values.

The assignment is computed iteratively. Types for Init are assigned to address 0 and then propagated
through all possible control paths in the program, transforming them according to the instructions
encountered along the paths (e.g. if sti = st · int · int and Pi = div then sti+1 = st · flt). Types from
converging paths are merged point-wise on the variables and stack elements; the result of merging
different types (e.g. int and flt) is any. If the types at address i do not match the requirements of the
instruction Pi (e.g. sti = [] and Pi = pop), then verification fails because the program may be type-
unsafe. Otherwise, a fixed point is eventually reached with a consistent type assignment that witnesses
the type safety of the program; an example is shown in Figure 2 (it is assumed that max ≥ 2).

Consider now the program in Figure 3, where the subroutine at addresses 11–12 saves the calling
address (4 or 7) into y and then immediately returns to its successor (5 or 8). When the subroutine
is called from 4, x contains a float; when called from 7, an integer. This means that address 11 is
assigned type any for variable x: this is propagated, through the ret, to addresses 5 and 8. So, inc causes
verification to fail because the top of the stack is not int. The type ca is used for calling addresses¶.

¶This is a simplification, because types for calling addresses must be qualified by subroutine addresses (i.e. ca11) in order to
distinguish between different subroutines [6, 7, 10, 11, 15–17]. However, this is irrelevant to the example in Figure 3, where there
is only one subroutine.

Copyright c© 2004 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2004; 16:647–670

VERIFICATION OF JAVA BYTECODE SUBROUTINES 653

i Pi sti vti (x)

0 push0 [] int
1 pop [int] int
2 push0 [] any
3 push0 [int] any
4 div [int, int] any
5 store x [flt] any
6 push0 [] flt
7 if0 2 [int] flt
8 halt [] flt

Figure 2. Successful verification of a program in L without subroutines.

i Pi sti vti (x) vti (y)

0 push0 [] int int
1 push0 [int] int int
2 div [int, int] int int
3 store x [flt] int int
4 jsr 11 [] flt int
5 push0 [] any ca
6 store x [int] any ca
7 jsr 11 [] int ca
8 load x [] any ca
9 inc [any] any ca

10 halt fail
11 store y [ca] any any
12 ret y [] any ca

Figure 3. Unsuccessful verification of a program in L with subroutines.

Despite the failure of verification, the program in Figure 3 is type-safe. The mismatch is due to the
impossibility at run-time to call the subroutine from 4 and then return to 8, or call it from 7 and then
return to 5. If called from 4, control can only return to 5; if from 7, only to 8. However, the analysis does
not discern these possible and impossible paths. While inside the subroutine any is accurate (because
it is called from two addresses with incompatible types for x), the types at the calling addresses should
be ‘retained’ at the successors of the calling addresses. In other words, a more precise analysis of the
flow of control of the subroutine is needed, in order to determine more accurate types for the program.

Unfortunately, compilers produce code similar to Figure 3, where a variable has different types inside
a subroutine [3, Section 4.9.6]. The solution prescribed in [3, Section 4.9.6] and implemented in [6] is to

Copyright c© 2004 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2004; 16:647–670

654 A. COGLIO

i Pi sti vti (x) vti (y)

0 push0 [] int int
1 push0 [int] int int
2 div [int, int] int int
3 store x [flt] int int
4 jsr 11 [] flt int
5 push0 [] flt ca4
6 store x [int] flt ca4
7 jsr 11 [] int ca4
8 load x [] int ca7
9 inc [int] int ca7

10 halt [int] int ca7
11 store y [ca4 | ca7] flt | int int | ca4
12 ret y [] flt | int ca4 | ca7

Figure 4. Successful verification of the program in Figure 3.

keep track of which variables are modified inside a subroutine: if a variable is not marked as modified,
its type at c + 1 is propagated from c and not from the address of the ret. Other verification techniques
[7,11,16,17] use a similar approach. A thorough study of this solution, along with its problems and
ways to fix some of them, is given in [15]: the bottom line is that while it works for simpler programs
such as the one in Figure 3, it rejects less simple programs that are nonetheless produced by mundane
compilers (see Section 4).

3. THE TECHNIQUE

This section first provides the intuition behind the new technique and the reason why it works. Then it
formally defines it and presents its properties in the form of theorems. Finally, some implementation
issues are discussed.

3.1. Intuition

Consider again the program in Figure 3, copied in Figure 4. The reason why verification fails is that
the types int and flt for x assigned to calling addresses 4 and 7 are irreversibly merged into type any
at subroutine address 11. From any alone at address 12 there is no way to restore int and flt at the
successors 5 and 8 of the calling addresses. This consideration prompts the first key idea: instead of
merging int and flt into any, both are kept. The meaning of flt | int is that the type is either flt or int and
opens the possibility of separating them when returning from the subroutine.

How can the verifier decide to propagate flt to address 5 and int to address 8? The second key idea is
to qualify ca with calling addresses. So, by uniformly keeping all type alternatives for every variable

Copyright c© 2004 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2004; 16:647–670

VERIFICATION OF JAVA BYTECODE SUBROUTINES 655

and stack element, address 11 is assigned ca4 | ca7 for the stack. This is moved into variable y and
now the ret instruction can propagate the types on the left of the | symbol (flt for x) to address 5 and
the types on the right (int for x) to address 8, because ca4 is on the left and ca7 on the right. Since the
stack contains int at address 9, inc does not cause any failure and the program is happily accepted.

This very simple approach scales from the example in Figure 4 to arbitrarily complex programs.
Consider a program with several subroutine calls and returns. During verification, at some addresses
of the program there will be several type alternatives, including types of the form cac. At any
ret x instruction the type alternatives cac1 | . . . | cacn for x are used to select which types must be
propagated to each address ci + 1. The other types can be safely left out, because they correspond to
impossible paths at run-time.

3.2. Definition

The technique fits into the data flow analysis framework [14]. It is defined by: a lattice whose elements
capture the type information assigned to addresses and whose join operation captures the merging of
type information from converging paths in the program; transfer functions capturing the transformation
of type information by instructions; and data flow constraints whose solution determines whether a
program passes verification or not.

The notation of type alternatives separated by the | symbol is useful to help intuition, but it would
not work in a lattice because the merging operation � must be commutative and idempotent, while the
order and number of the type alternatives is critical. So, the idea is to use finite sets whose elements
are complete type assignments to the variables and stack elements.

The starting point is the set
Type = {int, flt} ∪ {cac | c ∈ C}

of types. Type assignments to the variables and stack are captured by

VType = VN → Type and SType = Type∗(max)

Abbreviating VSType = VType × SType, the lattice

〈L,,�,�〉
is defined by:

1. L = Pω(VSType) ∪ {fail};
2. l ∈ L ⇒ l fail;
3. l, l′ ∈ Pω(VSType) ⇒ (l l′ ⇔ l ⊆ l′).

In other words, the lattice 〈Pω(VSType),⊆,∩,∪〉 is augmented with an extra top element fail. Since
Type, VN and max are finite, L is also finite. As shown later, the meaning of a lattice element
l ∈ Pω(VSType) assigned to address i is that at run-time, whenever the program counter is i, the
values in the variables and stack have the types of some pair 〈vt, st〉 ∈ l. The join operation � is very
simple: the result of merging two sets of pairs is their union, while merging fail with anything yields
fail.

The transfer functions tf : L → L are defined in Figure 5. With the exception of the one for ret,
they all operate element-wise on each set of Pω(VSType). They capture the effect of the corresponding

Copyright c© 2004 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2004; 16:647–670

656 A. COGLIO

tf push0 = lift(λ〈vt, st〉. if |st| < max then 〈vt, st · int〉 else fail)

tf inc = lift(λ〈vt, st〉. if st = st′ · int then 〈vt, st〉 else fail)

tf div = lift(λ〈vt, st〉. if st = st′ · int · int then 〈vt, st′ · flt〉 else fail)

tf pop = lift(λ〈vt, st〉. if st = st′ · t then 〈vt, st′〉 else fail)

tf x
load = lift(λ〈vt, st〉. if |st| < max then 〈vt, st · vt(x)〉 else fail)

tf x
store = lift(λ〈vt, st〉. if st = st′ · t then 〈vt{x �→ t}, st′〉 else fail)

tf if0 = lift(λ〈vt, st〉. if st = st′ · int then 〈vt, st′〉 else fail)

tf c
jsr = lift(λ〈vt, st〉. if |st| < max then 〈vt, st · cac〉 else fail)

tf x,c
ret (l) = if (l 	= fail ∧ (∀〈vt, st〉 ∈ l.(∃c′.vt(x) = cac′)))

then {〈vt, st〉 ∈ l | vt(x) = cac} else fail

Figure 5. Transfer functions for L.

instructions on the types for the variables and stack, and can be derived from the rules in Figure 1.
If any type safety condition of those rules is not satisfied, the transfer function returns fail, which is
propagated by all transfer functions. So, it is convenient to define all these transfer functions by means
of the higher-order function

lift : (VSType → VSType ∪ {fail}) → (L → L)

defined by
lift(f)(l) = if (l 	= fail ∧ (∀〈vt, st〉 ∈ l.f (vt, st) 	= fail))

then {f (vt, st) | 〈vt, st〉 ∈ l} else fail

The transfer functions for load and store are parameterized by the variable name x that is part of the
instruction. The transfer function for jsr is parameterized by the calling address at which the jsr appears
in P .

The transfer function for ret operates on the sets by filtering them with respect to a certain calling
address c: only the elements that have type cac assigned to variable x are kept, while the others are
discarded. The transfer function is parameterized by the variable name that is part of the instruction
and by a calling address (see below).

All the transfer functions in Figure 5 are monotone, i.e.

l l′ ⇒ tf (l) tf (l′)

This is easily proved because larger sets are mapped to larger sets or to fail, which is the top of the
lattice, and fail is mapped to fail.

The set of constraints derived from P is

Constr = {u0 � lInit} ∪
⋃

i∈D(P)

IConstr(i, Pi)

Copyright c© 2004 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2004; 16:647–670

VERIFICATION OF JAVA BYTECODE SUBROUTINES 657

IConstr(i, push0) = {ui+1 � tf push0(ui)}
IConstr(i, inc) = {ui+1 � tf inc(ui)}
IConstr(i, div) = {ui+1 � tf div(ui)}
IConstr(i, pop) = {ui+1 � tf pop(ui)}
IConstr(i, load x) = {ui+1 � tf x

load(ui)}
IConstr(i, store x) = {ui+1 � tf x

store(ui)}
IConstr(i, if0 j) = {ui+1 � tf if0(ui), uj � tf if0(ui)}
IConstr(i, jsr s) = {us � tf i

jsr(ui)}
IConstr(i, ret x) = {uc+1 � tf x,c

ret (ui) | c ∈ C}
IConstr(i, halt) = ∅

Figure 6. Constraints derived from the instructions of L.

where
lInit = {〈λx.int, []〉}

is the lattice element that captures types for Init and the constraints derived from each instruction are
defined in Figure 6.

Each ui is a placeholder for a lattice element assigned to address i. Each constraint has the form
ui′ � tf (ui), except for the initial constraint u0 � lInit. The former expresses that the types at address
i ′ must ‘include’ (i.e. �) the result of transforming the types at address i according to the transfer
function tf for instruction Pi . The latter expresses that the types at address 0 must include the types for
Init. A solution to Constr is an assignment that satisfies all the constraints.

Note that a ret instruction contributes one constraint for each calling address in P ; the calling address
is used as the second parameter of the transfer function. If no pair of l contains cac in variable x, then
tf x,c

ret (l) = ∅, i.e. the constraint uc+1 � tf x,c
ret (ui) effectively contributes no types to address c + 1

(because ∅ is the bottom of the lattice), reflecting the fact that control cannot be transferred from i to
c + 1.

Since L is finite and all the transfer functions are monotone, the set of constraints has always a
least solution σ : D(P) → L, which can be efficiently computed iteratively [14,15]. The notion of
verification is defined as

Verified(P) ⇔ (∀i ∈ D(P).σi 	= fail)

As an example, the constraints derived from the program in Figure 4 are shown in Figure 7. The least
solution to those constraints is shown in Figure 8 in terms of explicit sets of pairs (while Figure 4 shows
the solution in terms of type alternatives).

The technique is very simple to understand and implement. Unlike others, it does not attempt to
determine subroutine boundaries or variables modified inside subroutines. Rather, its ‘unstructured’

Copyright c© 2004 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2004; 16:647–670

658 A. COGLIO

u0 � lInit

u1 � tf push0(u0)

u2 � tf push0(u1)

u3 � tf div(u2)

u4 � tf x
store(u3)

u11 � tf 4
jsr(u4)

u6 � tf push0(u5)

u7 � tf x
store(u6)

u11 � tf 7
jsr(u7)

u9 � tf x
load(u8)

u10 � tf inc(u9)

u12 � tf y
store(u11)

u5 � tf y,4
ret (u12)

u8 � tf y,7
ret (u12)

Figure 7. Constraints derived from the program in Figure 4.

nature reflects the possibly unstructured occurrences of jsr and ret in programs. Its treatment of jsr and
ret is as simple as their run-time behavior, described by the rules (JS) and (RT).

3.3. Soundness

It is quite simple to prove that the technique is sound. The key invariant at run-time is that when the
program counter is i there is a pair 〈vt, st〉 ∈ σi containing the current types of the variables and stack.
So, if the program attempted a type-unsafe operation at this point, tf (σi) = fail (where tf is the transfer
function associated to Pi) would appear at some address i ′ of the program, because of the constraint
σi′ � tf (σi); but if P is verified, that cannot happen.

The invariant is trivially true at Init and is preserved by every execution step because every transfer
function maps each pair 〈vt, st〉 ∈ σi to a pair 〈vt′, st′〉 ∈ σi′ transforming the types according to the
instruction; this mapping includes the pair containing the current types for the variables and stack.
In the case of tf x,c

ret , not all pairs are mapped, but those that are discarded do not contain cac for
variable x and so none of the discarded pairs can be the one containing the current types of the variables
and stack.

Copyright c© 2004 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2004; 16:647–670

VERIFICATION OF JAVA BYTECODE SUBROUTINES 659

σ0 = {〈λz.int, []〉}
σ1 = {〈λz.int, [int]〉}
σ2 = {〈λz.int, [int, int]〉}
σ3 = {〈λz.int, [flt]〉}
σ4 = {〈λz.int{x �→ flt}, []〉}
σ5 = {〈λz.int{x �→ flt}{y �→ ca4}, []〉}
σ6 = {〈λz.int{x �→ flt}{y �→ ca4}, [int]〉}
σ7 = {〈λz.int{y �→ ca4}, []〉}
σ8 = {〈λz.int{y �→ ca7}, []〉}
σ9 = {〈λz.int{y �→ ca7}, [int]〉}
σ10 = {〈λz.int{y �→ ca7}, [int]〉}
σ11 = {〈λz.int{x �→ flt}, [ca4]〉, 〈λz.int{y �→ ca4}, [ca7]〉}
σ12 = {〈λz.int{x �→ flt}{y �→ ca4}, []〉, 〈λz.int{y �→ ca7}, []〉}

Figure 8. Least solution to the constraints in Figure 7.

Types of values are captured by the abstraction function

α : Val → Type defined by α(ιI) = int ∧ α(φF) = flt ∧ α(cC) = cac

The abstraction function is lifted to the variables and stack point-wise:

α(vr) = λx. α(vr(x)) and α(sk) = [α(sk0), . . . , α(sk|sk|−1)]
So, the invariant is formalized as

Inv(stt) ⇔ ∃i, vr, sk.(stt = 〈i, vr, sk〉 ∧ 〈α(vr), α(sk)〉 ∈ σi)

Note that Err does not satisfy the invariant.

Lemma 1. Verified(P) ⇒ Inv(Init).

Lemma 2. Verified(P) ∧ Inv(stt) ∧ stt � stt′ ⇒ Inv(stt′).

Theorem 1. (Soundness) Verified(P) ⇒ TypeSafe(P).

3.4. Characterization

The example in Figure 9 shows that the technique is incomplete. Since the technique is insensitive to
the actual integer value in the stack at address 1 (it is just an int), it cannot recognize that address 2 is
unreachable.

Copyright c© 2004 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2004; 16:647–670

660 A. COGLIO

i Pi sti
0 push0 []
1 if0 3 [int]
2 div []
3 halt fail

Figure 9. Unsuccessful verification of a type-safe program.

stt � stt′

stt �I stt′
(EX)

Pi = if0 j

〈i, vr, sk · ιI〉 �I 〈(if ι 	= 0 then j else i + 1), vr, sk〉 (IF’)

Figure 10. Rules defining the integer-insensitive operational semantics of L.

The if0 instruction is the only cause of incompleteness because all integers are approximated by type
int, as opposed to calling addresses, which are isomorphic to their types. This suggests that, if if0 were
insensitive to the actual value of the integer at the top of the stack, the technique would be complete.
So, consider an ‘integer-insensitive’ operational semantics of L

�I ⊆ Stt × Stt

defined as the smallest relation satisfying the rules in Figure 10. The rule (EX) says that �I is an
extension of �. The rule (IF’) is exactly like (IF) but with the test negated. Jointly, (IF) and (IF’)
allow the execution of an if0 instruction to non-deterministically transfer control to either the successor
address or the target of the if0, regardless of the value of the integer. The notion of integer-insensitive
type safety is defined in complete analogy with Section 2.1:

TypeSafeI(P) ⇔ Init 	�I
+ Err

Theorem 2. (Characterization) Verified(P) ⇔ TypeSafeI(P).

The theorem provides a very simple and precise characterization of which programs are accepted
by verification: exactly all type-safe programs in the integer-insensitive operational semantics. To date,
the author has not found any bytecode program generated by a compiler that does not satisfy this
characterization‖. Since compilers are quite unlikely to expect bytecode verifiers to be integer-sensitive,
there are reasons to believe that the characterization includes all the code produced by current and

‖For Java bytecode, the notion of insensitivity must be extended from integers to null references and other features [12].
For simplicity, the restrictive term ‘integer-insensitive’ and related ones are also used in the rest of this paper when referring to
Java bytecode.

Copyright c© 2004 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2004; 16:647–670

VERIFICATION OF JAVA BYTECODE SUBROUTINES 661

future compilers. Anyhow, this conjecture should be further validated by experimentation (i.e. running
compilers and checking the generated code) and formal studies (e.g. formalizing compilation strategies,
as in [17], and proving that the produced code satisfies the characterization).

The characterization includes programs that are not generated by current compilers: for instance,
programs with polymorphic subroutines to swap the values of two variables, or to make duplicates of
the top value of the stack, even with stacks of different sizes∗∗. This enables future compilers to make
more extensive use of subroutines in order to generate more compact code. However, it is presently
unclear how much additional space could be actually saved in code produced from mundane Java
programs.

It is certainly possible to devise verification techniques that accept more type-safe programs than the
new technique. For example, the type int for integers could be refined into a type for 0I and a type for
possibly non-zero integers. The transfer function for if0 could filter away from the successor address
all the pairs 〈vt, st〉 that have the type for 0I at the top of the stack. The program in Figure 9 would then
be accepted. However, this refinement makes verification more complicated and invalidates the simple
characterization provided by Theorem 2. In addition, the benefit is dubious: no sensible compiler would
ever generate a program like the one in Figure 9. These considerations support the (informal) argument
that the new technique embodies an optimal trade-off between power and simplicity.

3.5. Implementation issues

While the technique is very easy to implement in a naı̈ve way, it is legitimate to ask whether carrying
around sets of pairs 〈vt, st〉 incurs severe penalties in terms of execution speed and memory occupation.
Certainly, the new technique is less efficient than that in [3, Section 4.9.2]. However, in order to accept
programs like that in Figure 3 some overhead due to the more elaborate analysis is unavoidable.
For example, keeping track of the variables modified inside subroutines [3, Section 4.9.6] requires
bit vectors or similar structures to be carried around.

The number of different calling addresses in a program is limited by the size of the program.
No arithmetic is possible on calling addresses, which are generated by jsr and can only be moved
around by the other instructions. Therefore, the sets cannot get exceedingly large (e.g. like integers).
Experimental measures [9,19] suggest that current compilers generate code with very infrequent use
of subroutines. So, in practice, the sets should be fairly small.

Anyhow, the following optimization is possible. The need to carry around sets of pairs arises in order
to separate them at the ret instructions. If two singleton sets are merged that do not both contain calling
addresses in the same variable or stack element, then the two pairs will never be separated and so can be
merged into a single pair (extending Type with any). In other words, a hybrid merging strategy can be
used: if pairs cannot be separated later, they are just merged into one pair, while they are kept distinct if
there are different calling addresses in corresponding positions. So, if a program has no subroutines, all
sets are singletons and the new technique essentially reduces to that in [3, Section 4.9.2]. The pairs of a
set can lose their calling addresses via a store or pop instruction, in which case the transfer functions

∗∗The requirement for the stack to have a fixed size for each address (given in [3] but unnecessary for type safety) may support
more efficient execution of bytecode by means of native machine instructions as explained in [18]. In that case, it is trivial to
extend the technique to check that all pairs 〈vt, st〉 in a set assigned to an address have stacks of the same size.

Copyright c© 2004 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2004; 16:647–670

662 A. COGLIO

static int m(boolean x) {
int y;
try {
if (x) return 1;
y = 2;

} finally {
if (x) y = 3;

}
return y;

}

Figure 11. Type-safe Java code rejected by most techniques and verifiers.

for store and pop could merge the pairs into one. There are trade-offs related to having these transfer
functions check and eventually merge pairs, as opposed to avoiding such additional checks in these
transfer functions and unnecessarily keeping some pairs distinct when they could have been merged.
These trade-offs should be evaluated experimentally.

Experimental work is necessary to more precisely evaluate the efficiency of the new technique,
including optimizations. Existing programs may not constitute very meaningful test data because of
their infrequent use of subroutines. Ideally, test data should include (future) bytecode programs that
make more extensive and sophisticated use of subroutines.

4. RELATED WORK

All of the techniques to verify subroutines proposed in the literature approximate all integers with
one type. So, their soundness could be proved using the integer-insensitive operational semantics.
Therefore, by Theorem 2, every program verified by any of them is also verified by the new technique††.

As a point of comparison among the techniques, consider the Java code in Figure 11 (adapted from
[17, Figure 16.8]). The variable y, which contains an undefined value at the beginning of the method m,
is definitely assigned a value before it is used by the return. Definite assignment is part of type
safety and must be checked by bytecode verification in the JVM. The bytecode produced by mundane
compilers (e.g. [6]) from Figure 11 is accepted by the new technique, as shown in Figure 12, where the
real Java bytecode instructions (not those of L) are used [3, Ch. 6], the exception handler for the try
block [3, Section 7.12] is omitted, the variables are denoted by names instead of numbers and the type
udf indicates that a variable contains an undefined value.

As another point of comparison, consider the Java code in Figure 13 (adapted from [9, Figure 6]).
The continue inside the finally block, if executed, transfers control to the beginning of the

††Actually, some techniques [9,10,20] accept certain programs where the stack can grow without limit. If the limit max to the
stack size is removed from L, then the iterative data flow analysis of the new technique may not converge because the lattice
becomes infinite. However, the per-method static limit on the stack is part of the semantics of Java bytecode, designed to relieve
the execution engine from checking stack overflows.

Copyright c© 2004 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2004; 16:647–670

VERIFICATION OF JAVA BYTECODE SUBROUTINES 663

i Pi sti vti (x) vti (y) vti (z) vti (w)

0 iload x [] int udf udf udf
1 ifeq 7 [int] int udf udf udf
2 iconst 1 [] int udf udf udf
3 istore z [int] int udf udf udf
4 jsr 11 [] int udf int udf
5 iload z [] int | int udf | int int | int ca4 | ca4
6 ireturn [int | int] int | int udf | int int | int ca4 | ca4
7 iconst 2 [] int udf udf udf
8 istore y [int] int udf udf udf
9 jsr 11 [] int int udf udf

10 goto 17 [] int int udf ca9
11 astore w [ca4 | ca9] int | int udf | int int | udf udf | udf
12 iload x [] int | int udf | int int | udf ca4 | ca9
13 ifeq 16 [int | int] int | int udf | int int | udf ca4 | ca9
14 iconst 3 [] int | int udf | int int | udf ca4 | ca9
15 istore y [int | int] int | int udf | int int | udf ca4 | ca9
16 ret w [] int | int | int udf | int | int int | int | udf ca4 | ca4 | ca9
17 iload y [] int int udf ca9
18 ireturn [int] int int udf ca9

Figure 12. Successful verification of the bytecode for Figure 11.

static void m(boolean x) {
while (x) {
try {

x = false;
} finally {

if (x) continue;
}

}
}

Figure 13. Type-safe Java code rejected by some techniques and verifiers.

while loop. The bytecode produced by mundane compilers (e.g. [6]) from Figure 13 is accepted by
the new technique, as shown in Figure 14. Note that the subroutine, whose address range is 5–9, can
be exited implicitly (i.e. not via a ret) from address 8, thus realizing the semantics of continue.

The official technique to verify subroutines [3,6] rejects the code in Figure 12. The types int and udf
for y are merged into udf inside the subroutine (in that technique, udf coincides with any). Since y

Copyright c© 2004 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2004; 16:647–670

664 A. COGLIO

i Pi sti vti (x) vti (y)

0 goto 10 [] int udf
1 iconst 0 [] int | int udf | ca3
2 istore x [int | int] int | int udf | ca3
3 jsr 5 [] int | int udf | ca3
4 goto 10 [] int ca3
5 astore y [ca3 | ca3] int | int udf | ca3
6 iload x [] int ca3
7 ifeq 9 [int] int ca3
8 goto 10 [] int ca3
9 ret y [] int ca3

10 iload x [] int | int udf | ca3
11 ifne 1 [int | int] int | int udf | ca3
12 return [] int | int udf | ca3

Figure 14. Successful verification of the bytecode for Figure 13.

may be modified at address 15, udf is propagated from address 16 to both 5 and 10, and thus eventually
to 17, where iload y causes verification to fail, because it requires an int in y.

Stata and Abadi [11] presented the first formal technique to verify subroutines. Their work has
been very influential, laying the foundations for further formal work in bytecode verification and
subroutines; for instance, their original instruction set and operational semantics are used (sometimes
with small modifications) in many publications, including this paper. They formalize verification as
typing rules that can be implemented via data flow analysis. Similarly to [3,6], they keep track of the
variables modified inside subroutines and selectively propagate types from ret and jsr, thus rejecting
the code in Figure 12. They also impose a strict last-in, first-out use of subroutines.

Freund and Mitchell [7] generalize [11] to a more liberal use of subroutines, e.g. a subroutine may
return to an outer caller, skipping one or more inner callers. They also study the interaction of subrou-
tines with exceptions and object initialization. Their technique rejects the code in Figure 12 as well.

Qian [16] also gives typing rules that can be implemented via data flow analysis. He also keeps track
of modified variables and selectively propagates types, thus rejecting the code in Figure 12. He records
called subroutines using graphs instead of stacks, thus allowing a fairly liberal use of subroutines.

Stärk et al. [17] also use data flow analysis, keeping track of modified variables and selectively
propagating types, thus rejecting the code in Figure 12‡‡. Since they impose almost no structure on the
use of jsr and ret, their technique is relatively simple.

Hagiya and Tozawa [8] also give typing rules that can be implemented via data flow analysis.
Types from callers are turned into special types before being propagated to subroutines; the special

‡‡Although they prove a theorem stating that their bytecode verifier accepts all the code produced by compilation, their notion
of compilation does not fully capture existing compilers: the rules of definite assignment in [17, Section 8.3] expressly differ
from those in [2, Ch. 16].

Copyright c© 2004 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2004; 16:647–670

VERIFICATION OF JAVA BYTECODE SUBROUTINES 665

types reference variables at the callers so that no information is lost when types are merged
inside subroutines. Upon subroutine return, the types are restored from the variables at the callers.
This approach accepts subroutines that polymorphically swap the contents of two variables, which are
rejected by the techniques above. A relatively liberal use of subroutines is allowed, e.g. a subroutine
may return to an outer caller. Nevertheless, the code in Figure 12 is rejected because udf is assigned to
y inside the subroutine and propagated to the caller’s successor.

Leroy [21] describes a polyvariant data flow analysis for subroutines, employed in the off-card
verifier of [22], developed by Trusted Logic. Subroutines are analyzed in different contexts for different
callers; contexts include subroutine call stacks, which are extended by jsr and shrunk by ret. Almost
no structure is imposed on the use of jsr and ret. While the code in Figure 12 is accepted, the code in
Figure 14 is rejected. The technique includes checks for non-recursive calls to subroutines, as required
by [3, Section 4.8.2]: these checks fail for the code in Figure 14, because the path out of the subroutine
and back to address 1 propagates the call stack with the subroutine to address 3, where a false recursive
call is detected.

Posegga and Vogt [23] advocate the use of model checking to exhaustively explore all the abstract
execution states of a program. Their abstract states include subroutine call stacks, which are extended
by jsr and shrunk by ret. The abstract execution of jsr includes checks for non-recursive subroutine
calls [3, Section 4.8.2], which fail for the code in Figure 14, similarly to [21] described above.
If subroutine call stacks and their relative checks are removed, then the abstract state exploration is
as powerful as the new technique, because the abstract values are exactly the types of the concrete
values. However, this approach is meant for off-line verification, because deploying a model checker
within the JVM is problematic.

As evidenced by the new technique, recursive subroutine calls are harmless to type safety.
The prescription in [3, Section 4.8.2] prohibiting recursive subroutine calls is not only unnecessary,
but also misleading, as manifested by the last two examples. Interestingly, the verifier in [6] accepts
the code in Figure 14 because it merges subroutine call stacks by computing their common sub-stacks;
so, at address 10 the non-empty stack from 8 is merged with the empty stack from 0 resulting in the
empty stack, which is propagated back to 1 and eventually to 3, with no false recursion being detected.

Yelland [24] proposes an encoding of Java bytecode in the functional programming language
Haskell [25] such that bytecode verification boils down to Haskell’s type checking. Unfortunately,
the paper does not provide full details about the treatment of subroutines, but it seems comparable in
power with the new technique, e.g. it should accept the code in Figures 12 and 14. This encoding of
Java bytecode in Haskell is useful as a specification that integrates operational semantics and bytecode
verification, but it is not straightforward to use or develop a Haskell type checker as a bytecode
verifier inside a JVM implementation. In addition, this approach is less accessible, compared to data
flow analysis, to practitioners and researchers unfamiliar with Haskell and monads. Lastly, no simple
characterization of accepted programs is provided.

O’Callahan [9] presents declarative rules for type assignments. Types include variables to capture
polymorphism. A return address (i.e. a successor of a calling address) is assigned a continuation type
that embeds variable and stack types for the return address. The rules impose almost no structure on
the use of jsr and ret. His technique is comparable in power with the new technique, e.g. it accepts
the code in Figures 12 and 14. However, while it is not hard to check whether a given type assignment
satisfies the declarative rules, it is not immediate how to compute such an assignment. In addition, no
simple characterization of accepted programs is provided.

Copyright c© 2004 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2004; 16:647–670

666 A. COGLIO

Retert and Boyland [10] apply a general framework for interprocedural analysis to the verification
of Java bytecode subroutines. The behavior of each subroutine is captured by sets of input–output pairs
of type assignments to the variables and stack, computed via a fixed-point iteration where old pairs for
callees are used to compute new pairs for callers. Subroutine ‘boundaries’ are implicitly computed by
considering ret and certain occurrences of jsr as endpoints (the latter serve to cope with the implicit
exiting of subroutines as in Figure 14). The power of their technique approaches the new technique,
e.g. it accepts the code in Figures 12 and 14. It cannot merge stacks of different sizes unless the
merging takes place at a subroutine address (e.g. a program without subroutines where the stack may
have different sizes at certain addresses is rejected), but this is probably not a problem in practice, given
the argument in [18] mentioned in Section 3.4. However, their approach is more complicated than the
new technique. In addition, no simple characterization of accepted programs is provided.

As reported in [21], Brisset [26] independently discovered the new technique, formalized it using
the Coq proof assistant [27], and extracted an implementation, in the functional programming language
ML [28], from the correctness proof. However, he did not publish his work in any paper.

Henrio and Serpette [20] also independently discovered the new technique. They present a
framework for bytecode verification where multiple abstract execution states (i.e. states where values
are abstracted to types) can be assigned to addresses and can be reduced by applying a merging
operation. Depending on the choice of the merging operation, the resulting algorithm ranges from
the new technique (if merging is identity) to [3, Section 4.9.2] (if multiple states are always merged
into one). However, their description of the new technique is not as thorough as the one in this paper;
in particular, explicit proofs and the characterization of accepted programs are not given.

There exist several commercial and academic implementations of the JVM which include bytecode
verifiers, but no documentation is readily available about their treatment of subroutines. Anyhow
[17, Section 16.1.1] reports that the code in Figure 12 is rejected by all the verifiers tried by the
authors, including those in various versions of Netscape and Internet Explorer, as well as the Kimera
verifier [29]. These verifiers all probably keep track of modified variables and selectively propagate
types like [3,6].

As part of the OVM project [30], Grothoff [31] independently implemented a verifier whose
treatment of subroutines is the same as the new technique.

Trusted Logic’s on-terminal verifier [32] (for the JEFF file format [33]), independently implemented
by Frey [34], also treats subroutines in the same way; this verifier is very space- and time-efficient,
thus demonstrating the practicality of the technique.

Klein and Wildmoser [35] formalize and mechanically prove the soundness of the new technique
using the Isabelle/HOL theorem prover [36].

Wildmoser [37] formalizes the techniques in [7,11,21] and this paper in a common formalism and
formally compares their relative power (i.e. sets of accepted programs). He also proposes an algorithm
to in-line subroutines, proving that it preserves program equivalence and calculates a bound on the size
of the expanded code.

The optimization of the new technique informally described in Section 3.5 has been independently
formalized in [20] (as a possible choice of the merging operation) and has been proved to be equivalent
to the new technique (in the sense that it accepts the same programs) in [21]. It is also reported in [21]
that Frey independently implemented that optimization.

It has been argued [19] that the little space saved by subroutines in typical code does not warrant the
increased complexity in verification. However, subroutines cannot easily be eliminated, for backward

Copyright c© 2004 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2004; 16:647–670

VERIFICATION OF JAVA BYTECODE SUBROUTINES 667

compatibility reasons. In addition, the space saved by subroutines could be relevant in memory-
constrained devices such as smart cards [38].

A way around the problem of verifying subroutines could be to rewrite bytecode prior to verification,
in order to in-line subroutines as prescribed in [39] or in order to split variables to make their
types unique as described in [40]. After the rewriting, the technique in [3, Section 4.9.2] can be
used. However, since subroutines can be exited implicitly as in Figure 14, their boundaries may
not be always easy to determine. So, it is unclear whether bytecode rewriting is a simpler problem
than verification with subroutines; for instance, Wildmoser’s algorithm mentioned above is relatively
complex, compared with the new technique. It is also unclear whether rewriting followed by the
simpler analysis is more efficient than just the slightly more complex analysis of the new technique
without rewriting; experimental measures are needed. In addition, variable splitting may require the
introduction of additional instructions at the beginning of a method to ensure that all variables are
defined [19], causing some loss of performance.

A short version of this paper is available as [41], while [15] is a more comprehensive paper on
the topic of subroutines. In [12] the new technique is lifted to a complete formalization of Java
bytecode verification. In 2000, the author used Specware [42], a system for the formal specification
and refinement of software, to derive a bytecode verifier from the formalization in [12]; this verifier
can serve as a high-assurance reference implementation∗.

The language L not only abstracts Java bytecode but also other assembly-like languages,
e.g. machine languages of microprocessors. Many kinds of static analysis can be cast into a data
flow analysis framework where information about values is captured as ‘types’, e.g. security levels for
information flow analysis. So, the new technique may have a broader applicability than Java bytecode
verification.

Despite the similarities between the JVM and the .NET Common Language Runtime (CLR) [43],
the latter does not feature subroutines. The main purpose of subroutines in the JVM is to realize the
semantics of Java’s finally; in contrast, the CLR has a built-in finally construct.

APPENDIX A

Proof of Lemma 1

Since Verified(P) holds, σ0 	= fail. Since σ0 � lInit, 〈λx.int, []〉 ∈ σ0. Since α(λx.0I) = λx.int and
α([]) = [], Inv(Init) holds.

Proof of Lemma 2

Let stt = 〈i, vr, sk〉. Since Inv(stt) holds, 〈α(vr), α(sk)〉 ∈ σi . The proof that Inv(stt′) holds is by case
analysis on Pi .

If Pi = push0, then i + 1 ∈ D(P) by the third requirement on programs in Section 2.1. Since
Verified(P) holds, σi+1 	= fail. Since σi+1 � tf push0(σi), |α(sk)| < max and 〈α(vr), α(sk) · int〉 ∈
σi+1. Since |sk| < max, by rule (PH) stt′ = 〈i + 1, vr, sk · 0I〉. Since α(sk · 0I) = α(sk) · int, Inv(stt′)
holds.

∗However, it is not presently publicly available.

Copyright c© 2004 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2004; 16:647–670

668 A. COGLIO

The cases Pi = inc, Pi = div, Pi = pop, Pi = load x, Pi = store x, Pi = if0 j and Pi = jsr s are
proved analogously.

If Pi = ret x, then C 	= ∅ by the fourth requirement on programs in Section 2.1. By the third
requirement on programs in Section 2.1, c + 1 ∈ D(P) for all c ∈ C. Since Verified(P) holds,
σc+1 	= fail for all c ∈ C. Since σc+1 � tf x,c

ret (σi) for all c ∈ C (there exists at least one because

C 	= ∅), α(vr)(x) = cac′ for a specific c′ ∈ C and 〈α(vr), α(sk)〉 ∈ σc′+1 (by the definition of tf x,c′
ret).

Since vr(x) = c′
C, by rule (RT) stt′ = 〈c′ + 1, vr, sk〉. Since 〈α(vr), α(sk)〉 ∈ σc′+1, Inv(stt′) holds.

The case Pi = halt is impossible because it contradicts stt � stt′.

Proof of Theorem 1 (Soundness)

The proof is by contradiction. Suppose that TypeSafe(P) does not hold. Then Init �+ Err, i.e. there
exist stt0, . . . , sttn such that n ≥ 1, stt0 = Init, sttn = Err and sttk−1 � sttk for 1 ≤ k ≤ n.
By Lemma 1, Inv(stt0) holds. By Lemma 2 and induction on k, Inv(sttk) holds for 1 ≤ k ≤ n. However,
Inv(sttn) contradicts sttn = Err: therefore, TypeSafe(P) must hold.

Proof of Theorem 2 (Characterization)

The implication Verified(P) ⇒ TypeSafeI(P) is proved in complete analogy with Theorem 1
(including Lemmas 1 and 2). The implication TypeSafeI(P) ⇒ Verified(P) is proved by constructing
an assignment γ of lattice elements to addresses such that fail does not appear in γ and then showing
that γ is a solution to the data flow analysis constraints. Since γ � σ , fail does not appear in σ and
therefore Verified(P) holds.

The assignment γ is defined by

γi = {〈α(vr), α(sk)〉 | Init �I
∗ 〈i, vr, sk〉}.

In other words, the value of γi is given by abstracting all possible states of execution with program
counter i that are reachable from Init. Each γi is finite, because Type, VN and max are finite.
Each γi 	= fail by construction.

Consider the constraint u0 � lInit: since Init �I
∗ Init, 〈λx.int, []〉 ∈ γ0 and therefore γ0 � lInit.

Consider a constraint ui′ � tf (ui): the proof that γi′ � tf (γi) is by case analysis on Pi .
If Pi = push0, then tf = tf push0 and i ′ = i + 1. Consider an arbitrary 〈α(vr), α(sk)〉 ∈ γi , where

Init �I
∗ 〈i, vr, sk〉. Since TypeSafeI(P) holds, |sk| < max and so |α(sk)| < max. Since 〈α(vr), α(sk)〉

is arbitrary, tf (γi) 	= fail. Consider an arbitrary 〈vt, st〉 ∈ tf (γi). By the definition of tf push0, there must
exist 〈α(vr), α(sk)〉 ∈ γi , where Init �I

∗ 〈i, vr, sk〉, such that vt = α(vr) and st = α(sk) · int. By rule
(PH), 〈i, vr, sk〉 �I 〈i ′, vr, sk · 0I〉 and so Init �I

∗ 〈i ′, vr, sk · 0I〉: therefore, 〈α(vr), α(sk · 0I)〉 ∈ γi′ .
Since α(sk · 0I) = st, 〈vt, st〉 ∈ γi′ . Since 〈vt, st〉 is arbitrary, γi′ � tf (γi).

The cases Pi = inc, Pi = div, Pi = pop, Pi = load x, Pi = store x and Pi = jsr s are proved
analogously.

If Pi = if0 j , then tf = tf if0 and i ′ ∈ {i + 1, j }. Consider an arbitrary 〈α(vr), α(sk)〉 ∈ γi ,
where Init �I

∗ 〈i, vr, sk〉. Since TypeSafeI(P) holds, sk = sk′ · ιI for some sk′ and ι, and so α(sk) =
α(sk′) · int. Since 〈α(vr), α(sk)〉 is arbitrary, tf (γi) 	= fail. Consider an arbitrary 〈vt, st〉 ∈ tf (γi).
By the definition of tf if0, there must exist 〈α(vr), α(sk)〉 ∈ γi , where Init �I

∗ 〈i, vr, sk〉, such that
vt = α(vr) and α(sk) = st · int, which implies sk = sk′ · ιI for some sk′ and ι such that α(sk′) = st.

Copyright c© 2004 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2004; 16:647–670

VERIFICATION OF JAVA BYTECODE SUBROUTINES 669

If (ι = 0 ∧ i ′ = j) or (ι 	= 0 ∧ i ′ = i + 1), then by rule (IF) 〈i, vr, sk〉 �I 〈i ′, vr, sk′〉.
If (ι = 0 ∧ i ′ = i + 1) or (ι 	= 0 ∧ i ′ = j), then by rule (IF’) 〈i, vr, sk〉 �I 〈i ′, vr, sk′〉.
(Note that without rule (IF’), this proof would not work. In fact, as shown by the example in Figure 9,
TypeSafe(P) 	⇒ Verified(P).) In both cases, Init �I

∗ 〈i ′, vr, sk′〉: therefore, 〈α(vr), α(sk′)〉 ∈ γi′ .
Since α(sk′) = st, 〈vt, st〉 ∈ γi′ . Since 〈vt, st〉 is arbitrary, γi′ � tf (γi).

If Pi = ret x, then tf = tf x,c
ret and i ′ = c + 1 for some c ∈ C. Consider an arbitrary 〈α(vr), α(sk)〉 ∈

γi , where Init �I
∗ 〈i, vr, sk〉. Since TypeSafeI(P) holds, vr(x) = c′

C for some c′ and so α(vr)(x) =
cac′ . Since 〈α(vr), α(sk)〉 is arbitrary, tf (γi) 	= fail. Consider an arbitrary 〈vt, st〉 ∈ tf (γi). By the
definition of tf x,c

ret , there must exist 〈α(vr), α(sk)〉 ∈ γi , where Init �I
∗ 〈i, vr, sk〉, such that vt = α(vr),

st = α(sk) and vt(x) = cac (which implies vr(x) = cC). By rule (RT), 〈i, vr, sk〉 �I 〈i ′, vr, sk〉 and
so Init �I

∗ 〈i ′, vr, sk〉: therefore, 〈α(vr), α(sk)〉 ∈ γi′ , which means 〈vt, st〉 ∈ γi′ . Since 〈vt, st〉 is
arbitrary, γi′ � tf (γi).

The case Pi = halt is impossible because IConstr(i, halt) = ∅.

Aside: Proof that the constructed solution is the least one

This is the case that γ = σ , which is proved as follows. Recall that fail does not appear in σ . Consider
an arbitrary i ∈ D(P) and an arbitrary 〈α(vr), α(sk)〉 ∈ γi , where Init �I

∗ 〈i, vr, sk〉. So, there exist
stt0, . . . , sttn such that n ≥ 0, stt0 = Init, sttn = 〈i, vr, sk〉, and sttk−1 �I sttk for 1 ≤ k ≤ n.
Let sttk = 〈ik, vrk, skk〉 for 0 ≤ k ≤ n. So, there is a data flow analysis constraint uik+1 � tf k(uik) for
0 ≤ k < n (easily proved by case analysis on Pik). Since σ is a solution, σi0 � lInit and σik+1 � tf k(σik)

for 0 ≤ k < n. By induction on k (below), 〈α(vrk), α(skk)〉 ∈ σik for 0 ≤ k ≤ n. So, in particular,
〈α(vr), α(sk)〉 ∈ σi . Since 〈α(vr), α(sk)〉 is arbitrary, γi σi and therefore γi = σi . Since i is arbitrary,
γ = σ .

The base case of the induction is proved by noting that 〈α(vr0), α(sk0)〉 ∈ lInit and therefore
〈α(vr0), α(sk0)〉 ∈ σi0 because σi0 � lInit. The step case of the induction assumes that
〈α(vrk), α(skk)〉 ∈ σik , with 0 ≤ k < n: the fact that 〈α(vrk+1), α(skk+1)〉 ∈ σik+1 is proved by
case analysis on Pik .

If Pik = push0, then tf k = tf push0. Since sttk �I sttk+1, by rule (PH) vrk+1 = vrk and skk+1 =
skk · 0I. By the definition of tf push0, 〈α(vrk), α(skk)· int〉 ∈ tf k(σik). Since α(skk+1) = α(skk) · int,
〈α(vrk+1), α(skk+1)〉 ∈ σik+1 because σik+1 � tf k(σik).

The cases Pik = inc, Pik = div, Pik = pop, Pik = load x, Pik = store x, Pik = if0 j and Pik = jsr s

are proved analogously.
If Pik = ret x, then tf k = tf x,c

ret , where c + 1 = ik+1. Since sttk �I sttk+1, by rule (RT)
vrk+1 = vrk , skk+1 = skk and vrk(x) = c. By the definition of tf x,c

ret , 〈α(vrk), α(skk)〉 ∈ tf k(σik)

because α(vrk)(x) = cac. So, 〈α(vrk+1), α(skk+1)〉 ∈ σik+1 because σik+1 � tf k(σik).
The case Pik = halt is impossible because it contradicts sttk �I sttk+1.

REFERENCES

1. Arnold K, Gosling J, Holmes D. The JavaTM Programming Language (3rd edn). Addison-Wesley: Reading, MA, 2000.
2. Gosling J, Joy B, Steele G, Bracha G. The JavaTM Language Specification (2nd edn). Addison-Wesley: Reading, MA,

2000.
3. Lindholm T, Yellin F. The JavaTM Virtual Machine Specification (2nd edn). Addison-Wesley: Reading, MA, 1999.

Copyright c© 2004 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2004; 16:647–670

670 A. COGLIO

4. Yellin F. Low level security in Java. Proceedings of the 4th International World Wide Web Conference. O’Reilly &
Associates, 1995; 369–379. http://java.sun.com/sfaq/verifier.html.

5. Gong L. Inside JavaTM 2 Platform Security. Addison-Wesley: Reading, MA, 1999.
6. Sun Microsystems. Java 2 SDK Standard Edition version 1.4. http://java.sun.com/j2se.
7. Freund S, Mitchell J. A type system for Java bytecode subroutines and exceptions. Technical Note STAN-CS-TN-99-91,

Computer Science Department, Stanford University, August 1999.
8. Hagiya M, Tozawa A. On a new method for dataflow analysis of Java virtual machine subroutines. Proceedings of the 5th

Static Analysis Symposium (SAS’98) (Lecture Notes in Computer Science, vol. 1503). Springer: Berlin, 1998; 17–32.
9. O’Callahan R. A simple, comprehensive type system for Java bytecode subroutines. Proceedings of the 26th ACM

Symposium on Principles of Programming Languages (POPL’99), January 1999. ACM Press, 1999; 70–78.
10. Retert W, Boyland J. Interprocedural analysis for JVML verification. Proceedings of the 4th ECOOP Workshop on Formal

Techniques for Java-like Programs, June 2002.
11. Stata R, Abadi M. A type system for Java bytecode subroutines. ACM Transactions on Programming Languages and

Systems 1999; 21(1):90–137.
12. Coglio A. Java bytecode verification: A complete formalization. Technical Report, Kestrel Institute.

http://www.kestrel.edu/java.
13. Coglio A. Improving the official specification of Java bytecode verification. Proceedings of the 3rd ECOOP Workshop on

Formal Techniques for Java Programs, June 2001.
14. Nielson F, Nielson HR, Hankin C. Principles of Program Analysis. Springer: Berlin, 1998.
15. Coglio A. Java bytecode subroutines demystified. Technical Report, Kestrel Institute. http://www.kestrel.edu/java.
16. Qian Z. A formal specification of Java Virtual Machine instructions for objects, methods and subroutines. Formal Syntax

and Semantics of Java (Lecture Notes in Computer Science, vol. 1523), Alves-Foss J (ed.). Springer: Berlin, 1999; 271–312.
17. Stärk R, Schmid J, Börger E. Java and the Java Virtual Machine: Definition, Verification, Validation. Springer: Berlin,

2001.
18. Gosling J. Java intermediate bytecode. Proceedings of the Workshop on Intermediate Representations (IR’95). ACM

SIGPLAN Notices 1995; 30(3):111–118.
19. Freund S. The costs and benefits of Java bytecode subroutines. Proceedings of the OOPSLA’98 Workshop on Formal

Underpinnings of Java, October 1998.
20. Henrio L, Serpette B. A parametrized polyvariant bytecode verifier. Proceedings of the Journées Francophones des

Langages Applicatifs (JFLA’03), January 2003.
21. Leroy X. Java bytecode verification: Algorithms and formalizations. Journal of Automated Reasoning. To appear.
22. Sun Microsystems. Java Card Development Kit version 2.1.2. http://java.sun.com/javacard.
23. Posegga J, Vogt H. Java bytecode verification using model checking. Proceedings of the OOPSLA’98 Workshop on Formal

Underpinnings of Java, October 1998.
24. Yelland P. A compositional account of the Java virtual machine. Proceedings of the 26th ACM Symposium on Principles

of Programming Languages (POPL’99). ACM Press, 1999; 57–69.
25. The Haskell Web site. http://www.haskell.org.
26. Brisset P. Vers un vérifieur de bytecode Java certifié. Seminar Given at Ecole Normale Supérieure Paris, October 1998.
27. The Coq proof assistant. http://coq.inria.fr.
28. Milner R, Tofte M, Harper R, MacQueen D. The Definition of Standard ML. MIT Press: Cambridge, MA, 1997.
29. The Kimera project Web site. http://kimera.cs.washington.edu.
30. The OVM project Web site. http://ovmj.org.
31. Grothoff C. Private communication, June 2001.
32. Trusted Logic. TL Embedded Verifier. http://www.trusted-logic.fr/solution/TL Embedded Verifier.html.
33. J Consortium. JEFFTM file format. http://www.j-consortium.org [2002].
34. Frey A. Private communication, May 2002.
35. Klein G, Wildmoser M. Verified bytecode subroutines. Journal of Automated Reasoning. To appear.
36. The Isabelle system. http://isabelle.in.tum.de.
37. Wildmoser M. Subroutines and Java bytecode verification. Master’s Thesis, Technical University of Munich, June 2002.
38. Chen Z. Java CardTM Technology for Smart Cards. Addison-Wesley: Reading, MA, 2000.
39. Sun Microsystems. Connected, limited device configuration: Specification version 1.0a. http://java.sun.com/j2me [May

2000].
40. Agesen O, Detlefs D, Eliot J, Moss B. Garbage collection and local variable type-precision and liveness in Java virtual

machines. Proceedings of the 1998 ACM Conference on Programming Language Design and Implementation (PLDI’98).
ACM SIGPLAN Notices 1998; 33(5):269–279.

41. Coglio A. Simple verification technique for complex Java bytecode subroutines. Proceedings of the 4th ECOOP Workshop
on Formal Techniques for Java-like Programs, June 2002.

42. Kestrel Institute and Kestrel Technology LLC. SpecwareTM . http://www.specware.org.
43. ECMA International. Common Language Infrastructure (CLI) Standard, ECMA-335, December 2002.

Copyright c© 2004 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2004; 16:647–670

	1 OVERVIEW
	Mathematical notation

	2 SUBROUTINES
	2.1 A simple language with subroutines
	2.2 Requirements for verification
	2.3 Complexity caused by subroutines

	3 THE TECHNIQUE
	3.1 Intuition
	3.2 Definition
	3.3 Soundness
	3.4 Characterization
	3.5 Implementation issues

	4 RELATED WORK
	APPENDIX A
	Proof of Lemma 1
	Proof of Lemma 2
	Proof of Theorem 1 (Soundness)
	Proof of Theorem 2 (Characterization)
	Aside: Proof that the constructed solution is the least one

