
Toward a Provably-Correct Implementation of the JVM

Bytecode Verifier

Alessandro Coglio Allen Goldberg Zhenyu Qian

Kestrel Institute,
3260 Hillview Avenue

Palo Alto, CA 94304, USA
{coglio, goldberg, qian}@kestrel.edu

Abstract

This paper reports on our ongoing efforts to realize a provably-correct implementation
of the Java Virtual Machine bytecode verifier. We take the perspective that bytecode
verification is a dataflow analysis problem, or more generally, a constraint solving prob-
lem on lattices. We employ Specware, a system available from Kestrel Institute that
supports the development of programs from specifications, to formalize the bytecode
verifier, and to formally derive an executable program from our specification.

1 Introduction

This paper, reports on our ongoing efforts to realize a provably-correct implementation of
the Java Virtual Machine (JVM ) bytecode verifier (or simply the verifier) from a formal
specification using the Specware System. Specware [SJ95], a system available from
Kestrel Institute [KES], supports the formal and provably-correct development of programs
from specifications written in a specification notation based on high-order logic.

In previous papers [Qia98, Gol98] we have specified the semantics of the JVM verifier. Collec-
tively these papers deal with most aspects of the JVM including JVM subroutines, dynamic
class loading, object initialization, interface types, arrays, and all primitive types. These pa-
pers take the perspective that bytecode verification is a dataflow problem, or more generally,

1



a constraint solving problem on lattices. One advantage of this approach is that implemen-
tation of a bytecode verifier from such a specification can be derived as an instantiation of
a generic algorithm for constraint solving.

In this paper, we describe our progress in formalizing the specifications in those papers using
Specware, and we describe the refinement methodology used to obtain an implementation.

This paper is organized as follows. The next section gives a detailed overview of our approach.
In §3 we describe how our specification of the verifier is formalized in Specware. In §4 we
describe its refinement to a program using Specware. In §5 we give a small example. This
is followed by a description of related work and our conclusions.

2 Approach

2.1 Bytecode Verification, Dataflow Analysis,

and Constraint Problems

Dataflow analysis is a methodology used to establish assertions at program points that are
invariant over all program executions. Because the types of local variables and stack elements
vary during JVM execution, it is natural to view the bytecode verifier as a dataflow problem.
To specify a particular dataflow problem, a control flow graph, a semilattice, an initial state,
and transfer functions are specified. The semilattice captures the abstract program properties
of interest, and transfer functions capture the behavior of JVM instructions with respect
to the semilattice. The dataflow framework includes algorithms that solve general dataflow
problems by fixed-point iteration. Theorems that assert algorithm termination, soundness
and give a characterization of the accuracy of the solution have been proved [Muc97]. In
particular, soundness and termination are assured if the semilattice has finite height and the
transfer functions are monotone. In addition, if the transfer functions are distributive, the
algorithm yields the meet-over-all-paths solution, i.e. the sharpest or most accurate result
possible. In our specification of the verifier, construction of a flow graph is trivial. The main
challenge is to specify the semilattice and transfer functions.

In formalizing our specification, we chose a more general constraint framework [RM96] in-
stead of dataflow analysis. Let L = 〈L,⊑,⊓〉 be a semilattice, and F a collection of monotone
functions of various arities over L. Let V be a collection of variable names. Let t denote
a term formed from constants, c ∈ L, variables, v ∈ V , and function symbols from F . A
constraint solving problem is a collection of definite inequalities, i.e. inequalties of the form
v ⊑ t or c ⊑ t. A solution is an assignment I : V → L satisfying each inequality. A solution

2



M is maximal if for any solution I and any variable v, I(v) ⊑ M(v). In this paper, a refer-
ence to a constraint solving problem or, simply, a CSP refers to a problem of the described
form.

It is not difficult to see that a dataflow problem may be mapped to a CSP problem. For
simplicity, assume each node of the control flow graph consists of a single JVM instruction.
Let tf i denote the transfer function formalizing the behavior of the instruction at node i.1

Introduce a constraint variable, ui for each node i of the control flow graph. For each edge
(i, j) introduce the inequality uj ⊑ tf i(ui). Our specification of the verifier generates CSPs
of this form. Many of the properties enjoyed by the dataflow architecture are also true of
these CSP ’s. A chaotic fixed-point iteration algorithm will converge to the maximal solution.
The complexity of the algorithm is polynomial.

We chose to express the bytecode verifier as a CSP problem for the following reasons:

• We wish to explore the applicability of Kestrel-developed synthesis technology [JS98]
that has been used to optimize a related class of constraint problems.

• We may implement the verifier using Bane [FAFS98, FFA98, BAN], an an off-the-shelf
constraint solver designed specifically for program analysis.

• Our work formalizing CSP in Specware is more general and can be applied to prob-
lems other than just dataflow analysis.

A disadvantage of formulating the verifier as a CSP rather than a dataflow problem is a
loss of efficiency due to the generality of CSP. In a dataflow problem the control flow graph
explicates those constraints that are violated when a lattice value associated with a node is
updated. However, the program refinement technology described in [JS98] can restore this
efficiency.

2.2 Some Salient Aspects of Our Bytecode Specification

The bytecode verifier determines if a JVM program is well-typed. Because the methods in
a class reference instance variables and methods defined in other classes, type consistency
requires checking the internal consistency of a class, as well as its external consistency with
referenced classes. Because class files are loaded dynamically, and because it is desirable to

1If a JVM instruction raises an exception its behavior differs from normal execution. Therefore, our
actual specification associates transfer functions with edges, not nodes.

3



minimize constraints on when classes gets loaded, the verifier cannot assume that a referenced
class has been loaded prior to its verification. Thus, our specification maintains a global
typing context consisting of type assertions derived from the declarations in a class, and type
assumptions derived from references to external classes. The global typing context is one
component of the semilattice.

Because we make no assumptions about the order that classes are loaded (so the least general
common super-type of two object classes is generally not known when the class is verified),
and because there is no unique least general common superclass of two interface types, there
is no meaningful meet operation definable for JVM reference types. Instead, we use sets
to represent reference types. The intended meaning is that the static type of a reference
is one of the (reference) types in the set. These sets form a semilattice with union as the
meet operation. Verification of the invoke virtual and other instructions add subtype
assumptions to the global typing context.

2.3 Formalization of the Bytecode Verifier

2.3.1 Architecture of the Verifier as a Constraint Problem

Using the constraint approach, verification of a class file is performed in two steps, as illus-
trated in Figure 1. First, the global typing context is updated with assertions and assump-
tions derived from declarations in the constant pool. Furthermore, a constraint problem is
generated for each method defined in the class. In generating the constraint problem, it
is checked that the class file meets the static verification checks described in Section 4.9 of
[LY96]. In the second phase, the constraint problem for each method is solved and the global
typing context is updated with typing assumptions derived from the method code.

As defined above, a CSP is parameterized by a lattice, a collection of monotone functions on
the lattice, and a set of inequalities. The lattice and monotone functions are defined once for
the JVM— only the generated constraint inequalities depend on the method being verified.

2.3.2 Lattice Construction

We define a semilattice, LJVM , that characterizes the information that the verifier maintains
at each program point. This information includes the type of local variables and elements
of the stack, as well as the global typing context, which includes assertions and assumptions
about class declarations and subtype relationships, and the signature of referenced methods

4



CONSTRAINT
GENERATOR

CONSTRAINT
SOLVER

ASSERTIONS &
ASSUMPTIONS

GLOBAL

ASSERTIONS &
ASSUMPTIONS

GLOBAL

ASSERTIONS &
ASSUMPTIONS

GLOBAL

CLASS
FILE

CONSTRAINTS

YES / NO

Figure 1: Verifier Architecture

and instance variables. The type information regarding local variables and stack elements
is not simply the static type of the entity, but holds information about the initialization
status of objects, and other information needed to verify the proper use of the jsr and ret

instructions.

We define LJVM from some simple point and set lattices using lattice building operations :

× takes two semilattices and forms their product;

seq takes a semilattice L and forms a semilattice of products (sequences) of elements from
L;

5



⊕ takes two semilattices and forms their disjoint sum;

/ takes a semilattice and a suitable congruence relation and forms a semilattice whose ele-
ments are the equivalence classes induced by the relation. One use of this operation is
to identify the bottom element of a binary product with the bottom elements of the
component semilattices;

stk takes a semilattice L and forms a semilattice of bounded stacks whose elements are
taken from L.

Note these operations are generic lattice constructions of utility beyond the JVM.

Lprim

Lref

Lother

Lbase

Lstk

Lloc

Lgl-assert

Lgl-assum

Lglobal

Lvars
⊕

stk

seq

/

/

/

LJVM

Figure 2: JVM Lattice Construction

Figure 2 is a simplified view of the construction of LJVM using the lattice building operations.
In the figure, the ovals represent operations and unboxed text the names of the resulting
lattices. Thus, the lattice Lbase , used to represent a stack element or local variable, is the
(cascaded) disjoint sum of the three lattices shown. As described above, the lattice that
represents a reference is a set lattice of reference types. Lbase is then used to form lattices
representing the stack and local variables. Lgl-assert is a lattice that represents the set of

global assertions. The quotient operation is applied to Lgl-assert to construct a lattice that

identifies in a single equivalence class all inconsistent assertion sets and the bottom element
of the lattice.

2.4 Monotone Functions and Constraint Inequalities

Roughly speaking, our specification defines a monotone function for each transfer function
corresponding to a JVM instruction. The transfer functions are constructed from monotone

6



functions defined on component lattices of LJVM . For example, push and pop are defined
on stack semilattices, proved to be distributive (hence monotone) functions, and used in
the definition of transfer functions that manipulate the JVM stack. Most transfer functions
are composed from constructor or destructor operations (like push and pop) of the lattice
building operations (like stk(L)).

More precisely, because some transfer functions depend on the operand of the instruction,
we actually defined parameterized families of transfer functions. For example, the transfer
function for the putfield instruction is parameterized by the name of the object class
containing the field and type of the referenced field.

Analysis of a method generates a constraint inequality of the form uj ⊑ tf i(ui) for each
edge (i, j) of the control flow graph. Constraints are represented as pairs of terms, using an
abstract data type for terms. The constraint solving algorithm invokes a function eval(t, e)
that evaluates a term t given an environment e that maps variables to lattice values.

3 Formalization in Specware

As mentioned in §1, Specware is a system supporting the formal development of programs
from specifications. Its core functionalities are based on clear mathematical concepts from
logic and category theory, and are made accessible to the developer through a graphical user
interface. A specification (spec) in Specware is a theory in high-order logic. The system
provides convenient mechanisms to build more complex specs out of simpler ones. One such
mechanism is instantiating a parameterized spec (pspec): roughly, a pspec is a spec with an
explicit “formal parameter” part, which upon instantiation gets “replaced” with an “actual
parameter” spec.

Formalizing bytecode verification in Specware along the lines described in §2, amounts
to formalizing the JVM semilattices, the transfer functions for the JVM instructions, the
format of class files, the form of constraints, which constraints are derived from a given class
file, and what is a (maximal) solution to a set of constraints. In this section, we provide
an overview of the specs we developed for some of these concepts. To avoid cluttering this
overview with non-substantial details, the examples we present are slight simplifications of
the specs we actually wrote.

Specware provides a library of specs for some popular concepts (e.g., sets, ordering rela-
tions, arrays). Starting from some of them, we incrementally built our specs in a structured
way, making extensive use of pspecs and instantiation, as well as of other composition mecha-
nisms. We followed the rationale of “factorizing” common sub-concepts as much as possible,

7



in order to produce more re-usable, readable, and elegant specs. In fact, many of the specs
we wrote are completely independent of bytecode verification.

First of all, we wrote specs for (generic) semilattices, such as:

spec SEMILATTICE is

sort P

op r : P, P -> Boolean

op f : P, P -> P

axiom reflexivity is r(x,x)

axiom anti-symmetry is r(x,y) & r(y,x) => x=y

axiom transitivity is r(x,y) & r(y,z) => r(x,z)

axiom f-extr-bound-of-args is

r(f(x,y),x) & r(f(x,y),y) &

(r(z,x) & r(z,y) => r(z,f(x,y)))

end-spec

We wrote pspecs formalizing the construction of sequence semilattices, stack semilattices,
and so on. For instance, we wrote a pspec SEQUENCE-of-SEMILATTICE having SEMILATTICE

as formal parameter, and defining a new sort of tuples of semilattice points, and how the
partial ordering and binary operation can be lifted to such tuples:

pspec SEQUENCE-of-SEMILATTICE is

parameter SEMILATTICE

...

definition of f : Seq, Seq -> Seq is

axiom f (x, y) = z <=>

forall(i) comp(z,i) = f (comp(x,i), comp(y,i))

...

Analogously, we wrote pspecs STACK-of-SEMILATTICE (with push and pop operations),
QUOTIENT-of-SEMILATTICE, etc. Next, we suitably instantiated them, starting from JVM -
specific semilattices such as:

spec JVM-PRIMITIVE-SEMILATTICE is

sort PrimSL

const int : PrimSL

const float : PrimSL

8



const unusable : PrimSL

...

definition of meet is

axiom meet(int,float) = unusable

axiom meet(int,int) = int

...

In order to formalize definite inequalities, terms over a semilattice with monotone functions
must be formalized. Abstracting a little bit from that, we first wrote a spec ALGEBRA and a
pspec TERMS-over-ALGEBRA having ALGEBRA as formal parameter2:

spec ALGEBRA is

sort Crr

sort Fun

op arity : Fun -> Nat

op apply : Fun, CrrList -> Crr

...

pspec TERMS-over-ALGEBRA is

parameter ALGEBRA

sort Term

sort Var

op const-term : Crr -> Term

op var-term : Var -> Term

op funapp-term : Fun, TermList -> Term

sort Asg

op asg-val : Asg, Var -> Crr

op eval : Term, Asg -> Crr

...

Next, instantiating the carrier Crr to be a semilattice, adding axioms stating monotonicity
for the elements in Fun, and pairing generic terms with constant terms or variable terms, we
formalized definite inequalities, as well as CSP ’s as sets of definite inequalities, and what is
a (maximal) solution.

Our specs for transfer functions define a sort for them, and an apply operation to apply them
to the JVM semilattice points. To avoid lengthy and repetitive definitions, we defined them

2In the specs below, CrrList and TermList are sorts for finite lists of carrier elements (of sort Crr) and
terms (of sort Term), respectively. Asg is a sort for assignments, i.e. finite maps from variables (of sort Var)
to carrier elements.

9



as suitable compositions of some auxiliary functions. For instance, we defined a function
pop-match which pops the top element of a JVM stack semilattice point if it “matches” a
specified type (e.g., if it is an integer), and returns ⊥ (bottom) otherwise. Here is an excerpt3:

spec TRANSFER-FUNCTIONS is

sort TransFun

op apply : TransFun, JvmSL -> JvmSL

const iadd : TransFun

...

axiom

forall (...stk:StkSL...)

apply(iadd,...stk...) =

(...push (int, pop-match (int, pop-match(int,stk)))...)

...

Clearly, by instantiating the definite inequality pspecs with the JVM semilattice and the
transfer functions, we exactly obtain the spec for JVM constraint problems.

Specware provides facilities to validate specs, by allowing the developer to enrich them with
conjectures stating putative properties of the specs. The developer can then ask the system
to verify a spec, which amounts to invoking a theorem prover (currently, Kitp [WG94]) to
prove all the conjectures of the spec. In all our specs we included conjectures, stating for
instance that the JVM primitive semilattice is really a semilattice, that a (generic) sequence
semilattice is really a semilattice, and that our transfer functions are monotone:

...

theorem prim-reflexivity is forall(x:PrimSL) leq(x,x)

...

theorem seq-transitivity is

forall(x,y,z:Seq) r(x,y) & r(y,z) => r(x,z)

...

theorem transf-fun-monotonicity is

forall(tf:TransFun, x,y:JvmSL)

leq(x,y) => leq (apply(tf,x), apply(tf,y))

...

3In the spec below, TransFun is a sort for transfer function names, and JvmSL is a sort for the whole JVM
semilattice points (i.e., including assertion, assumption, local variable, and stack semilattice points).

10



4 Refinement in Specware

In Specware, programs are formally derived from specs by refining specs. Roughly, refin-
ing a spec amounts to “mapping” it into a new spec which interprets the concepts of the
initial one in terms of other concepts. These other concepts should be closer to those of
some target executable language, and if they are sufficiently close, executable code can be
generated by Specware. Refinements can be sequentially composed, thus allowing code to
be derived from specs through a series of successive steps. Furthermore, a refinement for a
compound spec (e.g., an instantiated pspec) can be obtained from refinements for the indi-
vidual components (e.g., for the pspec and for the actual parameter). Currently, Specware

can generate code for (functional subsets of) Lisp and C++.

Specware provides built-in mechanisms to represent constructed sorts (e.g., products, sums,
quotients) in target languages in terms of the representations of the component sorts. It also
provides a library of refinements of common abstract structures (such as sets and bags) to
more concrete structures (such as lists and arrays) which are “directly” representable in
target languages. Starting from these mechanisms and refinements, we are currently refining
our specs to Lisp code. For instance, we are refining the JVM primitive semilattice points
to an enumeration of integers, with semilattice operations defined by cases:

...

definition of unusable : PrimSL is unusable = 1

definition of int : PrimSL is int = 2

definition of float : PrimSL is float = 3

...

definition of meet : PrimSL, PrimSL -> PrimSL is

axiom ~(x=y) => meet(x,y) = unusable

...

Sequence and stack semilattices are being refined to arrays and lists. Operations are being
re-phrased to be constructive, as in:

definition of f : Seq, Seq -> Seq is

axiom f (x, y) = f-aux (x, y, x, 1)

definition of f-aux : Seq, Seq, Seq, Nat -> Seq is

axiom geq(i,size(z)) => f-aux(x,y,z,i) = z

axiom lt(i,size(z)) =>

f-aux(x,y,z,i) =

11



f-aux(x,y,change(z,i,f(comp(x,i),

comp(y,i))),succ(i))

An important refinement is to provide an actual algorithm to compute the maximal solution
of a set of definite inequalities. We are in fact building and refining specs for the algorithm
proposed in [RM96].

For example, a constraint of the form u3 ⊑ tf iadd(u4) is represented in our generated Lisp

code as:

((VAR 3) ((TF 16) (VAR 4)))

And here is how the meet function over the JVM primitive semilattice is refined to Lisp:

(DEFUN MEET-PRIM (X Y)

(COND ((NOT (= X Y)) 1) ...))

We are going to further refine our specs for optimization, in order to generate more efficient
code.

5 Example

Figure 3 gives a method together with an explanation of each instruction. We assume that
the method is contained in the class C. Note that in the instruction putfield(Fld,D, C), Fld
is the name of the field, D the type of the field and C the name of the class declaring the
field. Since the program point 7 has two predecessors 5 and 6, the top stack entry may hold
either the first or second actual parameter.

For the instructions in the example in Figure 3, we define the following transfer functions of

12



void m(J1,J2) // The method has two arguments of interfaces J1 and J2.
.limit local 3 // The method has 3 variables.

// Set this-object and the actual parameters in the variables;
// set the empty stack.

0 aload 0 // Load the object reference in variable 0 onto the stack.
1 aload 1 // Load the object reference in variable 1 onto the stack.
2 aload 2 // Load the object reference in variable 2 onto the stack.
3 if_acmpeq 6 // If the top entries in the stack are equal, then go to 6;

// else go to 4.
4 aload 1 // Load the object reference in variable 1 onto the stack.
5 goto 7 // Go to 7.
6 aload 2 // Load the object reference in variable 2 onto the stack.
7 putfield (Fld,D,C) // Put the top stack entry into the field Fld of the object

// referenced by the second top stack entry
8 return // Terminates and returns.

Figure 3: A Simple Method

type JvmSL→ JvmSL:

tf aload ind
(asr, asm, var, stk) :=

if isRef (var ind ) then (asr, asm, var, push(stk, varind )) else ⊥
tf if acmpeq pp(asr, asm, var, stk) :=
if isRef (top(stk)) and isRef (top(pop(stk)))
then (asr, asm, var, pop(pop((stk))) else ⊥

tf goto pp(u) := u

tf putfield(Fld,D,C)(asr, asm, var, stk) :=
(asr,
asm ∪ {subtyping(top(stk), D), subtyping(top(pop(stk)), C), F ld ∈ fields(C)},
vars, pop(pop(stk)))

tf return(u) := ⊤

where ⊤ denotes an (artificially added) greatest element in the JVM semi-lattice JvmSL,
and subtyping({ref n}, ref

′) is an assumption stating that each ref i with 1 ≤ i ≤ n is a
subtype of ref ′ in the JVM.

We view the instruction return as having a special final node as its successor program point.

13



Program vars stk asm

void m(J1,J2) asm as input
0 aload 0 [C, J1, J2] [] asm

1 aload 1 [C, J1, J2] [C ] asm

2 aload 2 [C, J1, J2] [C, J1] asm

3 if_acmpeq 6 [C, J1, J2] [C, J1, J2] asm

4 aload 1 [C, J1, J2] [C ] asm

5 goto 7 [C, J1, J2] [C, J1] asm

6 aload 2 [C, J1, J2] [C ] asm

7 putfield (Fld,D,C)[C, J1, J2] [C, {J1, J2}] asm

8 return [C, J1, J2] [] asm ∪
{subtyping({J1, J2}, D),
F ld ∈ fields(C)}}

Figure 4: Legal Location Types for the Method in Figure 3

The head of each method has a special transfer function

head tf (cnam, tym, asr, asm) := (asr, asm, [cnam, tym, unusm+1, · · · , unusn], [])

where asr and asm are the current global assertions and assumptions, cnam is the class
containing the declaration of the method, and tym are types of the parameters.

A constraint is created for each instruction. Let the instruction be at the program point pp
and have a successor program point pp′. Then the constraint is of the form

upp′ ⊑ tf (upp)

For the method head, a constraint

u0 ⊑ head tf (cnam, tym, asr, asm)

is created at the program point 0, where asr and asm are given by an invoking site of the
method.

Figure 4 shows the maximal solution to the constraint inequalities generated for the method
code. Note that at the program point 7, the lattice value of the top entry of the stack is a set
with two elements since its static type is either the static type of the first or second actual
parameter of the method. In all other cases where a stack or local variable holds a reference
type, the set of possible types is a singleton. To simplify Figure 4, we have supressed braces
around singleton sets. The constraint subtyping({J1, J2}, D) in the asm component at 8

assures that D is a superinterface of J1 and J2.

14



6 Related work

Bertelsen formalized JVM instructions using state transitions [Ber97]. Cohen described a
formal semantics of a subset of the JVM, but runtime checks are used to assure type-safe
execution [Coh97]. Both approaches did not consider static type checking, thus are not
directly relevant to bytecode verification.

Stata and Abadi [SA98] proposed a type system for subroutines, provided lengthy proofs
for the soundness of the system and clarified several key semantic issues about subroutines.
Freund and Mitchell [FM98] made a significant extension of Stata and Abadi’s type system by
considering object initialization. Hagiya and Tozawa [HT98] presented another type system
for subroutines, where the soundness proof is extremely simple. Qian [Qia98] presented a
constraint-based typing system for objects, primitive values, methods and subroutines and
proved the soundness. Pusch [Pus98] formalized a subset of the JVM in the theorem prover
Isabelle/HOL thus achieving a high level of assurance. All of this work is basically aimed
at achieving a sound specification, but did not consider how to develop a provably correct
implementation. Note that Hagiya and Tozawa discussed issues relating to implementation
of their type system, but they did not formally describe their implementation. In fact, since
they did not consider objects, their implementation did not address many of the the issues
that we have.

Goldberg [Gol98] directly used dataflow analysis to formally specify bytecode verification
focusing on type-correctness and global type consistency for dynamic class loading. He
successfully formalized a way to relate bytecode verification and class loading.

Saraswat [Sar97] studied static type-(un)safety of Java in the presence of more than one
class loader. We do not consider class loaders in this paper.

The Kimera project [SMB97] was quite effective in detecting flaws in commercial bytecode
verifiers. Using a comparative testing approach, they wrote a reference bytecode verifier and
tested commercial bytecode verifiers against it. Their code is well structured and organized,
and derived from the English JVM specification. It achieves a higher level of assurance
than commercial implementations. However, since there is no formal specification, it is not
possible to reason about it, or establish its formal correctness.

15



7 Conclusions and Future Work

This work is ongoing. We expect to generate Lisp code for a significant subset of the verifier
over the next few months. We are concentrating first on generating code for the constraint
solver. Initially, the constraint generator will be written by hand. We do not expect the
derived verifier to be very efficient. Partial evaluation should be a very effective optimization
method since much of the code will alternatively construct and destruct the multiple layers
of component lattice structure. We also plan to extend the specification to cover all aspects
of the verifier.

We are also studying implementing the verifier using the Bane constraint solver. In this
scenario, the constraint generator will generate a constraint problem in the Bane constraint
language. The constraint language used by Bane is closely related to the CSP scheme
used here. The lattice used by Bane is a set lattice over regular trees. Most of the lattice
constructions, including sums, binary and sequences, and stacks can be modeled using Bane.
The Bane simplifier then replaces the derived constraint solver.

Recently, Qian [Qia97] presented a dataflow analysis algorithm (scheme), that non-determin-
istically uses formal typing rules to compute the smallest types for memory locations of
JVM program. He rigorously proved the correctness, termination and completeness of the
algorithm. He paid special attention to subroutines and objects. Additional work is needed
to see if that scheme can be expressed in the CSP framework used here. Work on this is
well under the way.

We also plan to compare the results from our derived verifier with other bytecode verifiers.
All of these activities will contribute to increasing our assurance that the specification and
implementation are correct.

References

[BAN] The Berkeley ANalysis Engine (BANE),
http://www.cs.berkeley.edu/Research/Aiken/bane.html.

[Ber97] Peter Bertelsen. Semantics of java byte code. http://www.dina.kvl.dk/˜pmb/,
1997.

[Coh97] R. M. Cohen. The Defensive Java Virtual Machine specification. Technical report,
Computational Logic inc., 1997.

16



[FAFS98] Manuel Fähndrich, Alexander Aiken, Jeffrey S. Foster, and Zhendong Su. Partial
online cycle elimination in inclusion constraint graphs. In Proceedings of the 1998
Conference on Programming Languages Design and Implementation, Montreal,
June 1998.

[FFA98] Manuel Fähndrich, Jeffrey S. Foster, and Alexander Aiken. Tracking down excep-
tions in standard ml programs. Technical report, UC Berekley, Feb 1998. UCB
Computer Science Technical Report.

[FM98] Stephen Freund and John Mitchell. A type system for object initialization in
the java bytecode language (summary). Electronic Notes in Theoretical Computer
Science, 10, 1998. http://www.elsevier.nl/locate/entcs/volume10.html.

[Gol98] Allen Goldberg. A specification of Java loading and bytecode verification. In
Proc. 5th ACM Conference on Computer and Communications Security, 1998. To
appear.

[HT98] Masami Hagiya and Akihiko Tozawa. On a new method fot dataflow analysis
of Java Virtual Machine subroutines. In Proc. 1998 Static Analysis Symposium.
Springer-Verlag LNCS, 1998. To appear.

[JS98] Stephen J.Westfold and Douglas R. Smith. Synthesis of efficient constraint satis-
faction programs. Technical report, Kestrel Institute, April 1998.

[KES] Kestrel Institute Keep Program, http://www.kestrel.edu/HTML/keep.html/.

[LY96] Tim Lindholm and Frank Yellin. The JavaTM Virtual Machine Specification.
Addison-Wesley, 1996.

[Muc97] Steven Muchnick. Advanced Compiler Design and Implementation. Morgan Kauf-
mann, San Francisco, 1997.

[Pus98] C. Pusch. Formalizing the Java Virtual Machine in Isabelle/HOL.
Technical report, TUM I9816, Technische Unversität München, 1998.
http://www4.informatik.tu-muenchen.de/˜isabelle/bali/.

[Qia97] Zhenyu Qian. Constraint-based specification and dataflow analysis for
Javatm byte code verification. Technical report, Kestrel Institution, 1997.
http://www.kestrel.edu/˜qian/abs-jvmdflow, to appear.

[Qia98] Zhenyu Qian. A formal specification of Javatm virtual machine instructions for
objects, methods and subroutines. In Jim Alves-Foss, editor, Formal Syntax and
Semantics of JavaTM. Springer Verlag LNCS, 1998. To appear.

17



[RM96] Jakob Rehof and Torben Æ. Mogensen. Tractable constraints in finite semi-
lattices. In R. Cousot and D. A. Schmidt, editors, Third International Static
Analysis Symposium (SAS), volume 1145 of Lecture Notes in Computer Science,
pages 285–30. Springer, September 1996.

[SA98] Raymie Stata and Mart́in Abadi. A type system for Java bytecode subroutines.
In Proc. 25st ACM Symp. Principles of Programming Languages, 1998.

[Sar97] V. Saraswat. Java is not type-safe. Technical report, AT&T Research, 1997.
http://www.research.att.com/˜vj/bug.html.

[SJ95] Y. V. Srinivas and Richard Jüllig. Specware: Formal support for composing
software. In B. Moeller, editor, Proceedings of the Conference on Mathematics of
Program Construction, pages 399–422. LNCS 947, Springer-Verlag, Berlin, 1995.

[SMB97] Emin Gn̈n Sirer, Sean McDirmid, and Brian Bershad. A Java system security
architecture. http://kimera.cs.washington.edu/, 1997.

[WG94] T. C. Wang and Allen Goldberg. KITP-93: An automated inference system for
program analysis. In A. Bundy, editor, Proceedings of 12th Conference on Auto-
mated Deduction, pages 831–836. Springer-Verlag, Berlin, 1994. Lecture Notes in
Artificial Intelligence, Vol. 814.

18


