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Syntheto is a surface language for carrying out formally verified program synthesis by transforma-
tional refinement in ACL2 using the APT toolkit. Syntheto aims at providing more familiarity and
automation, in order to make this technology more widely usable. Syntheto is a strongly statically
typed functional language that includes both executable and non-executable constructs, including
facilities to state and prove theorems and facilities to apply proof-generating transformations. Syn-
theto is integrated into an IDE with a notebook-style, interactive interface that translates Syntheto
to ACL2 definitions and APT transformation invocations, and back-translates the prover’s results to
Syntheto; the bidirectional translation happens behind the scenes, with the user interacting solely
with Syntheto.

1 Introduction

The APT (Automated Program Transformations) toolkit [14], built on the ACL2 theorem prover [13],
provides facilities to carry out formally verified program synthesis by transformational refinement. Using
APT involves using ACL2, and requires expertise in both ACL2 and APT.

In the pursuit of the worthy but arduous goal to make APT and ACL2 (and more generally, formal
methods) more widely usable, we have designed and developed a prototype of Syntheto, a surface lan-
guage for ACL2 and APT. Syntheto contains constructs for writing formal specifications and for applying
proof-generating transformations to them. These constructs are translated to ACL2 definitions and APT
transformation invocations, and the prover’s results are translated back to Syntheto.

Compared to ACL2 and APT, Syntheto aims at providing more familiarity and automation. Its
syntax is more similar to popular programming languages like Java, with curly braces and infix operators.
Syntheto is strongly statically typed: this feature is commonly found in popular programming languages,
and helps automate a decidable portion of what manifests as potentially undecidable guard obligations in
ACL2. Moreover, the typing facilitates termination proofs, by effectively removing from consideration
function arguments outside their types (i.e. guards in ACL2).1 Syntheto transformations also increase
automation by combining multiple APT transformations in some cases; however, similar combinations
could be realized in ACL2 and APT, and are therefore not necessarily a unique characteristic of Syntheto.

Last but not least, Syntheto is integrated into an IDE with a notebook-style [16], interactive interface,
which in particular continuously displays the results of transformations in read-only portions just below
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the invocations of the transformations, which are refreshed (i.e. re-calculated) when the user edits up-
stream code. This is particularly helpful in multi-step program synthesis, because the user can readily see
the intermediate specifications produced by a sequence of transformations just below the transformations
that produce them and can quickly assess the impact of alternative choices.

Syntheto is no silver bullet: it does not make APT and ACL2 suddenly usable by anyone without
a formal methods background. Nonetheless, our initial experience suggests that it may be easier to
approach for more users than plain APT and ACL2. Syntheto is currently just a prototype, as we had
limited time and resources to develop it; more development is needed to draw more solid conclusions
about the merits of Syntheto. In terms of contributions, we also believe that the bidirectional translation
between Syntheto and ACL2/APT involves interesting technical aspects.

Section 2 overviews the Syntheto language. Section 3 describes the Syntheto front end, i.e. the
notebook-style IDE with which the user interacts. Section 4 describes the Syntheto back end, i.e. the
machinery that translates between Syntheto and ACL2/APT, as well as all the supporting developments.
Section 5 provides an example of use of Syntheto. Section 6 discusses related work. Section 7 outlines
future work to further develop Syntheto and overcome its current limitations.

Syntheto is available in the ACL2 Community Books, at [books]/kestrel/syntheto.

2 Language

Syntheto is a strongly statically typed purely functional language that includes non-executable constructs
for specification, as well as constructs for stating theorems and constructs for transforming functions.

2.1 Types

Syntheto has built-in primitive types for booleans (the usual two), characters (ISO 8851-1, 8-bit), strings
(of such characters, of any length), and integers (unbounded). It also has built-in parameterized types for
options,2 finite sets, finite sequences, and finite maps: the first one is parameterized over the base type,
the second and third ones are parameterized over the element type, and the fourth one is parameterized
over the domain and range types.

Syntheto supports user-defined named algebraic types. A product type is defined by a set of named
type components and an optional invariant boolean expression over the component names: a value of a
product type is a finite map from the component names to values of their types that satisfy the invariant.
A sum type is defined by a set of named alternatives each of which has an associated unnamed product
type: a value of a sum type consists of the name of an alternative and a value of the corresponding
product type. An example of a product type and a sum type:

struct rational {

numerator: int,

denominator: positive

| gcd(abs(numerator), abs(denominator)) == 1

}

variant orientation {clockwise, counterclockwise, colinear}

Syntheto also supports user-defined named subset types (i.e. subtypes). A subtype is defined by an
(existing) supertype and a restricting boolean expression over the supertype: the subtype consists of

2An option type is a disjoint union of a base type with a distinct value that indicates the absence of a value of the base type.
An option type can represent an optionally present value of the base type.
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the values of the supertype that satisfy the restriction. Since Syntheto types must be non-empty, the
definition of a subtype also includes an optional ground expression that must evaluate to a witness value
of the subtype, i.e. a value of the supertype that satisfies the restriction; this expression must be supplied
by the user when a witness value cannot be automatically inferred.

Recursive types, including mutually recursive ones, are supported. The declaration of a clique of
mutually recursive types must be enclosed in a surrounding declaration that explicitly groups the clique.
Type recursions must be well-founded; this requirement is handled via theorem proving.

2.2 Expressions

Syntheto has literals (of the four primitive types mentioned in Section 2.1), typed variables, unary and
binary expressions for a variety of operators, ternary conditional expressions, function calls, local vari-
able bindings, tuple constructors and accessors, as well as constructors, accessors, and updaters of values
of product and sum types. Being a purely functional language, Syntheto has no statements; however, the
syntax of certain kinds of expressions resembles statement syntax more than expression syntax.

Boolean expressions are also used as logical formulas. Boolean operators include not only negation,
conjunction, and disjunction, but also implication, converse implication, and coimplication.

Establishing the type correctness of Syntheto expressions requires type checking and some amount of
type inference (the latter is for the built-in parameterized types mentioned in Section 2.1). Type checking
involves proof obligations, e.g. that a product type construction expression satisfies the invariant, and that
an expression of a supertype to which a variable of a subtype is bound satisfies the subtype restriction.
Syntheto type checking is thus split into a decidable portion and an undecidable portion, similarly to
languages like PVS [19] and Specware [15]: the decidable portion is handled by an algorithm, while the
undecidable portion engenders proof obligations that are handled via theorem proving (as explained in
more detail later).

2.3 Functions

Syntheto has two kinds of function definitions, both of which start with a function header that consists
of a name, zero or more named typed inputs, and one or more named typed outputs. There may also be a
precondition, i.e. a boolean expression over the inputs, and a postcondition, i.e. a boolean expression over
the inputs and the outputs. The precondition engenders a proof obligation for each call of the function.
The postcondition and precondition engender a proof obligation on the function definition itself.

The first kind of function definition (regular) has a body consisting of an expression over the inputs,
which calculates the outputs from the inputs. This kind of function is executable if all the functions
it calls are executable. This kind of function may be singly or mutually recursive; mutually recursive
cliques of functions must be enclosed in a surrounding declaration that explicitly groups the clique. An
example regular definition of the factorial function:

function factorial (n:int) assumes n >= 0 returns (out:int) ensures out > 0 {

if (n == 0) {

return 1;

}

else {

return n * factorial(n - 1);

}

}
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The second kind of function definition (quantified) consists of a universal or existential quantification,
over one or more named typed variables (distinct from inputs and outputs), and a boolean expression over
input and quantified variables. This kind of function definition must have one output of boolean type.
Functions with quantifiers cannot be recursive.

Syntheto also has some built-in functions over sets, sequences, and other built-in types. These do
not have an explicit definition of the two kinds discussed above; they have implicit definitions. There is
currently a limited selection of built-in functions; more built-in functions may be added with ease.

2.4 Specifications

A Syntheto function of the kinds described above can be used as a specification of an input/output
behavior. The function may be non-executable, or inefficiently executable; its role is just to specify
an input/output behavior in a simple and clear way. This specification may be refined, via Syntheto
transformations, to another function that is efficiently executable, and likely more complicated than
the initial specification: the new function is the implementation of the specification. The specification
and implementation functions are extensionally equal but intensionally different: they denote the same
mathematical function, but have different bodies.

Syntheto also supports more general specifications, in the form of second-order predicates. A Syn-
theto second-order predicate is over one or more function variables, which are placeholders for the ef-
ficiently executable functions to be synthesized via transformational refinement. The predicate states
constraints that must be satisfied by the functions, in terms of their inputs and outputs (i.e. extension-
ally), not in terms of their bodies (i.e. intensionally). This kind of Syntheto specification may be refined
to a form in which the function variables are equated to efficiently executable Syntheto functions that
are synthesized in the course of the transformational refinement. These Syntheto functions satisfy the
predicate by construction; they are solutions to the constraint problem expressed by the predicate.

The simpler kind of Syntheto specification, discussed above, that consists of a single function (or
more generally, a clique of mutually recursive functions) can be viewed as an abbreviation for a second-
order predicate that constrains a function variable to be (extensionally) equal to the Syntheto function.

A Syntheto second-order predicate has a name, and takes one or more function headers as arguments.
A function header, as mentioned in Section 2.3, consists of a function name and of named typed inputs
and outputs: when used as argument of a second-order predicate, the function name is the name of the
function variable, and the named inputs and outputs can be used to express input/output constraints.
The body of a second-order predicate may be one of three possible kinds. The first kind is a boolean
expression over the function variables, which may reference other predicates. The second kind consists of
a universal or existential quantification over one or more named typed variables, and a boolean expression
over the function variables and the quantified variables, which may reference other predicates. Note that
these two kinds are analogous to the two kinds of function definitions discussed in Section 2.3. The third
kind, only usable for predicates over single function variables, is a boolean expression over the named
inputs and outputs of the function header: this covers the common case of an input/output relation that
a synthesized function must specify. This third kind can be viewed as a special case of the second kind,
where the function inputs and outputs are universally quantified. The names of the inputs and outputs
in the function headers are only used in this third kind of specification; in the other two kinds, only the
names of the function variables are used. An example specification (of the third kind) of a sort function:

specification sort_spec

(function sort (input: seq<int>) returns (output: seq<int>)) {

ordered(output) && permutation(output, input);



A. Coglio, E. McCarthy, S. Westfold, D. Balasubramanian, A. Dubey, G. Karsai 155

}

2.5 Theorems

Syntheto has a construct to declare, and attempt to prove, explicit theorems. The explicit theorems are
in addition to implicit theorems that arise from the type checking proof obligations described in Section
2.2 and the function precondition/postcondition proof obligations described in Section 2.3.

An explicit Syntheto theorem consists of a name, a sequence of typed variables, and a boolean
expression (i.e. the formula) over those variables. The variables are universally quantified. We plan to
extend this construct with the ability to specify proof hints.

2.6 Transformations

Syntheto transformations generate a definition of a function in terms of an existing function. The trans-
formation to apply has a name with named options specified using product syntax. The following trans-
formations are currently supported:

• simplify: Simplifies a function definition using enabled rewrite rules.
• finite_difference: Adds a parameter to a function along with an invariant that the parameter is

equal to a function of the existing parameters, to incrementally compute an expensive expression.
• tail_recursion: Puts a function into tail-recursive form.
• rename_param: Renames a parameter.
• isomorphism: Replaces a parameter of one type by a parameter of an isomorphic type.
• drop_irrelevant_parameter: Removes a parameter that is not needed in computing the result

of the function—usually because of a previous finite-difference transformation.
• wrap_output: Wraps a function call around the body of a function.
• restrict: Adds a precondition on a function. This may enable another transformation such as
isomorphism.

2.7 Executability

Syntheto has both executable and non-executable constructs, as appropriate for a formal specification
language. The Syntheto expressions described in Section 2.2 are all executable, provided that every
function they call is executable. The functions described in Section 2.3 whose definitions are expressions
are executable, provided that every function called by those expressions are executable; the functions
with universal or existential quantifiers are not executable. The specification predicates described in
Section 2.4 are not executable. Explicit and implicit theorems are not executable. Transformations are
executable; they may generate executable or non-executable functions.

3 Front End

With an interactive theorem prover, admissibility of definitions and provability of theorems are sensitive
to the current theory. It is common to build proofs in a linear manner. To make this familiar to the
majority of users, we use a notebook-style interface [16].

When starting with an empty notebook, definitions are appended one by one, and the front end sub-
mits them, in order, to the ACL2 back end. A new definition cannot be added if the previous submission
was rejected—rather, the rejected definition must first be fixed and resubmitted. If an earlier cell is
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edited, then it and all definitions after it are resubmitted in order, until there is either a rejected definition
or until all cells have been submitted and accepted.

The front end components are described here because they are conceptually important for under-
standing and usability. We describe how these components work in our prototype.

3.1 Components

From a user’s point of view, the main components needed to use Syntheto are
• Visual Studio Code (VS Code) [23],
• Syntheto plugin for VS Code,
• Docker Engine [9], and
• a Docker image containing the Syntheto back end.

We briefly describe the subcomponents of the Syntheto plugin for VS Code and how they are built. In
later sections we describe in more detail what happens when a user enters a definition using the plugin.

The Syntheto parser is generated from an Xtext grammar [24]. The generator produces Java code that
parses the Syntheto code and builds Xtext abstract syntax trees (ASTs). Another Java package converts
those ASTs to a form that is homomorphic to the Syntheto abstract syntax definition in ACL2, which we
call the Syntheto ASTs. The VS Code Notebook interface and Language Server Protocol (LSP) interface
are also written in Java.

The edu.kestrel.syntheto.ast Java package defines Syntheto ASTs. In general, each class
represents a language construct. Besides defining the fields of the construct, each class defines methods
to convert instances to and from S-expression AST structures.

The edu.kestrel.syntheto.sexpr Java package defines ACL2 S-expression ASTs. This model
of S-expressions is designed to be easily serialized to text that is then easily parsed by ACL2. For
translating code in the other direction, this package also defines token classes, a tokenizer that lexes a
stream of characters into a stream of tokens, and a parser that constructs an S-expression AST from a
sequence of tokens.

3.2 Setup

A user starts the Docker image that contains the customized ACL2 executable, which starts listening
on an IP socket or Unix domain socket. The user then starts VS Code with the Syntheto plugin. The
VS plugin recognizes the .synth file extension. When the user opens a new or existing file with that
extension, the plugin establishes a connection with the socket.

3.3 Parsing

When the user enters a definition or theorem into a cell and presses the run button, the text is parsed and
restructured by the front end into a Syntheto AST in Java. The AST classes correspond to the sum and
product fixtypes that define the Syntheto ASTs in ACL2.

For a Syntheto construct defined by an ACL2 product fixtype [20] [21, Topic defprod] we define
a concrete subclass with fields for the formal parameters of the language construct. For a Syntheto
construct defined by an ACL2 sum fixtype [20] [21, Topic deftagsum] we define an abstract superclass;
for each alternative component of the sum type, we define a concrete subclass with fields for the formal
parameters of the component.

https://www.cs.utexas.edu/users/moore/acl2/manuals/latest/index.html?topic=FTY____DEFPROD
https://www.cs.utexas.edu/users/moore/acl2/manuals/latest/index.html?topic=FTY____DEFTAGSUM
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3.4 Transfer Language

In order to communicate between the Java front end and the ACL2 back end, we define a simple S-
expression language called transfer language. The transfer language is chosen to be a subset of ACL2
syntax that is simple for Java to parse. For example, it does not support Lisp reader macros or backquote.

The transfer language is interpreted in the ACL2 package, meaning symbols with no package prefix
refer to symbols accessible in the ACL2 package. The syntax for symbols is very simple: only uppercase
letters, periods, colons, and hyphens are allowed. Vertical bar and backslash escapes are not allowed in
the language (although for expediency, for now they do not trigger runtime errors when encountered).

For example, consider the Syntheto source code:
subtype positive {

x: int | x > 0

}

The transfer language form sent to the back end is:
(SYNTHETO::PROCESS-SYNTHETO-TOPLEVEL

(SYNTHETO::MAKE-TOPLEVEL-TYPE

:GET (SYNTHETO::MAKE-TYPE-DEFINITION

:NAME (SYNTHETO::MAKE-IDENTIFIER :NAME "positive")

:BODY (SYNTHETO::MAKE-TYPE-DEFINER-SUBSET

:GET (SYNTHETO::MAKE-TYPE-SUBSET

:SUPERTYPE (SYNTHETO::MAKE-TYPE-INTEGER)

:VARIABLE (SYNTHETO::MAKE-IDENTIFIER :NAME "x")

:RESTRICTION

(SYNTHETO::MAKE-EXPRESSION-BINARY

:OPERATOR (SYNTHETO::MAKE-BINARY-OP-GT)

:LEFT-OPERAND

(SYNTHETO::MAKE-EXPRESSION-VARIABLE

:NAME (SYNTHETO::MAKE-IDENTIFIER :NAME "x"))

:RIGHT-OPERAND

(SYNTHETO::MAKE-EXPRESSION-LITERAL

:GET (SYNTHETO::MAKE-LITERAL-INTEGER :VALUE 0)))

:WITNESS NIL)))))

The transfer language form returned by the back end is:
(SYNTHETO::MAKE-OUTCOME-TYPE-SUCCESS :MESSAGE "positive")

In most cases, a form in the transfer language consists of an outermost macro wrapped around a tree
of ACL2 fixtype MAKE- forms. We call the inner forms make-myself forms. Every ACL2 sum or product
fixtype used for Syntheto ASTs has an associated <typename>--MAKE-MYSELF function that takes an
AST instance argument and returns ACL2 code that, when executed, makes an identical AST instance.

Syntheto definition names and other names in Syntheto syntax have a different syntax from ACL2
symbols. For example, they are case sensitive. To avoid using symbols with escaped lowercase letters,
the definitions are represented in the AST as strings, not symbols. This can be seen in forms such as:
(SYNTHETO::MAKE-IDENTIFIER :NAME "x").

In the back end, Syntheto definition names are eventually translated to ACL2 definition names, which
are symbols. To avoid problems that would arise when a name already has a definition in a different
package, we define the SYNDEF package, which does not import any symbols from any other package.
Syntheto definition names, field names, composite type names, parameter names, and local variable
names are all interned in the SYNDEF package. Derived symbols such as sequence[int]-p and names
of automatically generated theorems are interned in the package of the symbol they were derived from,
so they are also in the SYNDEF package.
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3.5 Java AST to S-Expression AST

Following parsing, the Syntheto AST is transformed to an S-expression AST that represents a make-
myself form, as described above. The S-expression AST classes model ACL2 lists, characters, integers,
strings, and symbols.

Since Java integers are limited in size, the S-expression class modeling ACL2 integers uses the Java
BigInteger class.

The S-expression class for symbols has fields for the package name and the symbol name. There are
four special symbols with package name COMMON-LISP. They are: T, NIL, LIST, and CODE-CHAR.

3.6 Serialization

S-Expression ASTs are serialized to text as ACL2 code. Characters and symbols have some special
serialization rules.

A class instance representing a character is serialized as a form that makes the character when eval-
uated. For example, the character that ACL2 would print as #\! is serialized as (CODE-CHAR 33). This
simplifies the transfer language.

A class instance representing a symbol is serialized in one of three ways. If the symbol is one of the
special symbols mentioned above, it is serialized without a package prefix. If the package is KEYWORD,
the package name is omitted and the symbol name is preceded by a single colon. Any other symbol is
serialized with the package name, two colons, and the symbol name.

3.7 ACL2 Bridge

The last thing that happens in Java after the user presses the run button for a cell is that the wrapped,
serialized S-expression is sent to the ACL2 server over the ACL2 Bridge [7] [21, Topic bridge].

A wrapper is added to the serialized text that instructs the ACL2 Bridge what to do. Since the ACL2
form generally affects the world state, the outermost wrapper, (try-in-main-thread ...), tells the
ACL2 Bridge that the contents should be executed in the main Lisp thread. This is because ACL2
uses thread-local variables to hold some state information, and it also serves to serialize the events.
The next wrapper is (nld ...), which is a noninteractive version of ACL2’s LD intended to be used
programmatically. In the case of an error, (nld ...) saves error information rather than actually
signalling an error.

The Java code that connects to the ACL2 server port is part of the LSP component, and was adapted
from the edu.kestrel.syntheto.bridge classes. After connecting to the ACL2 server, it formats the
wrapped, serialized ACL2 form according to the protocol defined by the ACL2 Bridge and the stream
is sent over the wire. On the back end, nld evaluates the given form as if it were entered to the ACL2
read-eval-print loop (REPL), and the ACL2 Bridge returns the result returned by nld.

3.8 Results Returned

The PROCESS-SYNTHETO-TOPLEVEL macro ensures that the returned outcome object and any Syntheto
AST in it are formatted as make-myself forms, so that they can be easily parsed in Java.

The steps above are then reversed, up to the Syntheto source code equivalent of any Syntheto ASTs
returned. The results are written into a non-editable field following the cell that was run by the user.

https://www.cs.utexas.edu/users/moore/acl2/manuals/latest/index.html?topic=ACL2____BRIDGE
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One interesting kind of output is the result of a transformation. A transformation produces a new
definition that is in the ACL2 world state. This definition is translated back to Syntheto source code and
displayed in the IDE.

4 Back End

The back end translates Syntheto constructs into ACL2, submits them to ACL2, records and returns the
results, and also translates transformed ACL2 functions back into Syntheto functions. The translation
ensures that the strong typing of Syntheto is always reflected in the corresponding predicates in ACL2.

4.1 Types

The primitive types (boolean, string, character, integer) are translated to the corresponding ACL2 types.
The non-primitive types are translated to corresponding fixtypes: product types to fty::defprod, sum
types to fty::deftagsum, finite sets to fty::defset, finite maps to fty::defomap, finite sequences
to fty::deflist, option types to a kind of fty::deftagsum, and subtypes to fty::defsubtype.

Currently the polymorphic Syntheto types must always be instantiated. Each top-level Syntheto
construct is analyzed to see if any such types appear and the necessary instances are created. The types
may be nested, so the instantiations are created from the bottom up.

For every type there is a corresponding predicate name. The mapping from types to predicate names
is invertible, which is important for back translation from ACL2 to Syntheto.

4.2 Expressions

The translation of Syntheto expressions into ACL2 expressions is straightforward, making use of the
functions created by the type definition macros.

4.3 Functions

Syntheto functions with regular and quantified definitions are translated into ACL2 functions with defun
and defun-sk. The types of the function parameters and the precondition are used to create guards for
the functions. The types of the function outputs and the postcondition are translated into theorems.

Some care is taken to help ACL2 verify the guards and prove the measure theorem (if the function is
recursive) needed for ACL2 to accept the function definition, and to prove the output theorems. A test
of the guard is incorporated into the body (wrapped in mbt [21, Topic mbt]). The values returned are
arbitrary in the case this guard expression is false, but values are chosen that satisfy the output types to
help ACL2 with its proofs.

Simple heuristics are used to generate an effective measure expression. This has been sufficient for
our current examples, but future work is likely to incorporate more sophisticated techniques such as those
used in the ACL2 Sedan.

4.4 Specifications

Function specifications are translated using defstub to introduce the ACL2 name and signature, and
defun-sk with a universal quantification to constrain it [21, Topic defstub] [21, Topic defun-sk].

https://www.cs.utexas.edu/users/moore/acl2/manuals/latest/index.html?topic=ACL2____MBT
https://www.cs.utexas.edu/users/moore/acl2/manuals/latest/index.html?topic=ACL2____DEFSTUB
https://www.cs.utexas.edu/users/moore/acl2/manuals/latest/index.html?topic=ACL2____DEFUN-SK
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4.5 Theorems

Syntheto theorems are translated naturally to ACL2 theorems with the addition of type predicate hypothe-
ses for the typed variables. However, remove-hyps is used to remove any of these added hypotheses
that are not actually needed to prove the theorem [21, Topic remove-hyps].

4.6 Transformations

A single Syntheto transformation may map to one or more ACL2 APT transformations, depending on the
options given. For example, the tail_recursion transformations is preceded by a simplification step
that applies rules that can put the function in the correct form for the main transformation to occur. Sev-
eral transformations, such as finite_difference and isomorphism, simplify the result of the main
transformation, which is almost always what is wanted, but with an option to suppress the simplification.
The translation to APT is specified using schemas, so support for additional APT transformations is easy
to add to Syntheto.

4.7 Back Translation of Transformed Functions

Translation of ACL2 functions back into Syntheto functions requires inferring the types of variables and
removing the typing and guard predicates that occur in the function body. Types of parameters can be
extracted from a function’s guard, and simple type inference is done on the body. This type inference and
the translation of expressions relies on the strict invertible naming conventions we used for the Syntheto-
to-ACL2 translation.

During the translation of the body, all typing expressions are treated as true and standard simplifi-
cations are applied to remove them. The result is that a large complicated-looking ACL2 definition can
result in a significantly smaller, simpler Syntheto definition.

We designed the translation of Syntheto to ACL2 so that it is invertible, but it is possible that trans-
formations could introduce functions that cannot be translated back to Syntheto, or they could lose in-
formation necessary for inferring Syntheto types. For the transformations we have currently linked to
Syntheto, it is only necessary to prevent simplification from unfolding certain definitions.

5 Example: Point in Polygon Specification and Optimization

The example we will use to illustrate Syntheto is the problem of finding whether a point is inside a
polygon. First the domain model is defined. This includes points, edges, connectedness of edges, paths,
whether edges intersect, and polygons. As well as definitions, this model includes basic theorems about
their properties. The example algorithm specification considers an edge from the point of interest to a
point known to be outside the polygon: the point is in the polygon if and only if there are an odd number
of crossings of this edge with the edges representing the sides of the polygon. The full specification and
derivation is in [22, Path [books]/kestrel/syntheto/examples/point_in_polygon.synth].

Points and edges are defined with Syntheto product types:

struct point {

x: int,

y: int

}

struct edge {

https://www.cs.utexas.edu/users/moore/acl2/manuals/latest/index.html?topic=ACL2____REMOVE-HYPS
https://github.com/acl2/acl2/blob/master/books/kestrel/syntheto/examples/point_in_polygon.synth
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p1: point,

p2: point

}

These translate directly into product types in ACL2:

(fty::defprod point

((x int) (y int))

:tag :point)

(fty::defprod edge

((p1 point) (p2 point))

:tag :edge)

Two edges are connected if the end point of the first is the start point of the second. A path is a
connected sequence of edges. The theorem states that the tail of a non-empty path is also a path.

function connected(e1:edge, e2:edge) returns (b:bool) {

return e1.p2 == e2.p1;

}

function path_p(edges:seq<edge>) returns (b:bool) {

return length(edges) <= 1

|| (connected(first(edges), first(rest(edges)))

&& path_p(rest(edges)));

}

theorem path_p_rest

forall(edges:seq<edge>)
!is_empty(edges) && path_p(edges)

==> path_p(rest(edges))

These Syntheto definitions are translated into the following ACL2 definitions. A few minor define
options have been omitted for brevity. The connected definition is enabled based on an ad hoc simplicity
heuristic.

(define connected (e1 e2)

:enabled t

:returns (b booleanp :hyp :guard)

(and (edge-p e1) (edge-p e2)

(equal (edge->p2 e1)

(edge->p1 e2)))

///

(defret connected-ensures

(and (booleanp b))

:hyp :guard)

(defthm connected-implies

(implies (connected e1 e2)

(and (edge-p e1) (edge-p e2)))))

(define path_p (edges)

:measure (len edges)

:returns (b booleanp :hyp :guard)

(and (sequence[edge]-p edges)

(or (< (len edges) 2)

(and (connected (car edges)

(car (cdr edges)))

(path_p (cdr edges)))))

///
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(defret path_p-ensures

(and (booleanp b))

:hyp :guard)

(defthm path_p-implies

(implies (path_p edges)

(and (sequence[edge]-p edges)))))

(defthm path_p_rest

(implies (path_p edges)

(path_p (cdr edges)))

:hints (("Goal" :in-theory (enable path_p))))

The three main problem-definition functions:

/* number of times edge0 crosses edges */

function crossings_count_aux(edge0: edge, edges: seq<edge>)

assumes path_p(edges)

returns (n: int) ensures n >= 0 {

if (is_empty(edges)) {

return 0;

}

else {

if (edges_intersect(edge0, first(edges))) {

return 1 + crossings_count_aux(edge0, rest(edges));

}

else {

return crossings_count_aux(edge0, rest(edges));

}}

}

function crossings_count(p: point, polygon: seq<point>)

assumes simple_polygon(polygon)

returns (n: int) ensures n >=0 {

let pm:point = point(x=max_x(polygon) + 1, y=p.y); /* pm is outside polygon */

let e:edge = edge(p1 = p, p2 = pm);

return crossings_count_aux(e,edges(polygon));

}

/* Top-level function */

function point_in_polygon(p: point, polygon: seq<point>)

assumes simple_polygon(polygon)

returns (b: bool) {

return odd(crossings_count(p,polygon));

}

Most of the work is done by crossings_count_aux, so we focus on that. First, the type for
seq<edge> is defined in case it has not previously been defined. A logical check if the guard is not
satisfied is incorporated into the base case of crossings_count_aux.

(fty::deflist sequence[edge]

:elt-type edge)

(define crossings_count_aux ((edge0 edge-p)

(edges sequence[edge]-p))

:measure (len edges)

:guard (and (edge-p edge0)

(sequence[edge]-p edges)

(path_p edges))
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:returns (n natp :hyp :guard)

(if (or (not (mbt (and (edge-p edge0)

(sequence[edge]-p edges)

(path_p edges))))

(endp edges))

0

(if (edges_intersect edge0 (car edges))

(+ 1 (crossings_count_aux edge0 (cdr edges)))

(crossings_count_aux edge0 (cdr edges)))))

One common optimization is to convert the function to be tail recursive:

function crossings_count_aux_1 =

transform crossings_count_aux

by tail_recursion {new_parameter_name = count}

This produces an ACL2 function that is back translated to Syntheto:

function crossings_count_aux_1(edge0:edge,edges:seq<edge>,count:int)

assumes path_p(edges)

returns (n:int) {

if (is_empty(edges)) {

return count;

}

else {

crossings_count_aux_1(edge0,rest(edges),

(edges_intersect(edge0, first(edges))

? 1 : 0)

+ count);

}

}

The top-level function point_in_polygon is given a polygon defined using a sequence of vertices
(points), from which a path is constructed to pass to crossings_count. We can exploit the existence of
an isomorphism between sequences of vertices and paths to avoid this extra step. Using the isomorphism
transformation requires a proof of the isomorphism properties, which is done automatically.

function crossings_count_aux_2 =

transform crossings_count_aux_1

by isomorphism {parameter = edges,

new_parameter_name = vertices,

old_type = path_p,

new_type = points2_p,

old_to_new = path_vertices,

new_to_old = path,

simplify = true}

This isomorphism transform produces the following ACL2 function:

(defun crossings_count_aux_2 (edge0 vertices count)

(declare (xargs :guard (and (points2_p vertices)

(edge-p edge0)

(sequence[edge]-p (path vertices))

(path_p (path vertices))

(natp count))
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:measure (len (path vertices))))

(and (mbt (points2_p vertices))

(if (mbt (natp count))

(if (or (not (mbt (edge-p edge0)))

(not (consp vertices))

(not (consp (cdr vertices))))

count

(crossings_count_aux_2

edge0

(rest vertices)

(+ (if (edge_points_intersect (edge->p1 edge0) (edge->p2 edge0)

(car vertices) (cadr vertices))

1 0)

count)))

:undefined)))

This function is back-translated to Syntheto:

function crossings_count_aux_2(edge0:edge,vertices:seq<point>,count:int)

assumes (points2_p(vertices) && path_p(path(vertices)))

returns (n:int) {

if (is_empty(vertices) || is_empty(rest(vertices))) {

return count;

} else {

crossings_count_aux_2(edge0,rest(vertices),

(edge_points_intersect

(edge0.p1,edge0.p2,

first(vertices),first(rest(vertices)))

? 1 : 0)

+ count);

}

}

point_in_polygon calls odd on the result of crossing_count. We can effectively push this call
into the crossings_count computation by wrapping the function body of crossings_count_aux_2
with the odd function, then use finite differencing to add a parameter that holds the current value of
odd(count) and maintain its value by complementing its value on each call. Finally, the value of count
is no longer used so it can be removed.

function crossings_count_aux_3 =

transform crossings_count_aux_2

by wrap_output {wrap_function = odd}

function crossings_count_aux_4 =

transform crossings_count_aux_3

by finite_difference {expression = odd(count),

new_parameter_name = count_odd,

simplify = true}

function crossings_count_aux_5 =

transform crossings_count_aux_4

by drop_irrelevant_param {parameter = count}

Final optimized crossings_count_aux function:

function crossings_count_aux_5(edge0:edge,vertices:seq<point>,count_odd:bool)
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assumes (points2_p(vertices) && path_p(path(vertices)))

returns (b:bool) {

if (is_empty(vertices) || is_empty(rest(vertices))) {

return count_odd;

} else {

crossings_count_aux_2(edge0,rest(vertices),

(edge_points_intersect

(edge0.p1,edge0.p2,

first(vertices),first(rest(vertices)))

? !count_odd : count_odd));

}

}

The derivation is finalized by using the wrap_output and simplify transformations to get the
top-level functions to use the optimized crossings_count_aux_5. The previous transformations in-
troduced rewrite rules that replace the original functions by the transformed ones.

function crossings_count_1 =

transform crossings_count

by wrap_output {wrap_function = odd,

simplify = true}

function point_in_polygon_final =

transform point_in_polygon

by simplify

The specification and transformations of this example are all performed in ACL2 and all proof obli-
gations are discharged without any hints supplied by the Syntheto user. There are 14 explicit theorems
in the Syntheto specification in order for these obligations to be proved and the transforms performed as
shown. Four of these were added to enable automatic proof of guard conditions. These are simple and
obvious enough that a relatively naive user could add them if we showed them the key checkpoints of
the failed proof back-translated to Syntheto, or it is possible the system could automatically propose the
theorems. Two of the explicit theorems are inversion theorems necessary to prove the isomorphism in
the transformation that produces crossings_count_aux_2. The final 7 explicit theorems are needed
as rewrite rules to perform the simplification steps in the derivations. These theorems were motivated by
finding expressions that could be optimized, in the results of the transformations.

6 Related Work

We are not aware of other surface languages for ACL2 or for ACL2-based tools like APT. Users of ACL2
and ACL2-based tools normally use the ACL2 language directly, possibly taking advantage of macros to
define and use custom notations in the style of embedded domain-specific languages [11]. In contrast,
Syntheto is a separate stand-alone language, with its own IDE, and with ACL2 running behind the scenes.

We are also not aware of surface languages for other theorem provers and related tools, whose users
normally use the provided language directly. Some of these tools, e.g. Isabelle, include IDEs that are
close in style and functionality to the Syntheto IDE.

There exist other IDEs for ACL2. One IDE is the ACL2 Sedan [2] running in Eclipse. This IDE
communicates with ACL2 through stdin/stdout rather than over the ACL2 bridge. There is also at least
one implementation of a Jupyter notebook interface for ACL2 [10].
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The interrelated ideas of program refinement, program transformation, and program synthesis are not
new [8, 1, 18, 12, 17, 15], and neither is their realization in a theorem prover like ACL2 [3, 4, 14, 5, 6].
Syntheto builds on these ideas to provide a more accessible language and a more feature-rich IDE.

7 Future Work

Syntheto is currently just a prototype. There are several directions in which it could be extended.
Type parameterization should be extended from the built-in types for sets, sequences, etc., and the

built-in operations on those types, to user-defined types and operations.
More imperative-looking constructs could be added, such as loops, provided that they can be trans-

lated to ACL2 and back with relative ease. For example, loops could be represented as tail-recursive
functions of certain forms.

Since Syntheto currently covers a relatively small selection of APT transformations, another exten-
sion is to cover all the APT transformations. The language also needs to be extended with a way to
specify hints, for both explicit and implicit theorems; the challenge here is to provide a way to express
them using more a Syntheto vocabulary than an ACL2 vocabulary.

Since ACL2 has mainly been designed to be used by a human interacting with a REPL, its output is
unstructured text sent to stdout. It would be helpful to add more API-like features to ACL2 for program-
matically submitting prover events and receiving structured data in reply. That data could be presented
to the user of the IDE in a structured form.

Failed ACL2 proofs currently do not result in much useful information sent back to the IDE. We
would like to experiment with applying the back-translation from ACL2 to Syntheto to the subgoal
checkpoints that ACL2 displays when proof fails. While this is not going to turn the hard problem of
general theorem proving into an easy one, it is our experience that, at least in certain developments,
proofs sometimes fail for simple and fixable mistakes on the user’s part, and that the failed subgoal can
often point the user to those mistakes, if they are presented in an informative way. This naturally leads
to the idea of using counterexample generation, which has a good precedent in the ACL2 Sedan.

The current IDE is very limited in capability, but VS Code provides a rich customization environ-
ment. Adding more functionality to the IDE is a fruitful area to explore. Examples are jumping from call
site to definition and having elidible inter-cell information returned by the prover.

Currently there is no facility for interactive execution of Syntheto code. It would be straightforward
to add such a facility to the front end, by running the code in the ACL2 server as ACL2/Lisp code.

For delivering an application, we could add Syntheto constructs that translate to ACL2 calls of the
Java or C code generators [21, Topic ATJ] [21, Topic ATC]. This would enable the capability of synthe-
sizing a verified Java or C program that could be distributed and run independently of ACL2.
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