
Toward a Provably-Correct Implementation
of the JVM Bytecode Verifier

Alessandro Coglio Allen Goldberg Zhenyu Qian
Kestrel Institute

coglio, goldberg, qian@kestrel.edu

Abstract
This paper reports on our ongoing efforts to realize a

provably-correct implementation of the Java Virtual Ma-
chine bytecode verifier. We take the perspective that byte-
code verification is a data flow analysis problem, or more
generally, a constraint-solving problem on lattices. We
employ SPECWARE, a system available from Kestrel Insti-
tute that supports the development of programs from
specifications, to formalize the bytecode verifier, and to
formally derive an executable program from our specifi-
cation.

1. Introduction

DoD applications are increasingly being implemented
in distributed computing environments. These environ-
ments exacerbate security concerns, especially when mo-
bile code is employed. Java provides language-based
mechanisms that help address many security concerns. In
particular, buffer overflow attacks, which account for as
much as 50% of today’s system vulnerabilities, exploit
the absence of type safety in many languages, notably C
and C++. Java is a type safe language and so eliminates
this mode of attack. Furthermore, Java uses language-
based mechanism for insuring correct program linking,
and the enforcement of security policies.

In the Java language framework, Java source code is
compiled to Java Virtual Machine (JVM) code, usually
referred to as bytecode. It is bytecode rather than Java
source that is transmitted as mobile code. The JVM can-
not trust that this code is the unmodified output of a cor-
rect Java compiler. Thus, as part of the loading process
the JVM verifies that the purported bytecode is valid JVM
code. This verification procedure, performed by the byte-
code verifier, is non-trivial. A major obejective is to es-
tablish the type safety of the code using data flow meth-
ods.

This paper reports on our ongoing efforts to realize a
provably-correct implementation of the Java Virtual Ma-
chine bytecode verifier (or simply the verifier) from a
formal specification using the SPECWARE System.
SPECWARE [1], a system available from Kestrel Institute
[2], supports the formal and provably-correct develop-
ment of programs from specifications written in a specif-
cation notation based on high-order logic.

In previous papers [3, 4] we have specified the seman-
tics of the JVM verifier. Collectively these papers deal
with most aspects of the JVM including JVM subroutines,
dynamic class loading, object initialization, interface
types, arrays, and all primitive types. These papers take
the perspective that bytecode verification is a data flow
problem, or more generally, a constraint-solving problem
on lattices. One advantage of this approach is that imple-
mentation of a bytecode verifier from such a specification
can be derived as an instantiation of a generic algorithm
for constraint solving.

In this paper, we describe our progress in formalizing
the specifications in those papers using SPECWARE, and
we describe the refinement methodology used to obtain an
implementation.

This paper is organized as follows. The next section
gives a detailed overview of our approach. In Section 3
we describe how our specification of the verifier is for-
malized in SPECWARE. In Section 4 we describe its re-
finement to a program using SPECWARE. In Section 5 we
give a small example. This is followed by a description of
related work and our conclusions.

2. Approach

2.1. Bytecode Verification, Data Flow Analysis,
and Constraint Problems

Data flow analysis is a methodology used to establish
assertions at program points that are invariant over all
program executions. Because the types of local variables
and stack elements vary during JVM execution, it is natu-
ral to view the bytecode verifier as a data flow problem.
To specify a particular data flow problem, a control flow
graph, a semilattice, an initial state, and transfer functions
are specified. The semilattice captures the abstract pro-
gram properties of interest, and transfer functions capture
the behavior of JVM instructions with respect to the semi-
lattice. The data flow framework includes algorithms that
solve general data flow problems by fixed-point iteration.
Theorems that assert algorithm termination, soundness
and give a characterization of the accuracy of the solution
have been proved [5] In particular, soundness and termi-
nation are assured if the semilattice has finite height and
the transfer functions are monotone. In addition, if the

transfer functions are distributive, the algorithm yields the
meet-over-all-paths solution, i.e. the sharpest or most ac-
curate result possible. In our specification of the verifier,
construction of a flow graph is trivial. The main challenge
is to specify the semilattice and transfer functions.

In formalizing our specification, we chose a more gen-
eral constraint framework [6] instead of data flow analy-
sis. Let L = 〈L, , 〉 be a semilattice and F a collection of
monotone functions of various arities over L. Let V be a
collection of variable names. Let t denote a term formed
from constants, c ∈ L, variables, v ∈ V, and function
symbols from F. A constraint solving problem is a collec-
tion of definite inequalities, i.e. inequalities of the form
v t or c t. A solution is an assignment I : V → L satis-
fying each inequality. A solution M is maximal if for any
solution I and any variable v, I(v) M(v). In this paper, a
reference to a constraint solving problem or, simply, a
CSP refers to a problem of the described form.

It is not difficult to see that a data flow problem may
be mapped to a CSP problem. For simplicity, assume each
node of the control flow graph consists of a single JVM
instruction. Let tfi denote the transfer function formalizing
the behavior of the instruction at node i.1 Introduce a con-
straint variable, ui for each node i of the control flow
graph. For each edge (i, j) introduce the inequality uj tfi
(ui).Our specification of the verifier generates CSPs of
this form. Many of the properties enjoyed by the data
flow architecture are also true of these CSP ’s. A chaotic
fixed-point iteration algorithm will converge to the
maximal solution. The complexity of the algorithm is
polynomial.

We chose to express the bytecode verifier as a CSP
problem for the following reasons:

• We wish to explore the applicability of Kestrel-

developed synthesis technology [7] that has been used
to optimize a related class of constraint problems.

• This results in a robust specification that be can be
modularly enhanced to perform other security-related
static checks on bytecode, for example information
flow analysis. More generally the bytecode verifier
may be viewed as the verification condition generator
of a proof carrying code implementation.

2.2. Some Salient Aspects of Our Bytecode
Specification

The bytecode verifier determines if a JVM program is
well typed. Because the methods in a class reference in-

1 If a JVM instruction raises an exception, its behavior
differs from normal execution. Therefore, our actual
specification associates transfer functions with edges, not
nodes.

stance variables and methods defined in other classes,
type consistency requires checking the internal consis-
tency of a class, as well as its external consistency with
referenced classes. Because class files are loaded dynami-
cally, and because it is desirable to minimize constraints
on when classes gets loaded, the verifier cannot assume
that a referenced class has been loaded prior to verifica-
tion of a referencing class. Thus, our specification main-
tains a global typing context consisting of type assertions
derived from the declarations in a class, and type assump-
tions derived from references to external classes. The
global typing context is one component of the semilattice.

Because we make no assumptions about the order that
classes are loaded (so the least general common super-
type of two object classes is generally not known when
the class is verified), and because there is no greatest
common super-type of two interface types, there is no
meaningful meet operation definable for JVM reference
types. Instead, we use a set to represent reference types.
The intended meaning is that the static type of a reference
is one of the (reference) types in the set. The set is a semi-
lattice with union as the meet operation. Verification of
the invokevirtual and other instructions add subtype
assumptions to the global typing context.

2.3. Formalization of the Bytecode Verifier

2.3.1. Architecture of the verifier as a constraint
 problem.

Figure 1: Verifier Architecture

Using the constraint approach, verification of a class
file is performed in two steps, as illustrated in Figure 1.
First, the global typing context is updated with assertions
and assumptions derived from declarations in the constant

CLASS
FILE

GLOBAL
ASSERTIONS &
ASSUMPTIONS

GLOBAL
ASSERTIONS &
ASSUMPTIONS

GLOBAL
ASSERTIONS &
ASSUMPTIONS

CONSTRAINTS

YES / NO

CONSTRAINT
GENERATOR

CONSTRAINT
SOLVER

pool. Furthermore, a constraint problem is generated for
each method defined in the class. In generating the con-
straint problem, it is assumed that the class file meets the
static verification checks described in Section 4.9 of [8].
In the second phase, the constraint problem for each
method is solved and the global typing context is updated
with typing assumptions derived from the method code.

As defined above, a semilattice, a collection of mono-
tone functions on the semilattice, and a set of inequalities
parameterizes a CSP. The semilattice and monotone func-
tions are defined once for the JVM — only the generated
constraint inequalities depend on the method being veri-
fied.

2.3.2. Semilattice construction. We define a semilattice,
LJVM, that characterizes the information that the verifier
maintains at each program point. This information in-
cludes the type of local variables and elements of the
stack, as well as the global typing context, which includes
assertions and assumptions about class declarations and
subtype relationships, and the signature of referenced
methods and instance variables. The type information
regarding local variables and stack elements is not simply
the static type of the entity, but holds information about
the initialization status of objects, and other information
needed to verify the proper use of the jsr and ret instruc-
tions.

We define LJVM from some simple point and set semi-
lattices using semilattice-building operations:

× takes two semilattices and forms their product;

seq takes a semilattice L and forms a semilattice of prod-
ucts (sequences) of elements from L;

⊕ takes two semilattices and forms their disjoint sum;

/ takes a semilattice and a suitable congruence relation
and forms a semilattice whose elements are the
equivalence classes induced by the relation. One use
of this operation is to identify the bottom element of
a binary product with the bottom elements of the
component semilattices;

stk takes a semilattice L and forms a semilattice of
bounded stacks whose elements are taken from L.

Note that these operations are generic semilattice con-
structions of utility beyond the JVM.

Lprim

Lref

Lother

Lgl-assum

Lgl-assert

 �

I

I
u I

Lbase

Lvars

Lstk

Lloc

Lglobal

LJVM

seq

stk

u

u

 Figure 2: JVM Semilattice Construction

Figure 2 is a simplified view of the construction of LJVM
using the semilattice-building operations. In the figure,
the ovals represent operations and unboxed text the names
of the resulting semilattices. Thus, Lbase, used to represent
a stack element or local variable, is the (cascaded) disjoint
sum of the three semilattices shown. As described above,
the semilattice that represents a reference is a set semilat-
tice of reference types. Lbase is then used to form semilat-
tices representing the stack and local variables. Lgl-assert
represents the set of global assertions. The quotient opera-
tion is applied to Lgl-assert to construct a semilattice that
identifies in a single equivalence class all inconsistent
assertion sets and the bottom element of the semilattice.

2.4. Monotone Functions and Constraint Ine-
qualities

Roughly speaking, our specification defines a mono-
tone function for each transfer function corresponding to a
JVM instruction. The transfer functions are constructed
from monotone functions defined on component semilat-
tices of LJVM. For example, push and pop are defined on
stack semilattices, proved to be distributive (hence mono-
tone) functions, and used in the definition of transfer
functions that manipulate the JVM stack. Most transfer
functions are composed from constructor or destructor
operations (like push and pop) of the semilattice-building
operations (like stk(L)).

More precisely, because some transfer functions de-
pend on the operand of the instruction, we actually de-
fined families of parameterized transfer functions. For
example, the transfer function for the putfield instruc-
tion is parameterized by the name of the object class con-
taining the field and type of the referenced field.

Analysis of a method generates a constraint inequality
of the form uj tfi (ui) for each edge (i, j) of the control
flow graph. Constraints are represented as pairs of terms,
using an abstract data type for terms. The constraint solv-
ing algorithm invokes a function eval (t, e) that evaluates
a term t given an environment e that maps variables to
semilattice values.

3. Formalization in SPECWARE

As mentioned in Section 1, SPECWARE is a system
supporting the formal development of programs from
specifications. Its core functionality is based on clear
mathematical concepts from logic and category theory,
and made accessible to the developer through a graphical
user interface. A specification (spec) in SPECWARE is a
theory in high-order logic. The system provides conven-
ient mechanisms to build more complex specs out of sim-
pler ones. One such mechanism is instantiating a param-
eterized spec (pspec): roughly, a pspec is a spec with an
explicit “formal parameter” part, which upon instantiation
gets “replaced” with an “actual parameter” spec.

Formalizing bytecode verification in SPECWARE along
the lines described in Section 0, amounts to formalizing:
the JVM semilattices; the transfer functions for the JVM
instructions; the format of class files; the form of con-
straints; which constraints are derived from a given class
file; and what is a (maximal) solution to a set of con-
straints. In this section, we provide an overview of the
specs we developed for some of these concepts. To avoid
cluttering this overview with non-substantial details, the
examples we present are slight simplifications of the
specs we actually wrote.

SPECWARE provides a library of specs for some popu-
lar concepts (e.g., sets, ordering relations, and arrays).
Starting from some of them, we incrementally built our
specs in a structured way, making extensive use of pspecs
and instantiation, as well as of other composition mecha-
nisms. We followed the rationale of “factorizing” com-
mon sub-concepts as much as possible, in order to pro-
duce more re-usable, readable, and elegant specs. In fact,
many of the specs we wrote are completely independent
of bytecode verification.

First of all, we wrote specs for (generic) semilattices,
such as

spec SEMILATTICE is
 sort P
 op lq : P, P -> Boolean
 op meet : P, P -> P
 axiom reflexivity is
 lq(x,x)
 axiom anti-symmetry is
 lq(x,y) & lq(y,x) => x=y
 axiom transitivity is
 lq(x,y) & lq(y,z) => lq(x,z)
 axiom greates-lower-bound is
 lq(meet(x,y),x) &
 lq(meet(x,y),y) &
 (lq(z,x) & lq(z,y)=>
 lq(z,meet(x,y)))
end-spec

We wrote pspecs formalizing the construction of se-

quence semilattices, stack semilattices, and so on. For

instance, we wrote a pspec SEQUENCE-of-
SEMILATTICE having SEMILATTICE as formal pa-
rameter, and defining a new sort of tuples of semilattice
points, and how the partial ordering and binary operation
can be lifted to such tuples:

pspec SEQ-of-SEMILATTICE is
 parameter SEMILATTICE
 ...
 definition of meet :
 Seq, Seq -> Seq is
 axiom meet (x,y) = z <=>
 fa(i) comp(z,i) =
 meet (comp(x,i),
 comp(y,i))
 ...

Analogously, we wrote pspecs STACK-of-

SEMILATTICE (with push and pop operations), QUO-
TIENT-of-SEMILATTICE, etc. Next, we suitably in-
stantiated them, starting from JVM-specific semilattices
such as:

spec JVM-PRIMITIVE-SEMILATTICE is
 sort PrimSL
 const int : PrimSL
 const float : PrimSL
 const unusable : PrimSL
 ...
 definition of meet is
 axiom meet(int,float)= unusable
 axiom meet(int,int) = int
 ...

In order to formalize definite inequalities, terms over a

semilattice with monotone functions must be formalized.
Abstracting a little bit from that, we first wrote a spec
ALGEBRA and a pspec TERMS –over-ALGEBRA having
ALGEBRA as formal parameter:

spec ALGEBRA is
 sort Dom
 sort Fun
 op arity : Fun -> Nat
 op apply : Fun, DomList -> Dom
 ...
pspec TERMS-over-ALGEBRA is
 parameter ALGEBRA
 sort Term
 sort Var
 op const-term : Dom -> Term
 op var-term : Var -> Term
 op funapp-term :
 Fun, TermList -> Term
 sort Asg
 op asg-val : Asg, Var -> Dom
 op eval : Term, Asg -> Dom
 ...

Next, instantiating the carrier Dom to be a semilattice,
adding axioms stating monotonicity for the elements in
Fun, and pairing generic terms with constant terms or
variable terms, we formalized definite inequalities, as
well as CSP’s as sets of definite inequalities, and what is a
(maximal) solution.

Our specs for transfer functions define a sort for them,
and an apply operation to apply them to the JVM semi-
lattice points. To avoid lengthy and repetitive definitions,
we defined them as suitable compositions of some auxil-
iary functions. For instance, we defined a function which
pops the top elements of a JVM stack semilattice point if
they satisfy a “pattern” (e.g., the top two elements being
both integers), and returns ⊥ otherwise. Here is an ex-
cerpt:

spec TRANSFER-FUNCTIONS is
 sort TransFun
 op apply :
 TransFun, JvmSL -> JvmSL
 const iadd : TransFun
 ...
 axiom
 fa (...stk:StkSL...)
 apply(iadd,...stk...) =
 (...push (int,
 pop(pattern(int),
 stk))...)
 ...

Clearly, by instantiating the definite inequality pspecs

with the JVM semilattice and the transfer functions, we
exactly obtained the spec for JVM constraint problems.

SPECWARE provides facilities to validate specs, by al-
lowing the developer to enrich them with conjectures stat-
ing putative properties of the specs. The developer can
then ask the system to verify a spec, which amounts to
invoking a theorem prover (currently, Specware is con-
nected to various theorem provers) to prove all the con-
jectures of the spec. In all our specs we included conjec-
tures, stating for instance that the JVM primitive semilat-
tice is really a semilattice, that a (generic) sequence semi-
lattice is really a semilattice, and that our transfer func-
tions are monotone:

 ...
 theorem prim-reflexivity is

 fa(x:PrimSL) lq(x,x)
 ...
 theorem seq-transitivity is

 fa(x,y,z:Seq)
 lq(x,y) & lq(y,z) => lq(x,z)

 ...
 theorem transf-fun-monotonicity is

 fa(tf:TransFun, x,y:JvmSL)
 lq(x,y) =>
 lq (apply(tf,x),
 apply(tf,y))

 ...

4. Refinement in SPECWARE

In SPECWARE, programs are formally derived from
specs by refining specs. Roughly, refining a spec amounts
to “mapping” it into a new spec, which interprets the con-
cepts of the initial one in terms of other concepts. These
other concepts should be closer to those of some target
executable language, and if they are sufficiently close,
executable code can be generated by SPECWARE. Refine-
ments can be sequentially composed, thus allowing code
to be derived from specs through a series of successive
steps. Furthermore, a refinement for a compound spec
(e.g., an instantiated pspec) can be obtained from refine-
ments for the individual components (e.g., for the pspec
and for the actual parameter). Currently, SPECWARE can
generate code for (functional subsets of) LISP and C++.

SPECWARE provides built-in mechanisms to represent
constructed sorts (e.g., products, sums, and quotients) in
target languages in terms of the representations of the
component sorts. It also provides a library of refinements
of common abstract structures (such as sets and bags) to
more concrete structures (such as lists and arrays) which
are “directly” representable in target languages. Starting
from these mechanisms and refinements, we have refined
our specs to LISP code. For instance, we refined the JVM
primitive semilattice points to an enumeration of integers,
with semilattice operations defined by cases:

 ...
 definition of unusable : PrimSL is
 axiom unusable = 1
 definition of int : PrimSL is
 axiom int = 2
 definition of float : PrimSL is
 axiom float = 3
 ...
 definition of meet :
 PrimSL, PrimSL -> PrimSL is
 axiom ~(x=y) =>
 meet(x,y) = unusable
 ...
Sequence and stack semilattices have been refined to

array and lists. Operations have been re-phrased to be
constructive, as in:

definition of meet :
 Seq, Seq -> Seq is
 axiom meet (x,y) =
 meet-aux (x, y, x, 1)
definition of meet-aux :
 Seq, Seq, Seq, Nat -> Seq is
 axiom geq(i,size(z)) =>
 meet-aux(x,y,z,i) = z
 axiom lt(i,size(z)) =>
 meet-aux(x,y,z,i) =
 meet-aux(x,y,
 change(z,i,
 meet(comp(x,i),
 comp(y,i))),
 succ(i))

An important refinement is to provide an actual algo-
rithm to compute the maximal solution of a set of definite
inequalities. We have in fact built and refined specs for
the algorithm proposed in [6]. For example, a constraint
of the form u3 tfiadd(u4) is represented in our generated
LISP code as (roughly):

 ((VAR 3) (FUN-APP (TF 16) (VAR 4)))

And here is how the meet function over the JVM primitive
semilattice is refined to LISP:

 (DEFUN MEET-PRIM (X Y)

 (COND((NOT (= X Y)) 1)...))

We are going to further refine our specs for optimization,
in order to generate more efficient code.

5. Example

Figure 3 below gives a method together with an expla-
nation of each instruction. We assume that the method is
contained in the class C. Note that in the instruction
putfield (Fld,D,C), Fld is the name of the field,
D the type of the field and C the name of the class contain-
ing the field. Since program point 7 has two predecessors
5 and 6, and the top stack entry may hold either the first
or second actual parameter.

For the instructions in the example in Figure 3 we de-
fine the following transfer functions of type JvmSL →
JvmSL:

 tfaload ind (asr,asm,var,stk) :=
if isRef (varind) then (asr,asm,var,push(stk, varind))

else ⊥

tfif_acmpeq pp (asr,asm,var,stk) :=
 if isRef (top(stk)) and isRef (top(pop(stk)))
 then (asr,asm,var,pop(pop((stk))) else ⊥
tfgoto pp(u) := u
tfputfield (Fld,D,C) (asr,asm,vars,stk) :=
 (asr,
 asm ∪ {subtyping(top(stk),D),
 subtyping(top(pop(stk)),C), Fld∈ fields(C)},
 vars, pop(pop(stk)))
tfreturn (u) := T

where T denotes an artificial top element in the semi-
lattice JvmSL, and the function subtyping ({ ref1,…,refn},
ref') yields true if and only if each refi is a subtype of ref'
in the JVM.

We view the instruction return as having a special
final node as its successor program point. The head of
each method has a special transfer function

head_tf (asr,asm) := (asr,asm,[cnam, ty1, …, tym,
 unusm+1,…, unusn],[])

where asr and asm are given by an invoking site of the
method, cnam is the class containing the declaration of
the method, and ty1, ..., tym are types of the parameters.

A constraint is created for each instruction. Let the in-
struction be at the program point pp and have a successor
program point pp'. Then the constraint is of the form

upp’ tf (upp)

For the method head, a constraint

u0 head_tf (cnam, ty1, …, tym, asr, asm)

is created at program point 0, where asr and asm are
given by an invoking site of the method.

Void m (J1, J2) // The method has two arguments of interfaces J1 and J2
.limit local 3 // The method has 3 variables
 // Set this-object and the actual parameters in the variables;
 // set the empty stack
0 aload 0 // Load the object reference in variable 0 onto the stack.
1 aload 1 // Load the object reference in variable 1 onto the stack.
2 aload 2 // Load the object reference in variable 2 onto the stack.
3 if_acmpeq 6 // If the top entries in the stack are equal, then go to 6;
 // else go to 4.
4 aload 1 // Load the object reference in variable 1 onto the stack.
 // Go to 7.
5 goto 7 // Load the object reference in variable 2 onto the stack.
7 putfield (Fld,D,c) // Put the top stack entry into the field Fld of the object
 // referenced by the second top stack entry
8 return // Terminates and returns.

Figure 3: A Simple Method

 Program vars stk asm

void m(J1,J2) asm as input
0 aload 0 [C, J1, J2] [] asm
1 aload 1 [C, J1, J2] [C] asm
2 aload 2 [C, J1, J2] [C, J1] asm
3 if_acmpeq 6 [C, J1, J2] [C, J1, J2] asm
4 aload 1 [C, J1, J2] [C] asm
5 goto 7 [C, J1, J2] [C, J1] asm
6 aload 2 [C, J1, J2] [C] asm
7 putfield (Fld,D,C) [C, J1, J2] [C, { J1, J2}] asm
8 return [C, J1, J2] [] asm ∪
 {subtyping ({J1, J2}, D),
 Fld ∈ fields(C)}}

Figure 4: Legal Location Types for the Method in Figure 3

Figure 4 shows the maximal solution to the con-
straint inequalities generated for the method code.
Note that at program point 7, the semilattice value of
the top entry of the stack is a set with two elements,
since its static type is either the static type of the first
or second actual parameter of the method. In all other
cases where a stack or local variable holds a reference
type, the set of possible types is a singleton. To sim-
plify, we have suppressed braces around singleton sets.
The constraint subtyping({ J1, J2}, D) in the asm com-
ponent at program point 8 ensures that D is a super-
interface of J1 and J2.

6. Related Work

Bertelsen formalized JVM instructions using state
transitions [9]. Cohen described a formal semantics of
a subset of the JVM, but runtime checks are used to
assure type-safe execution [10]. Both approaches did
not consider static type checking, thus are not directly
relevant to bytecode verification.

Stata and Abadi [11] proposed a type system for
subroutines, provided lengthy proofs for the soundness
of the system and clarified several key semantic issues
about subroutines.

Qian [3] presented a constraint-based typing system
for objects, primitive values, methods and subroutines
and proved the soundness.

Freund and Mitchell [16] made a significant exten-
sion of Stata and Abadi’s type system [11] by consider-
ing object initialization.

Hagiya and Tozawa [12] presented another type
system for subroutines, where the soundness proof is
extremely simple. Hagiya and Tozawa discussed issues
relating to implementation of their type system, but
they did not formally describe their implementation.

In fact, since they did not consider objects, their im-
plementation did not address many of the issues that
we have.

Pusch [13] formalized a subset of the JVM in the
theorem prover Isabelle/HOL based on the work by
Qian [3], thus achieving a high level of assurance. All
of this work is basically aimed at achieving a sound
specification, but did not consider how to develop a
provably correct implementation.

Goldberg [4] directly used data flow analysis to
formally specify bytecode verification focusing on
type-correctness and global type consistency for dy-
namic class loading. He successfully formalized a way
to relate bytecode verification and class loading.

Saraswat [14] studied static type-(un)safety of
JAVA in the presence of more than one class loader.
We do not consider class loaders in this paper.

The Kimera project [15] was quite effective in de-
tecting flaws in commercial bytecode verifiers. Using
a comparative testing approach, they wrote a reference
bytecode verifier and tested commercial bytecode veri-
fiers against it. A particularly interesting point was that
their code is well structured and organized, and derived
from the English JVM specification. It achieves a
higher level of assurance than commercial implemen-
tations. However, since there is no formal specifica-
tion, it is not possible to reason about it, or establish its
formal correctness.

7. Conclusions and Future Work

We have specified and implemented via refinement
nearly all aspects of the bytecode verifier. Our specifi-
cation omits treatment of exceptions and the use of two
instructions: jsr and ret. While these instructions
add significant complexity to the bytecode verifier, we

have previously formalized their semantics and expect
their specification and refinement to be a straightfor-
ward extension of our current verifier. Performance of
our generated code is sufficient to serve as a reference
implementation the verifier.

We plan to compare the results from our derived
verifier with other bytecode verifiers. This will con-
tribute to increasing our assurance that the specifica-
tion captures the intended semantics of the informal
specification and may expose errors in these other veri-
fiers.

We are currently using a similar approach to spec-
ify another security-critical component of the JVM, the
class loader.

8. References

[1] Srinivas, Y.V. and R. Jüllig. Specware : Formal Support
for Composing Software. In, Proceedings of the Confer-
ence on Mathematics of Program Construction, B. Moel-
ler, Ed. Berlin: Springer-Verlag, 1995, pp. 399--422.
Lecture Notes in Computer Science, Vol. 947.

[2] Kestrel Institute KEEP Program.
http://www.kestrel.edu/HTML/keep.html/.

[3] Qian, Z. A Formal Specification of Java Virtual Ma-
chine Instructions for Objects, Methods, and Subroutines.
In, Formal Syntax and Semantics of Java , J. Alves-
Foss, Ed. Berlin: Springer-Verlag, LNCS #1523, 1998,
pp. 271-312..

[4] Goldberg, A. A Specification of Java Loading and Byte-
code Verification. In, Proceedings, 5th ACM Conference
on Computer and Communications Security. San Fran-
cisco, CA., November 1998. ACM Press.

[5] Muchnick, S. Advanced Compiler Design and Implemen-
tation. San Francisco, CA: Morgan Kaufmann, 1997.

[6] Rehof, J. and T. ÆMogensen. Tractable Constraints in
Finite Semi-lattices. In, Third International Static Analy-
sis Symposium (SAS), 1996, pp. 285-330. Springer-
Verlag.

[7] Westfold, S.J. and D.R. Smith. Synthesis of Efficient
Constraint Satisfaction Programs. Kestrel Institute Tech.
Rep., 1998. .

[8] Lindholm, T. and F. Yellin. The Java Virtual Machine
Specification. Reading, MA: Addison-Wesley, 1996.

[9] Bertelsen, P. Semantics of java byte code. Copenhagen:
Royal Veterinary and Agricultural University Tech. Rep.,
1997. http://www.dina.kvl.dk/~pmb/.

[10] Cohen, R.M. The Defensive Java Virtual Machine
Specification. Computational Logic, Inc. Tech. Rep.,
1997. .

[11] Stata, R. and M. Abadi. A type system for Java bytecode
subroutines. In, Proceedings, 25th ACM Symposium on

the Principles of Programming Languages. San Diego,
CA, January 1998. ACM Press.

[12] Hagiya, M. and A. Tozawa. On a New Method fot Data-
flow Analysis of Java Virtual Machine. In, Proceedings
of the 1998 Static Analysis Symposium, 1998. (To ap-
pear).

[13] Pusch, C. Formalizing the Java Virtual Machine in Isa-
belle/HOL. Technische Unversität München Tech. Rep.
TUM I9816, October 18, 1998. http://
www4.informatik.tu-muenchen.de/~isabelle/bali/.

[14] Saraswat, V. Java is not Type-safe. AT&T Research
Tech. Rep., 1997. .

[15] Sirer, E.G., S. McDirmid, and B. Bershad. A Java Sys-
tem Security Architecture. University of Washington
Tech. Rep., 1997.

[16] Freund, S. and J. Mitchell. A Type System for Object
Initialization in the Java Bytecode Language. in Pro-
ceedings of OOPSLA’98. October 1998. Vancouver,
B.C., Canada. ACM Press.

.

