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Abstract 
This paper reports on our ongoing efforts to realize a 

provably-correct implementation of the Java Virtual Ma-
chine bytecode verifier. We take the perspective that byte-
code verification is a data flow analysis problem, or more 
generally, a constraint-solving problem on lattices. We 
employ SPECWARE, a system available from Kestrel Insti-
tute that supports the development of programs from 
specifications, to formalize the bytecode verifier, and to 
formally derive an executable program from our specifi-
cation. 

1. Introduction 

DoD applications are increasingly being implemented 
in distributed computing environments. These environ-
ments exacerbate security concerns, especially when mo-
bile code is employed. Java provides language-based 
mechanisms that help address many security concerns. In 
particular, buffer overflow attacks, which account for as 
much as 50% of today’s system vulnerabilities, exploit 
the absence of type safety in many languages, notably C 
and C++. Java is a type safe language and so eliminates 
this mode of attack. Furthermore, Java uses language-
based mechanism for insuring correct program linking, 
and the enforcement of security policies.  

In the Java language framework, Java source code is 
compiled to Java Virtual Machine (JVM) code, usually 
referred to as bytecode. It is bytecode rather than Java 
source that is transmitted as mobile code. The JVM can-
not trust that this code is the unmodified output of a cor-
rect Java compiler. Thus, as part of the loading process 
the JVM verifies that the purported bytecode is valid JVM 
code. This verification procedure, performed by the byte-
code verifier, is non-trivial. A major obejective is to es-
tablish the type safety of the code using data flow meth-
ods. 

This paper reports on our ongoing efforts to realize a 
provably-correct implementation of the Java Virtual Ma-
chine bytecode verifier (or simply the verifier) from a 
formal specification using the SPECWARE  System. 
SPECWARE [1], a system available from Kestrel Institute 
[2], supports the formal and provably-correct develop-
ment of programs from specifications written in a specif-
cation notation based on high-order logic. 

In previous papers [3, 4] we have specified the seman-
tics of the JVM verifier. Collectively these papers deal 
with most aspects of the JVM including JVM subroutines, 
dynamic class loading, object initialization, interface 
types, arrays, and all primitive types. These papers take 
the perspective that bytecode verification is a data flow 
problem, or more generally, a constraint-solving problem 
on lattices. One advantage of this approach is that imple-
mentation of a bytecode verifier from such a specification 
can be derived as an instantiation of a generic algorithm 
for constraint solving. 

In this paper, we describe our progress in formalizing 
the specifications in those papers using SPECWARE, and 
we describe the refinement methodology used to obtain an 
implementation. 

This paper is organized as follows. The next section 
gives a detailed overview of our approach. In Section 3 
we describe how our specification of the verifier is for-
malized in SPECWARE. In Section 4 we describe its re-
finement to a program using SPECWARE. In Section 5 we 
give a small example. This is followed by a description of 
related work and our conclusions. 

2. Approach 

2.1.  Bytecode Verification, Data Flow Analysis, 
and Constraint Problems  

Data flow analysis is a methodology used to establish 
assertions at program points that are invariant over all 
program executions. Because the types of local variables 
and stack elements vary during JVM execution, it is natu-
ral to view the bytecode verifier as a data flow problem. 
To specify a particular data flow problem, a control flow 
graph, a semilattice, an initial state, and transfer functions 
are specified. The semilattice captures the abstract pro-
gram properties of interest, and transfer functions capture 
the behavior of JVM instructions with respect to the semi-
lattice. The data flow framework includes algorithms that 
solve general data flow problems by fixed-point iteration. 
Theorems that assert algorithm termination, soundness 
and give a characterization of the accuracy of the solution 
have been proved [5] In particular, soundness and termi-
nation are assured if the semilattice has finite height and 
the transfer functions are monotone. In addition, if the 



transfer functions are distributive, the algorithm yields the 
meet-over-all-paths solution, i.e. the sharpest or most ac-
curate result possible. In our specification of the verifier, 
construction of a flow graph is trivial. The main challenge 
is to specify the semilattice and transfer functions.  

In formalizing our specification, we chose a more gen-
eral constraint framework [6] instead of data flow analy-
sis.  Let L = 〈L, , 〉 be a semilattice and F a collection of 
monotone functions of various arities over L. Let V be a 
collection of variable names. Let t denote a term formed 
from constants, c ∈  L, variables, v ∈  V, and function 
symbols from F. A constraint solving problem is a collec-
tion of definite inequalities, i.e. inequalities of the form 
v  t or c  t. A solution is an assignment I : V → L satis-
fying each inequality. A solution M is maximal if for any 
solution I and any variable v, I(v)  M(v). In this paper, a 
reference to a constraint solving problem or, simply, a 
CSP refers to a problem of the described form. 

It is not difficult to see that a data flow problem may 
be mapped to a CSP problem. For simplicity, assume each 
node of the control flow graph consists of a single JVM 
instruction. Let tfi denote the transfer function formalizing 
the behavior of the instruction at node i.1 Introduce a con-
straint variable, ui for each node i of the control flow 
graph.  For each edge (i, j) introduce the inequality uj  tfi 
(ui).Our specification of the verifier generates CSPs of 
this form.  Many of the properties enjoyed by the data 
flow architecture are also true of these CSP ’s. A chaotic 
fixed-point iteration algorithm will converge to the 
maximal solution.  The complexity of the algorithm is 
polynomial. 

We chose to express the bytecode verifier as a CSP 
problem for the following reasons: 

 
• We wish to explore the applicability of Kestrel-

developed synthesis technology [7] that has been used 
to optimize a related class of constraint problems. 

• This results in a robust specification that be can be 
modularly enhanced to perform other security-related 
static checks on bytecode, for example information 
flow analysis. More generally the bytecode verifier 
may be viewed as the verification condition generator 
of a proof carrying code implementation. 

2.2.  Some Salient Aspects of Our Bytecode 
Specification 

The bytecode verifier determines if a JVM program is 
well typed. Because the methods in a class reference in-
                                                           

1 If a JVM instruction raises an exception, its behavior 
differs from normal execution. Therefore, our actual 
specification associates transfer functions with edges, not 
nodes. 

stance variables and methods defined in other classes, 
type consistency requires checking the internal consis-
tency of a class, as well as its external consistency with 
referenced classes. Because class files are loaded dynami-
cally, and because it is desirable to minimize constraints 
on when classes gets loaded, the verifier cannot assume 
that a referenced class has been loaded prior to verifica-
tion of a referencing class. Thus, our specification main-
tains a global typing context consisting of type assertions 
derived from the declarations in a class, and type assump-
tions derived from references to external classes. The 
global typing context is one component of the semilattice. 

Because we make no assumptions about the order that 
classes are loaded (so the least general common super-
type of two object classes is generally not known when 
the class is verified), and because there is no greatest 
common super-type of two interface types, there is no 
meaningful meet operation definable for JVM reference 
types. Instead, we use a set to represent reference types. 
The intended meaning is that the static type of a reference 
is one of the (reference) types in the set. The set is a semi-
lattice with union as the meet operation. Verification of 
the invokevirtual and other instructions add subtype 
assumptions to the global typing context. 

2.3.  Formalization of the Bytecode Verifier 

2.3.1.  Architecture of the verifier as a constraint 
   problem. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 1: Verifier Architecture 

Using the constraint approach, verification of a class 
file is performed in two steps, as illustrated in Figure 1. 
First, the global typing context is updated with assertions 
and assumptions derived from declarations in the constant 
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pool. Furthermore, a constraint problem is generated for 
each method defined in the class. In generating the con-
straint problem, it is assumed that the class file meets the 
static verification checks described in Section 4.9 of [8]. 
In the second phase, the constraint problem for each 
method is solved and the global typing context is updated 
with typing assumptions derived from the method code. 

As defined above, a semilattice, a collection of mono-
tone functions on the semilattice, and a set of inequalities 
parameterizes a CSP. The semilattice and monotone func-
tions are defined once for the JVM — only the generated 
constraint inequalities depend on the method being veri-
fied. 

2.3.2. Semilattice construction. We define a semilattice, 
LJVM, that characterizes the information that the verifier 
maintains at each program point. This information in-
cludes the type of local variables and elements of the 
stack, as well as the global typing context, which includes 
assertions and assumptions about class declarations and 
subtype relationships, and the signature of referenced 
methods and instance variables. The type information 
regarding local variables and stack elements is not simply 
the static type of the entity, but holds information about 
the initialization status of objects, and other information 
needed to verify the proper use of the jsr and ret instruc-
tions. 

We define LJVM from some simple point and set semi-
lattices using semilattice-building operations: 

×  takes two semilattices and forms their product; 

seq  takes a semilattice L and forms a semilattice of prod-
ucts (sequences) of elements from L; 

⊕   takes two semilattices and forms their disjoint sum; 

/   takes a semilattice and a suitable congruence relation 
and forms a semilattice whose elements are the 
equivalence classes induced by the  relation. One use 
of this operation is to identify the bottom element of 
a binary product with the bottom elements of the 
component semilattices; 

stk  takes a semilattice L and forms a semilattice of 
bounded stacks whose  elements are taken from L. 

Note that these operations are generic semilattice con-
structions of utility beyond the JVM.  
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 Figure 2: JVM Semilattice Construction 

Figure 2 is a simplified view of the construction of LJVM 
using the semilattice-building operations. In the figure, 
the ovals represent operations and unboxed text the names 
of the resulting semilattices. Thus, Lbase, used to represent 
a stack element or local variable, is the (cascaded) disjoint 
sum of the three semilattices shown. As described above, 
the semilattice that represents a reference is a set semilat-
tice of reference types. Lbase is then used to form semilat-
tices representing the stack and local variables. Lgl-assert 
represents the set of global assertions. The quotient opera-
tion is applied to Lgl-assert to construct a semilattice that 
identifies in a single equivalence class all inconsistent 
assertion sets and the bottom element of the semilattice. 

2.4.  Monotone Functions and Constraint Ine-
qualities 

Roughly speaking, our specification defines a mono-
tone function for each transfer function corresponding to a 
JVM instruction. The transfer functions are constructed 
from monotone functions defined on component semilat-
tices of LJVM.  For example, push and pop are defined on 
stack semilattices, proved to be distributive (hence mono-
tone) functions, and used in the definition of transfer 
functions that manipulate the JVM stack. Most transfer 
functions are composed from constructor or destructor 
operations (like push and pop) of the semilattice-building 
operations (like stk(L)). 

More precisely, because some transfer functions de-
pend on the operand of the instruction, we actually de-
fined families of parameterized transfer functions. For 
example, the transfer function for the putfield instruc-
tion is parameterized by the name of the object class con-
taining the field and type of the referenced field. 

Analysis of a method generates a constraint inequality 
of the form uj  tfi (ui) for each edge (i, j) of the control 
flow graph. Constraints are represented as pairs of terms, 
using an abstract data type for terms. The constraint solv-
ing algorithm invokes a function eval (t, e) that evaluates 
a term t given an environment e that maps variables to 
semilattice values. 



3. Formalization in SPECWARE 

As mentioned in Section 1, SPECWARE is a system 
supporting the formal development of programs from 
specifications. Its core functionality is based on clear 
mathematical concepts from logic and category theory, 
and made accessible to the developer through a graphical 
user interface. A specification (spec) in SPECWARE is a 
theory in high-order logic. The system provides conven-
ient mechanisms to build more complex specs out of sim-
pler ones. One such mechanism is instantiating a param-
eterized spec (pspec): roughly, a pspec is a spec with an 
explicit “formal parameter” part, which upon instantiation 
gets “replaced” with an “actual parameter” spec. 

Formalizing bytecode verification in SPECWARE along 
the lines described in Section 0, amounts to formalizing: 
the JVM semilattices; the transfer functions for the JVM 
instructions; the format of class files; the form of con-
straints; which constraints are derived from a given class 
file; and what is a (maximal) solution to a set of con-
straints. In this section, we provide an overview of the 
specs we developed for some of these concepts. To avoid 
cluttering this overview with non-substantial details, the 
examples we present are slight simplifications of the 
specs we actually wrote.  

SPECWARE provides a library of specs for some popu-
lar concepts (e.g., sets, ordering relations, and arrays). 
Starting from some of them, we incrementally built our 
specs in a structured way, making extensive use of pspecs 
and instantiation, as well as of other composition mecha-
nisms. We followed the rationale of “factorizing” com-
mon sub-concepts as much as possible, in order to pro-
duce more re-usable, readable, and elegant specs. In fact, 
many of the specs we wrote are completely independent 
of bytecode verification. 

First of all, we wrote specs for (generic) semilattices, 
such as 

 
spec SEMILATTICE is 
 sort P 
 op lq : P, P -> Boolean 
 op meet : P, P -> P 
 axiom reflexivity is 
       lq(x,x) 
 axiom anti-symmetry is 
       lq(x,y) & lq(y,x) => x=y 
 axiom transitivity is 
       lq(x,y) & lq(y,z) => lq(x,z) 
 axiom greates-lower-bound is 
       lq(meet(x,y),x) & 
       lq(meet(x,y),y) & 
       (lq(z,x) & lq(z,y)=> 
        lq(z,meet(x,y))) 
end-spec 
 
We wrote pspecs formalizing the construction of se-

quence semilattices, stack semilattices, and so on. For 

instance, we wrote a pspec SEQUENCE-of-
SEMILATTICE having SEMILATTICE as formal pa-
rameter, and defining a new sort of tuples of semilattice 
points, and how the partial ordering and binary operation 
can be lifted to such tuples:  

 
pspec SEQ-of-SEMILATTICE is 
 parameter SEMILATTICE 
 ... 
 definition of meet : 
               Seq, Seq -> Seq is 
 axiom  meet (x,y) = z  <=> 
        fa(i) comp(z,i) =  
              meet (comp(x,i), 
                    comp(y,i)) 
 ... 
 
Analogously, we wrote pspecs STACK-of-

SEMILATTICE (with push and pop operations), QUO-
TIENT-of-SEMILATTICE, etc. Next, we suitably in-
stantiated them, starting from JVM-specific semilattices 
such as:  

 
spec JVM-PRIMITIVE-SEMILATTICE is 
 sort PrimSL 
 const int : PrimSL 
 const float : PrimSL 
 const unusable : PrimSL 
 ... 
 definition of meet is 
  axiom meet(int,float)= unusable 
   axiom meet(int,int) = int 
 ... 
 
In order to formalize definite inequalities, terms over a 

semilattice with monotone functions must be formalized. 
Abstracting a little bit from that, we first wrote a spec 
ALGEBRA and a pspec TERMS –over-ALGEBRA having 
ALGEBRA as formal parameter: 

 
spec ALGEBRA is 
 sort Dom 
 sort Fun 
 op arity : Fun -> Nat 
 op apply : Fun, DomList -> Dom 
 ... 
pspec TERMS-over-ALGEBRA is 
 parameter ALGEBRA 
 sort Term 
 sort Var 
 op const-term : Dom -> Term 
 op var-term : Var -> Term 
 op funapp-term : 
    Fun, TermList -> Term 
 sort Asg 
 op asg-val : Asg, Var -> Dom 
 op eval : Term, Asg -> Dom 
 ... 
 
 



Next, instantiating the carrier Dom to be a semilattice, 
adding axioms stating monotonicity for the elements in 
Fun, and pairing generic terms with constant terms or 
variable terms, we formalized definite inequalities, as 
well as CSP’s as sets of definite inequalities, and what is a 
(maximal) solution. 

Our specs for transfer functions define a sort for them, 
and an apply operation to apply them to the JVM semi-
lattice points. To avoid lengthy and repetitive definitions, 
we defined them as suitable compositions of some auxil-
iary functions. For instance, we defined a function which 
pops the top elements of a JVM stack semilattice point if 
they satisfy a “pattern” (e.g., the top two elements being 
both integers), and returns ⊥  otherwise. Here is an ex-
cerpt: 

 
spec TRANSFER-FUNCTIONS is 
 sort TransFun 
 op apply : 
    TransFun, JvmSL -> JvmSL 
 const iadd : TransFun 
 ... 
 axiom 
  fa (...stk:StkSL...) 
     apply(iadd,...stk...) = 
     (...push (int,  
               pop(pattern(int), 
                   stk))...) 
 ... 
 
Clearly, by instantiating the definite inequality pspecs 

with the JVM semilattice and the transfer functions, we 
exactly obtained the spec for JVM constraint problems. 

SPECWARE provides facilities to validate specs, by al-
lowing the developer to enrich them with conjectures stat-
ing putative properties of the specs. The developer can 
then ask the system to verify a spec, which amounts to 
invoking a theorem prover (currently, Specware is con-
nected to various theorem provers) to prove all the con-
jectures of the spec. In all our specs we included conjec-
tures, stating for instance that the JVM primitive semilat-
tice is really a semilattice, that a (generic) sequence semi-
lattice is really a semilattice, and that our transfer func-
tions are monotone:  

 
 ... 
 theorem prim-reflexivity is 

  fa(x:PrimSL) lq(x,x) 
 ... 
 theorem seq-transitivity is 

  fa(x,y,z:Seq) 
    lq(x,y) & lq(y,z) => lq(x,z) 

 ... 
 theorem transf-fun-monotonicity is 

  fa(tf:TransFun, x,y:JvmSL) 
    lq(x,y) => 
    lq (apply(tf,x), 
        apply(tf,y)) 

 ... 

4. Refinement in SPECWARE 

In SPECWARE, programs are formally derived from 
specs by refining specs. Roughly, refining a spec amounts 
to “mapping” it into a new spec, which interprets the con-
cepts of the initial one in terms of other concepts. These 
other concepts should be closer to those of some target 
executable language, and if they are sufficiently close, 
executable code can be generated by SPECWARE. Refine-
ments can be sequentially composed, thus allowing code 
to be derived from specs through a series of successive 
steps. Furthermore, a refinement for a compound spec 
(e.g., an instantiated pspec) can be obtained from refine-
ments for the individual components (e.g., for the pspec 
and for the actual parameter). Currently, SPECWARE can 
generate code for (functional subsets of) LISP and C++. 

SPECWARE provides built-in mechanisms to represent 
constructed sorts (e.g., products, sums, and quotients) in 
target languages in terms of the representations of the 
component sorts. It also provides a library of refinements 
of common abstract structures (such as sets and bags) to 
more concrete structures (such as lists and arrays) which 
are “directly” representable in target languages. Starting 
from these mechanisms and refinements, we have refined 
our specs to LISP code. For instance, we refined the JVM 
primitive semilattice points to an enumeration of integers, 
with semilattice operations defined by cases: 

 ... 
 definition of unusable : PrimSL is 
  axiom  unusable = 1 
 definition of int : PrimSL is 
  axiom  int = 2 
 definition of float : PrimSL is 
  axiom  float = 3 
 ... 
 definition of meet : 
         PrimSL, PrimSL -> PrimSL is 
  axiom ~(x=y) => 
        meet(x,y) = unusable 
 ... 
Sequence and stack semilattices have been refined to 

array and lists. Operations have been re-phrased to be 
constructive, as in: 

definition of meet : 
               Seq, Seq -> Seq is 
  axiom  meet (x,y) = 
         meet-aux (x, y, x, 1) 
definition of meet-aux : 
        Seq, Seq, Seq, Nat -> Seq is 
  axiom geq(i,size(z)) =>  
        meet-aux(x,y,z,i) = z 
  axiom lt(i,size(z)) => 
        meet-aux(x,y,z,i) =  
        meet-aux(x,y, 
                 change(z,i, 
                   meet(comp(x,i), 
                        comp(y,i))), 
                 succ(i)) 



An important refinement is to provide an actual algo-
rithm to compute the maximal solution of a set of definite 
inequalities. We have in fact built and refined specs for 
the algorithm proposed in [6]. For example, a constraint 
of the form u3  tfiadd(u4) is represented in our generated 
LISP code as (roughly): 

 
 ((VAR 3) (FUN-APP (TF 16) (VAR 4))) 
 
And here is how the meet function over the JVM primitive 
semilattice is refined to LISP: 

 
 (DEFUN MEET-PRIM (X Y) 

      (COND((NOT (= X Y)) 1)...)) 
 

We are going to further refine our specs for optimization, 
in order to generate more efficient code. 

5. Example 

Figure 3 below gives a method together with an expla-
nation of each instruction. We assume that the method is 
contained in the class C. Note that in the instruction 
putfield (Fld,D,C), Fld is the name of the field, 
D the type of the field and C the name of the class contain-
ing the field. Since program point 7 has two predecessors 
5 and 6, and the top stack entry may hold either the first 
or second actual parameter. 

For the instructions in the example in Figure 3 we de-
fine the following transfer functions of type JvmSL → 
JvmSL:  

 tfaload ind (asr,asm,var,stk)  :=  
if isRef (varind) then (asr,asm,var,push(stk, varind)) 

else ⊥  

tfif_acmpeq pp (asr,asm,var,stk)  :=   
 if isRef (top(stk)) and isRef (top(pop(stk)))  
 then (asr,asm,var,pop(pop((stk))) else ⊥  
tfgoto pp(u) := u 
tfputfield (Fld,D,C) (asr,asm,vars,stk) :=  
 (asr, 
  asm ∪  {subtyping(top(stk),D),  
               subtyping(top(pop(stk)),C), Fld∈  fields(C)}, 
 vars, pop(pop(stk))) 
tfreturn (u) :=  T 

where T denotes an artificial top element  in the semi-
lattice JvmSL, and the function subtyping ({ ref1,…,refn}, 
ref') yields true if and only if each refi is a subtype of ref' 
in the JVM.  

We view the instruction return as having a special 
final node as its successor program point. The head of 
each method has a special transfer function   

head_tf (asr,asm) := (asr,asm,[cnam, ty1, …, tym, 
     unusm+1,…, unusn],[] ) 

where asr and asm are given by an invoking site of the 
method, cnam is the class containing the declaration of 
the method, and ty1, ..., tym are types of the parameters. 

A constraint is created for each instruction.  Let the in-
struction be at the program point pp and have a successor 
program point pp'. Then the constraint is of the form  

upp’  tf (upp)  

For the method head, a constraint  

u0  head_tf (cnam, ty1, …, tym, asr, asm) 

is created at program point 0, where asr and asm are 
given by an invoking site of the method. 

 
 
Void m (J1, J2)  // The method has two arguments of interfaces J1 and J2 
.limit local 3  // The method has 3 variables 
     // Set this-object and the actual parameters in the variables; 
  // set the empty stack 
0 aload 0   // Load the object reference in variable 0 onto the stack.  
1 aload 1   // Load the object reference in variable 1 onto the stack. 
2 aload 2   // Load the object reference in variable 2 onto the stack. 
3 if_acmpeq 6  // If the top entries in the stack are equal, then go to 6; 
  // else go to 4. 
4 aload 1   // Load the object reference in variable 1 onto the stack. 
     // Go to 7. 
5 goto 7   // Load the object reference in variable 2 onto the stack. 
7 putfield (Fld,D,c) // Put the top stack entry into the field Fld of the object 
     // referenced by the second top stack entry 
8 return   // Terminates and returns. 

Figure 3: A Simple Method 

 



          Program  vars  stk  asm 
 
void m(J1,J2)      asm as input 
0 aload 0    [C, J1, J2] []  asm 
1 aload 1    [C, J1, J2] [C]  asm 
2 aload 2    [C, J1, J2] [C, J1]  asm 
3 if_acmpeq 6  [C, J1, J2] [C, J1, J2] asm 
4 aload 1    [C, J1, J2] [C]  asm 
5 goto 7    [C, J1, J2] [C, J1]  asm 
6 aload 2    [C, J1, J2] [C]  asm 
7 putfield (Fld,D,C) [C, J1, J2] [C, { J1, J2}] asm  
8 return    [C, J1, J2] []  asm ∪  
        {subtyping ({J1, J2}, D), 
        Fld ∈  fields(C)}} 

 

Figure 4: Legal Location Types for the Method in Figure 3

Figure 4 shows the maximal solution to the con-
straint inequalities generated for the method code. 
Note that at program point 7, the semilattice value of 
the top entry of the stack is a set with two elements, 
since its static type is either the static type of the first 
or second actual parameter of the method. In all other 
cases where a stack or local variable holds a reference 
type, the set of possible types is a singleton. To sim-
plify, we have suppressed braces around singleton sets.  
The constraint subtyping({ J1, J2}, D) in the asm com-
ponent at program point 8 ensures that D is a super-
interface of J1 and J2. 

6. Related Work  

Bertelsen formalized JVM instructions using state 
transitions [9]. Cohen described a formal semantics of 
a subset of the JVM, but runtime checks are used to 
assure type-safe execution [10]. Both approaches did 
not consider static type checking, thus are not directly 
relevant to bytecode verification. 

Stata and Abadi [11] proposed a type system for 
subroutines, provided lengthy proofs for the soundness 
of the system and clarified several key semantic issues 
about subroutines.  

Qian [3] presented a constraint-based typing system 
for objects, primitive values, methods and subroutines 
and proved the soundness.  

Freund and Mitchell [16] made a significant exten-
sion of Stata and Abadi’s type system [11] by consider-
ing object initialization.  

Hagiya and Tozawa [12] presented another type 
system for subroutines, where the soundness proof is 
extremely simple. Hagiya and Tozawa discussed issues 
relating to implementation of their type system, but 
they did not formally describe their implementation.  

In fact, since they did not consider objects, their im-
plementation did not address many of the issues that 
we have.  

Pusch [13] formalized a subset of the JVM in the 
theorem prover Isabelle/HOL based on the work by 
Qian [3], thus achieving a high level of assurance. All 
of this work is basically aimed at achieving a sound 
specification, but did not consider how to develop a 
provably correct implementation.  

Goldberg [4] directly used data flow analysis to  
formally specify bytecode verification focusing on 
type-correctness and global type consistency for dy-
namic class loading. He successfully formalized a way 
to relate bytecode verification and  class loading.  

Saraswat [14] studied static type-(un)safety of 
JAVA  in the presence of more than one class loader.  
We do not consider class loaders in this paper.  

The Kimera project [15] was quite effective in de-
tecting flaws in commercial bytecode verifiers.  Using 
a comparative testing approach, they wrote a reference 
bytecode verifier and tested commercial bytecode veri-
fiers against it. A particularly interesting point was that 
their code is well structured and organized, and derived 
from the English JVM specification. It achieves a 
higher level of assurance than commercial implemen-
tations. However, since there is no formal specifica-
tion, it is not possible to reason about it, or establish its 
formal correctness. 

7. Conclusions and Future Work 

We have specified and implemented via refinement 
nearly all aspects of the bytecode verifier. Our specifi-
cation omits treatment of exceptions and the use of two 
instructions: jsr and ret. While these instructions 
add significant complexity to the bytecode verifier, we 



have previously formalized their semantics and expect 
their specification and refinement to be a straightfor-
ward extension of our current verifier. Performance of 
our generated code is sufficient to serve as a reference 
implementation the verifier. 

We plan to compare the results from our derived 
verifier with other bytecode verifiers. This will con-
tribute to increasing our assurance that the specifica-
tion captures the intended semantics of the informal 
specification and may expose errors in these other veri-
fiers. 

We are currently using a similar approach to spec-
ify another security-critical component of the JVM, the 
class loader. 
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