
Kestrel

Kestrel Institute
3260 Hillview Avenue, Palo Alto, CA 94304
Ph/Fx: (650)493-6871

SPECWARE

Producing Software
 Correct by Construction

James McDonald
John Anton

March 14, 2001

Contents

1 Executive Summary 1

2 Introduction 1

2.1 Formal Software Development and Specware 3

3 Basic Principles 4

3.1 Synthesis from Design . 5

3.2 Orthogonality . 7

3.3 Semantic Modularization . 7

3.4 Taxonomies . 8

3.5 Automation . 9

3.6 Advantages . 10

4 Category Theory 15

5 Basic Categories 17

5.1 Category of Specs and Spec-Morphisms 18

5.2 Category of Specs and Interpretations 21

5.3 Other Categories . 22

6 Parameterized Speci�cations 22

6.1 Illustration of problem . 23

6.2 Solution . 24

6.2.1 Contravariance . 25

6.2.2 Example . 25

6.2.3 Category of Pspecs . 25

7 Hereditary Diagrams 26

7.1 Diagrams as Designs . 27

7.2 Lazy Colimits . 29

7.3 Problems with old Approach 29

7.4 Promise of First Class Diagrams 29

7.5 Category of Diagrams . 30

7.6 OS Example Revisited . 30

7.7 Novel Kinds of Parameterization 31

7.8 Category of Diagrams . 33

7.9 Category of Designs { Diagrams of Diagrams 34

1 Executive Summary

This report describes SpecwareTM 1, a software development system that

supports semantically precise compositions of speci�cations, and correctness-

preserving re�nements of those speci�cations into executable code.

Specware uses notions and procedures based on category theory and re-

lated mathematics to manipulate speci�cations. The net e�ect is a system

that provides an orthogonal decomposition of software development into sep-

arate activities that can proceed independently, and which guarantees cor-

rectness when the results of those activities are combined. Specware has been

used to synthesize multi-thousand line programs from requirement speci�ca-

tions.

2 Introduction

Kestrel Institute is developing the theory, technology and practice of formal

software development; that is, the rigorous construction, using well-de�ned

methods, of executable code that is known to meet some well-de�ned spec-

i�cation. In particular, three problems that commonly a�ict large systems

are addressed:

Assurance that code meets speci�cation

Traditional software development systems have at best a rather loose

coupling between speci�cations and code, and tremendous amounts of

e�ort and ingenuity have been invested to address this fundamental

shortcoming. Software analysis standards di�er, but it is safe to say

that most of the e�ort invested in programming, documentation, code

reviews, test suites, monitoring, and customer support is concerned

solely with assuring a correspondence between the code and its speci-

�cation.

Flexibility and Productivity

A second problem with traditional approaches to complex software is

that each product tends to be painfully composed from the e�orts of

diverse developers, and then lives on as a rigid standalone artifact.

1Specware is a trademark of Kestrel Development Corporation

1

It is hard to adapt components to work together correctly, it is hard to

maintain such a system in light of changing speci�cations and environ-

ments, and it is hard to migrate all the speci�cations, documentation,

code, test suites, etc. from one instance of a software family to the

next.

Many of these problem are due to the large number of unstructured in-

terdependencies that arise in code | a localized change in the require-

ments burgeons into an entangled nest of changes scattered throughout

the code. Finding and e�ecting the changes requires a consideration of

the system as a whole, so the cost of a change is proportional the the

size of the entire system.

Performance

Signi�cant performance issues with an existing product sometimes re-

quire radical design changes, but the turn-around cycle from such de-

sign changes to re-implementation is typically on the order of months or

perhaps years. Traditional software development environments all but

preclude systematic exploration of alternative design strategies tightly

coupled to hard performance data.

Design and implementation decisions tend to be quite front-loaded and

rigid. If end-product testing reveals unexpected performance issues, it

can be diÆcult approaching impossible to revise an entire system to

accomodate such belatedly discovered information, so everyone lives

with the results until the next product cycle a year or more later.

Many methods have been proposed to overcome these three problems:

procedural programming, standardized documentation, standardized devel-

opment processes, object-oriented programming, etc. To a degree, these

methods have been successful. However, large software systems developed

today are still likely to be delivered late, cost more than predicted, deliver

less than promised, require expensive maintenance, fail unpredictably, and

fall prey to damaging exploits.

Kestrel has addressed these problems by developing technology that sup-

ports rigorous and explicit modularity in the speci�cation and development

of software components. The bene�ts are that a larger proportion of the de-

velopment e�ort is directed to clarifying the speci�cations, that development

can be factored safely into independent components guaranteed to combine

2

as expected, that the code produced is guaranteed to meet speci�cations pre-

cisely, and that changes in the requirements can be propagated through the

speci�cation and development process to produce changes in the code such

that the cost of a change is proportional to the size of the change, not the

size of the system.

2.1 Formal Software Development and Specware

SpecwareTM is a re�nement-based approach to software development that

has been under development at Kestrel for several years now.

It is di�erentiated from most other speci�cation/re�nement systems in

that its speci�cation and re�nement operations are based on a rigorous math-

ematical foundation, category theory, which promotes a high degree of con�-

dence in their correctness. In particular, the semantics of re�nement are such

that provability is preserved: if a statement is a theorem in a speci�cation,

then it remains a theorem in re�nements of that speci�cation (taking into ac-

count possible renamings introduced by the symbol mappings). This is the

basis of correctness-by-construction: code constructed through re�nement

from some speci�cation is known to satisfy that speci�cation because each

re�nement step preserves all of the properties of the original speci�cation.

For a developer using Specware, software development proceeds some-

thing like this:

� First, the (functional) requirements on a software system are de�ned

in an abstract speci�cation. The speci�cation is abstract in that: (i) it

de�nes what the software is to compute{the input-output relation and

related properties, and (ii) it is free of implementation details such as

the choice of algorithms, or the use of particular concrete data types.

In short, it says what the software should do, but not how.

� A typical speci�cation is composed from component speci�cations. De-

pendencies between components are de�ned using morphisms or inter-

pretations that syntactically map symbols from one component into

symbols or terms in another component, with the crucial semantic re-

striction that the translations of theorems from the original spec must

be provable theorems in the target spec, i.e., such morphisms must pre-

serve theoremhood and provably show how to embed the source theory

in the target theory.

3

� The abstract speci�cation is re�ned into constructive form by intro-

ducing algorithms that are composed to meet the speci�cation. These

algorithms are introduced by constructing interpretations that map the

formal specs for components into the formal specs for standard library

algorithms.

� Abstract sorts are re�ned into concrete data types. Re�nement may be

performed by using morphisms or interpretations to show how a stan-

dard library data type can be used to represent a particular abstract

data type.

� After the speci�cation has been re�ned into a suitable form, standard

library components (algorithms and data types) are converted into com-

ponents in some executable programming language (e.g., C, C++, Lisp,

or Java) using a code generator.

3 Basic Principles

A few basic principles have guided the development of Specware.

First and foremost is the principle of synthesis from design, or alter-

natively, synthesis from speci�cations or synthesis by re�nement:

code is generated by correctness-preserving re�nements or transformations

from abstract speci�cations, to provide correctness-by-construction in

the �nal code. In what follows, speci�cations may also be referred to as

specs, while the term theory is used to refer to the deductive closure of a

speci�cation | specs are the �nite presentations of in�nite theories.

The second principle is orthogonality: speci�cations of di�erent aspects

of an application are designed, developed, and maintained as independently

as possible from each other. Some theories describe a domain such as schedul-

ing or graph layout, while others describe data structures such as strings or

hash tables, while yet others describe algorithmic strategies such as divide-

and-conquer or global-search. To date, Specware has focused on functional

speci�cations that just de�ne what a program should do, but potentially it

could encompass theories to describe architectural aspects such as network-

ing or client-server arrangements, performance aspects such as liveness or

algorithmic complexity, or security issues such as privacy or robustness.

Third is the principle of semantic modularization: speci�cations of

any kind are designed as many small theories with strong semantic connec-

4

tions to each other. Each small theory is large enough to encompass the

concepts and constraints comprising some meaningful software component,

but is otherwise as small as possible, to maximize reusability. The connec-

tions used to glue theories together are required to maintain strict semantic

compatibility, which can be thought of as behavioral type-checking (or even

more informally as type-checking with a vengeance).

Fourth is the principle of taxonomies: theories and techniques tend to

form natural hierarchies from abstract to detailed versions, and such infor-

mation can be captured and presented to developers as guides for software

development. Furthermore, the structure of such a taxonomy may be ex-

ploited when progressing from designs using one node in the taxonomy to

those using another node, especially if the second is a specialization of the

�rst.

Fifth is the principle of automation: as much as possible of the develop-

ment process should be automated, to keep the developer's attention focused

on just the crucial speci�cation and design issues.

3.1 Synthesis from Design

Adherence to this principle can be characterized by various actions which are

typically, but not necessarily, performed in the following order:

� Creation of semantically precise domain theories

The developer in this step constructs theories that describe some realm

in which problems will be posed. Typically this will be done once in

consultation with experts in the domain area, and the (perhaps sub-

stantial) e�ort expended here will provide the basis for whole families

of applications.

These speci�cations should be domain-speci�c, but computationally

abstract. Data structures at this level will typically be in terms di-

rectly meaningful to the customer: schedules, networks, databases, etc.

Procedures and predicates at this level will be characterized primarily

by their abstract functionality: feasibility of a schedule, throughput of

a network, latency in a database, etc.

5

� Creation of semantically precise speci�cations

The developer in this step constructs speci�cations that describe pre-

cisely what is desired, and no more: irrelevant details and implemen-

tation details should be left unspeci�ed. The developers of normal

applications should spend the vast majority of their time doing this, in

tight consultation with customers.

As the speci�cations are posed in terms of the domain model developed

above, they should be domain-speci�c, but computationally abstract.

Note that in spite of their computational generality, speci�cations at

this level will include axioms stating precisely what is demanded of an

application: fairness, liveness, no late deliveries, no single-point failure

nodes, no races, optimality, etc. These are the crucial properties that

the �nal code will be guaranteed to maintain.

� Re�nement of algorithms

Given an abstract algorithm such as sorting, there are many ways

to re�ne it into a speci�c algorithm such as bubble-sort, mergesort,

quicksort, etc. Specware supports such re�nements in a manner which

guarantees that all stated properties of the abstract algorithm will be

maintained in the re�ned versions. For many applications, the precise

re�nement will hardly matter, while for high performance applications

the developer should have the opportunity to make crucial decisions.

Experimentation can be facilitated by providing taxonomies of algo-

rithms to choose among and by automating subsequent steps towards

code generation.

� Re�nement of data structures

The story here is almost exactly analogous to that for algorithms.

Given an abstract structure such as a schedule, there are many ways

to re�ne it into maps, sequences, arrays, etc. Again, Specware sup-

ports such re�nements in a manner which guarantees that all stated

properties of the abstract operations will be maintained in the re�ned

versions.

For many applications, very little time or expertise will be needed here,

as much of this re�nement can be fully automated. However, for high

performance applications, there is room here for the developer to make

6

crucial decisions that may a�ect performance. Experimentation with

respect to these crucial decisions is facilitated by providing taxonomies

of re�nements to choose among and by automating subsequent steps

towards code generation.

� Generation of code

Once the original abstract speci�cations have been re�ned to detailed

speci�cations using speci�c data structures and algorithms, the �nal

step of generating appropriate code should be fully automatic.

Specware supports fully automatic generation of Lisp, C and C++

code, with Java a likely next target, and in principle Specware could

target almost any imaginable target language: assembly, hardware,

database, markup, etc.

3.2 Orthogonality

The essence of this principle is that the properties of domains, architectures,

data structures, algorithms, etc. can be described and maintained indepen-

dently for each such realm.

Adherence to this principle enormously increases potential for reuse.

Given 10 domains, 10 architectures, 100 algorithms, and 100 data structures,

one potentially can generate about a million applications. The same e�ort

invested in traditional programming might yield a few hundred applications.

3.3 Semantic Modularization

The essence of this principle is that the speci�cations for any given aspect

should be composed of many small theories, with precise semantic glue con-

necting them.

� Many small theories

Small theories that describe a particular aspect of computing are more

likely to be described completely, correctly and elegantly, and are vastly

more likely to be reused.

The relevant behaviors for sets, maps, strings, etc. can be described in

theories that one can read and almost immediately understand. More-

over, one can then (both mentally and mechanically) encapsulate them

and consider sets of integers, maps from accounts to customers, etc.

7

In short, gluing lots of small theories together makes an overall struc-

ture that is vastly more comprehensible, reusable, and reliable than

having one monolithic theory.

� Semantically precise glue | spec morphisms

The way in which theories are glued together is a crucial aspect of

Specware. Traditional software paradigms use relatively weak con-

straints that at best use strong type checking to verify that one com-

ponent can speak intelligibly to another. Without explicit semantics,

however, there is no way to adequately constrain the behavior of mod-

ules when they interact. A routine that expects to sort using some

binary function may require that such a function be a total order, but

in traditional paradigms will be happy to link with a binary relation

that produces random boolean values!

In Specware, the morphisms that connect speci�cations are required to

translate all theorems of the source speci�cation into conjectures that

are provable in the target speci�cation. In other words, morphisms are

required to embed the entire source theory in the target theory, or in

yet more words, any possible model for the target theory must obey all

the rules posited by the source theory.

This ensures that whenever two speci�cations are connected by a mor-

phism, in whatever context, they will be semantically compatible. This

property is heavily exploited by high-level operations in Specware.

3.4 Taxonomies

Various aspects of the software environment can be captured in taxonomies:

domain models, architectures, data structures, algorithms, etc.

Having such taxonomies can reduce much of the work in application devel-

opment to selecting the appropriate nodes in those taxonomies. For example,

one might request a sorting algorithm (from a domain taxonomy) that is im-

plemented for strings (from a data taxonomy) using divide-and-conquer (from

an algorithm taxonomy) on a uniprocessor (from an architecture taxonomy),

and then merely be left with the manual selection of simple decomposition

(yielding mergesort) or simple composition (yielding quicksort). Finally, the

choice of target implementation language can come from such a taxonomy.

8

3.5 Automation

Since the Specware development process uses many highly detailed speci�-

cations, there is a great need (and fortunately there are great opportunities)

for automating much of the formal detail. Such automation can apply locally

or globally.

Many opportunities for automation can be characterized by the fact that

a partial expression or partially expressed operation can be expanded into a

unique complete expression or operation.

� Type Inference

The algebraic speci�cations used in Specware use strongly typed ex-

pressions, but automatic type inference can infer the appropriate types

in the vast majority of cases, and resolve overloaded symbols. This has

been in Specware from the beginning.

� Type Coercion

Often one wishes to apply an operation de�ned on one sort to an ob-

ject belonging to a subsort, or vice versa. Automatic type coercion

can insert the appropriate conversions and when necessary posit the

appropriate proof obligations for this to be meaningful. Type coer-

cion is available in metaSlang, a new version of Specware now under

development.

� Morphism Completion

Once a few source symbols in a morphism have been mapped, it may

be possible to automatically deduce the mappings for all the remaining

symbols. If there is only one possible morphism, it may be possible

to deduce it with no initial mappings. This is available in currently

released versions of Specware.

� Theorem Provers

In some contexts, a theorem prover may be used to answer queries or

�nd witnesses, which can then be automatically exploited. The mor-

phism editor, for example, allows the user to request unskolemization

and witness-�nding to deduce the appropriate de�nition for a freshly

de�ned target operation to be used as the target for some source oper-

ation.

9

� Colimits

There are eÆcient algorithms for computing colimits of the kinds of

diagrams used by Specware. The objects and arrows those diagrams

refer to may be arbitrarily large or complex, allowing a vast amount

of detailed activity to be subsumed into one semantically well-de�ned

step.

Other opportunities for automation arise by having appropriate high-level

operations that make large useful steps.

� Re�nements

If the user has speci�ed a course of action such as re�nement to code,

it may be possible in many cases to automatically decompose the ab-

stract speci�cations into smaller pieces, re�ne those recursively, and

then automatically compose the results.

� Transformations

Some actions such as �nite-di�erencing may be described abstractly as

pattern matching followed by extensive rewriting.

� Tactics

Some sequences of actions are canonical, in which case users may wish

to de�ne their own tactics to perform them. The new MetaSlang ver-

sion of Specware is written almost entirely within MetaSlang itself,

which should facilitate the expression of such tactics in MetaSlang and

their fairly direct introduction by the user at runtime.

The list above is not exhaustive. In general, we exploit most opportunities

we �nd to introduce (semi-)automation. Overall, we strive for each user

interaction to perform some meaningful task.

3.6 Advantages

There are several advantages to following the above principles, and these

appear in all aspects and stages of software development.

10

� Correctness

Most importantly, developers spend the majority of their time where it

matters most | correctly describing applications and thinking about

appropriate implementation strategies.

Classical studies, such as those described in Software Engineering Eco-

nomics by B. Boehm[3], show that the e�ort required to �x bugs grows

exponentially with each step of the software life cycle. To quote from

page 40: \These factors combine to make the error typically 100 times

more expensive to correct in the maintenance phase on large projects

than in the requirements phase.", with the footnote \The total eco-

nomic impact of leaving errors to be found after the software has be-

come operational is actually much larger, because of the added opera-

tional costs incurred by the error."

An experiment run by James Widmaier at NSA compared the use of

Specware technology with the use of a facility rated at level 4 using

sei's Capability Maturity Model [8]. The results were published as

\A Comparison Between Standard and Formal Mathematical Software

Development", Xin Huang's Master of Science Thesis, University of

Maryland Department of Nuclear Materials and Reliability Engineer-

ing, 1999 [Huang99].

The Specware and CMM4 teams were each given the same time and

money, the same initial requirements, and the same access to the cus-

tomer, and each was motivated to perform well. The team at Motorola

using Specware spent 32% of its time in the requirements phase, un-

covering several problems there, whereas the CMM4 team spent merely

11% of its time there, and found far fewer problems. The application

produced by the Specware team was judged by audited independent

third parties as having a 77% reliability, compared to 58% for the

CMM4 team. Moreover, �xing two well-localized design errors would

quickly have raised the Specware score to 98%, whereas no simple cor-

rection would substantially improve the CMM4 score. This provides

hard evidence that the Specware approach encourages developers to fo-

cus on specifying requirements, and that such time is very well spent.

� Performance

There are three major components to maximizing the performance of

a program: choose the best data structures and algorithms, apply high

11

level optimizations to reorganize the code, and �ne tune the resulting

code sequences.

{ Algorithmic performance

As any instructor for software 101 will tell you, by far the biggest

gains in performance come from selecting the appropriate algo-

rithms and strategies, not from �ddling with instruction sequences

or low-level details. The former may help a program run thousands

(or trillions!) of times faster, the latter might gain a factor of two

or so. Primarily because Doug Smith focused on the proper class

of algorithm, the tpfdd schedulers he developed at Kestrel were

orders of magnitude (from 25 to 250 or more times) faster than

competitive schedulers that had been developed using traditional

technology from the AI and operations research communities. [13]

{ High level optimizations

The next largest gains in performance come from somewhat com-

plex code transformations such as �nite-di�erencing or memo-

ization, in which the calculation of redundant computations is

avoided by the introduction of new data structures. Recognizing

the sites for and applying such transformations is a forte of kids,

Specware's predecessor. Some of this capability has been added

to Specware, and more will be.

{ Fine tuning, constraint propagation

When code is synthesized mechanically from speci�cations, op-

timizations can be applied aggressively and systematically in a

manner that would make manually developed code too brittle to

maintain. With a system of automated re�nements where each

step provably maintains correctness, each line of code can take

into account the entire semantic context it runs in to eliminate

impossible paths, optimize orderings, delete redundant veri�ca-

tions, etc. These kinds of optimizations are natural extensions

of those done by optimizing compilers for traditional languages.

Again, kids excels here, and some of this capability has been

added to Specware, while more will be.

In short, making algorithm re�nement a separate and decomposable

activity provides opportunities both large and small to increase perfor-

mance.

12

� Reuse

Speci�cations are vastly more reusable than implementations.

By making speci�cations (as opposed to implementations) the primary

repository of information about an application, this type of reuse is

maximized.

A generic speci�cation of maps can be exploited in more contexts than

any specialized implementation using arrays, bit vectors, hash tables,

association lists, etc.

Generic strategies such as divide-and-conquer or global search can be

used in countless contexts once they have been abstracted from the

entangling details of particular programs.

Domain speci�cations for something like scheduling can be combined

with various problem speci�cations to yield whole product lines. Do-

main speci�cations for something like inventories can be used to syn-

thesize software for purchasing, warehousing, distribution, sales, tax

issues, etc. A speci�cation of an aircraft's physical layout could be

used in one context to generate code for computing sound propagation,

in another for programming machines to fabricate parts, and in another

to generate code for laying out movable components.

� Reliability

Automating the re�nement to code eliminates coding errors.

Each step in the Specware re�nement process is constrained to preserve

correctness, using theorem provers if necessary to verify this. Thus any

property stated in the original speci�cation (e.g. \a plane will never be

scheduled to depart without a full well-rested crew available") can be

maintained in the �nal program. No misplaced comma or semi-colon,

stack overow, or too-clever coding trick will lead to a violation of that

requirement.

This does not eliminate all bugs from the application; for example,

the intended requirement above may really have been \a plane will

never be scheduled to depart without a full well-rested crew aboard".

However, it makes it possible for the testing e�ort to focus on test-

ing the correctness of the speci�cation, which is a much smaller and

focused task, and which occurs with respect to language that is di-

rectly meaningful and relevant to the client. Note also that tracking

13

the detection and correction of problems at that level provides a ba-

sis for highly proportionate and appropriate management of resources

devoted to development, testing, and maintenance.

� Time to Market

Automating the re�nement to code makes the implementation phase

thousands of times faster than manual coding. This creates a very

tight cycle of generating code, assessing a particular implementation of

an application, modifying the speci�cation of the application in light

of experience with it, and generating new code. Once the domain

model for a family of applications has been developed, the time for the

generation of new applications meeting revised speci�cations might be

measured in minutes instead of months. In fact, we have demonstrated

the generation of alternative schedulers to meet user-selected criteria

in a manner of minutes.

Of course, no lunch is completely free. The original development of

the domain theories for a completely new application area can take a

signi�cant amount of time, perhaps years. However, each new appli-

cation area is likely to �nd more and more o�-the-shelf speci�cations

exploitable from previously developed applications, so in the long run,

the time to create such domain models will likely be a modest invest-

ment proportional to the novelty of the domain.

� Maintenance

Having just the code for an implementation is like having just the

tip of an iceberg, or perhaps just the tail of a tiger. The vast bulk

of the relevant information needed to revise an application lies else-

where. Speci�cations, on the other hand, can capture most or all of

that information. Even after the original implementors have long de-

parted, new developers can look at the original speci�cations in light of

new customer demands, quickly make adjustments, and quickly gener-

ate new applications. Speci�cations provide an invaluable \corporate

memory", and re�nement technology makes revising code a relatively

painless task.

� Documentation

Invariably, the time spent developing a precise speci�cation leads to

a much more detailed understanding of the customer's needs, by both

14

the developer and the customer. Since the speci�cations are close to

the customer's terminology, recasting them in meaningful natural lan-

guage should provide excellent documentation. Among other things,

such documentation should illuminate often unstated assumptions and

(using semantic inference capabilities) perhaps hard-to-foresee conse-

quences, making the user's expectations of the application more mean-

ingful, vivid, concrete, and useful. This is an activity that not yet been

explored by Kestrel.

Assuming we want synthesis from design, there is still the question of

how designs and re�nement steps are structured. The short answer is that

we want speci�cations to be highly modular and con�ned to speci�c aspects.

There should be many small theories connected in semantically precise ways

to compose larger theories, and the composition should be hierarchical, en-

capsulating detail.

4 Category Theory

Category theory is the obvious choice for the organizing principle of Specware.

It is the pre-eminent organizing principle for modern mathematics, and by

building upon such a fundamental mathematical basis, Specware can take ad-

vantage of (and contribute to) a large and growing body of work by the main-

stream communities in mathematics, computer science, and even physics.

At a very abstract level, category theory is concerned with the way in

which properties of objects are preserved or a�ected by morphisms from one

thing into another. Starting from a small number of axioms and principles,

much like set theory or the lambda calculus, category theory is able to en-

compass a remarkable amount (arguably all) of mathematics.

It would be impossible to do justice to a description of category theory

here, but several excellent books and tutorials are available. The motivated

reader might consider any of these, to name just a few:

� Category Theory for Computing Science, M. Barr and C. Wells [1]

� Conceptual Mathematics: a First Introduction to Categories,

F. William Lawvere [6]

� Categories for the Working Mathematician, Saunders MacLane [7]

15

� Basic Category Theory for Computer Scientists, Benjamin Pierce [11]

� Practical Foundations of Mathematics, Paul Taylor [20]

Having said that, we still must present a few simple concepts from cate-

gory theory, and from Specware's use of it, to make the text in subsequent

sections meaningful.

Categories

Categories are composed of objects connected by arrows. There are a

few simple constraints we can ignore at this level of discussion, except

to note that arrows compose: given an arrow from A to B and another

from B to C, there must be2 the composed arrow from A to C. Also note

that, in general, two objects in a category might be connected by any

number of arrows, from none to an in�nite number, and any number

of distinct arrows may loop from an object back to itself, except that

a looping identity arrow is always present for each object.

Diagrams

It is reasonable to think of a diagram as a multi-graph with loops in

which each node and arc is labeled by an object or arrow, respectively,

from some target category. Distinct nodes are allowed to be labeled

by the same object, and distinct arcs between the same two nodes (or

looping on the same node) are allowed to be labeled by the same arrow.

One important property of diagrams is that they may commute. What

this means is that for any two distinct paths in some diagram from

node A to node B, the compositions of the arrows labelling the arcs of

either path each produce essentially the same arrow. In general, this

need not be true for arbitrary diagrams. When we know it is true for

all the diagrams under consideration we can exploit this information.

Colimits

For many categories, there is an operation called colimit that can be

applied to a diagram to glue together all the objects in that diagram,

creating a new object, where the precise nature of the gluing is given

2perhaps platonically

16

by the arrows in the diagram. Essentially, it is a means to push the

external structure captured by a diagram down into a single object.3

The technical de�nition is that a colimit of a diagram is the apex of

the universal cocone over the diagram, where a cocone is a collection

of arrows, one for each node in the diagram, all converging on the

same target and commuting with each other and the original arrows

in the diagram. More informally, a cocone is a way to compatibly

combine all the information from a diagram into one object, and a

colimit is the object created by a minimal cocone | one that does

the least amount of structure sharing to accomplish this goal. Not

all categories have colimits for their diagrams, but the ones used by

Specware do. Moreover, Specware uses a highly eÆcient (essentially

linear time) algorithm to compute the colimit of diagrams in the base

category of specs and spec-morphisms.

To help train your intuitions, note that in the degenerate case where

a diagram consists of just two unconnected nodes, each labeled by the

same spec S, the colimit spec for that diagram will consist of two dis-

tinct and non-interacting copies of S | no arrows means that nothing

from either copy was equated with anything in the other.

Also consider the diagram of the three upper left boxes shown in �gure

1 below, where Triv is the trivial spec containing exactly one sort E,

with no operations on it. Assume that Triv ! X is fE 7! Ag and

Triv ! Y is fE 7! Ig.

The colimit spec for this diagram is shown at the lower right, and

is similar to the one for S + S above, with almost distinct and non-

interacting copies of specs Triv, X and Y, except that the sorts E, A

and I will be equated in the colimit, thus allowing operations from spec

X to interact with those from spec Y via that sort.

5 Basic Categories

The original Specware already contains several categories. In the primary

category, objects are algebraic speci�cations, and arrows are spec-morphisms.

3To be precise, the colimit object is already present in the eternal, unchanging category

and the colimit merely selects it, but for our purposes here it's better to think of the

operation as revealing something new we have learned about the category.

17

spec Triv is

sort E

end-spec

�!

spec X is

sort A

sort B

...

end-spec
?
?
y

spec Y is

sort I

sort J

...

end-spec

spec Colimit-of-Triv-A-B is

sort EAI

sort B

sort J

...

end-spec

Figure 1: Colimit of a Diagram of Speci�cations

Other categories used by Specware build on the primary category of specs

and spec-morphisms, using arrows or diagrams from one level of category as

components to build objects and arrows at new levels. In particular, the

category of specs and interpretations, described below, is built this way,

A few additional categories in Specware use variants of the primary cat-

egory to describe modules in target languages such as Lisp, C, C++, etc.

5.1 Category of Specs and Spec-Morphisms

The primary category in Specware is that of specs (algebraic speci�cations)

and spec-morphisms (truth-preserving mappings of one spec into another).

Algebraic Speci�cation

An algebraic speci�cation is a collection of named sorts, named typed

operations, a set of axioms de�ning or otherwise constraining those

sorts and operations, and theorems derivable from those axioms. Figure

2 shows a typical speci�cations in Slang for a spec named CONTAINER

created de-novo, while �gure 3 shows the de�nition of a spec named

PROTO-SEQ via the composition of prior specs. Figure 4 shows part of a

typical speci�cation in MetaSlang for a spec named SplayTree.

18

spec CONTAINER is

sorts E, C

op empty : C

op singleton : E -> C

op join : C, C -> C

constructors {empty, singleton, join} construct C

op empty? : C -> Boolean

definition of empty? is

axiom (empty? empty)

axiom (not (empty? (singleton x)))

axiom (iff (empty? (join U V))

(and (empty? U) (empty? V)))

end-definition

op nonempty? : C -> Boolean

definition of nonempty? is

axiom (iff (nonempty? C) (not (empty? C)))

end-definition

op in : E, C -> Boolean

definition of in is

axiom (not (in x empty))

axiom (iff (in x (singleton y)) (equal x y))

axiom (iff (in x (join U V)) (or (in x U) (in x V)))

end-definition

op insert : E, C -> C

definition of insert is

axiom (equal (insert x C) (join (singleton x) C))

end-definition

constructors {empty, insert} construct C

end-spec

Figure 2: Typical Basic Speci�cation in Slang

19

spec PROTO-SEQ is

translate

colimit of

diagram

%% Monoid = associative + unit

nodes MONOID, CONTAINER, MONOID-SIG

arcs MONOID-SIG -> MONOID : {}

, MONOID-SIG -> CONTAINER : {E -> C,

binop -> join,

unit -> empty}

end-diagram

by {C -> Seq, empty -> empty-seq, join -> concat}

Figure 3: Typical Composite Speci�cation in Slang

spec SplayTree =

sort splay(a) = | SplayObj {value : a,

right : splay(a),

left : splay(a)

}

| SplayNil

sort ans_t(a) = | No | Eq a | Lt a | Gt a

...

op splay : fa(a) (a -> General.Order) * splay(a)

->

General.Order * splay(a)

def splay (compf, root) =

case adj compf root

of (No,_,_) -> (GREATER,SplayNil)

| (Eq v,l,r) -> (EQUAL, SplayObj{value = v,left = l,right = r})

| (Lt v,l,r) -> (LESS, SplayObj{value = v,left = l,right = r})

| (Gt v,l,r) -> (GREATER,SplayObj{value = v,left = l,right = r})

...

end-spec

Figure 4: Typical Basic Speci�cation in MetaSlang

20

The Slang language in the original Specware supports sum, product,

arrow, subsort, and quotient sorts. The MetaSlang language in newer

versions of Specware adds support for polymorphic types and a richer

syntax for de�ning sorts and operations. Both languages support higher-

order axioms, i.e., quanti�cation over functions and predicates. In gen-

eral, these are fairly expressive languages, although the lack of partial

functions and the lack of stateful operations is noticeable, and those

issues are now active topics at Kestrel.

A theorem prover can be invoked to automatically attempt to verify the

theorems from the given axioms when a spec is created. We currently

have interfaces to Snark [16] and Gandalf [4], and others can readily

be added.

Spec-Morphism

A signature morphism is an arrow that maps each symbol from the

source spec into some symbol in the target spec, such that the types

of operations are mapped consistently. A spec-morphism is a signa-

ture morphism with the added requirement that the symbol mapping

translates each axiom of the source theory into a conjecture that can

be proved in the target theory. A theorem prover can be invoked to

automatically attempt this veri�cation when a morphism is created.

Somewhat remarkably, spec-morphisms can capture most of the notions

of importation, parameterization and re�nement, and colimits can be used

to create composite speci�cations from diagrams of smaller speci�cations,

instantiate parameters and perform re�nements.

5.2 Category of Specs and Interpretations

Spec-morphisms provide a rather literal and limited mapping of one spec

into another, since they map symbols only to symbols. This simplicity makes

much of the fundamental code in Specware simple and eÆcient, but in prac-

tice, one often wishes to map symbols to expressions.

Rather than complicate the innermost code for Specware, we instead use

the categorical tools to construct a new category in which the objects are

still just specs, but the arrows, called interpretations, allow symbols to map

to expressions.

21

A de�nitional extension, depicted as Source d �� Target, is a spec-

morphism in which any new symbols in the target spec have de�nitions in

terms of the imported source spec. In other words, a de�nitional extension

merely provides names for sorts and operations already implicitly present in

the theory. The models of the source and target of a de�nitional extension

will be isomorphic.

An interpretation, depicted as Source =) Target, is built from two

spec-morphisms, each of which points into a common mediating spec, as

follows:

Source ! Mediator d�� Target

The target-to-mediator morphism must be a de�nitional extension. The

mediator spec provides explicit names for sorts and operations that were im-

plicitly present in the target theory 4, such that every symbol from the source

has an appropriate target in the mediator. The net e�ect is an interpretation

arrow that can be viewed as mapping source symbols to target expressions

(as opposed to just target symbols).

5.3 Other Categories

In addition to the categories above, the original Specware has categories for

language-speci�c specs (e.g. for Lisp, C, or C++) and morphisms on them

which essentially describe a module import relation.

It also has categories whose objects are interpretation-schema (i.e., the

objects here are arrows from the category of specs and interpretations), and

whose arrows are covariant mappings of those.

Using just the tools above, it was possible to generate code from some

speci�cations, but various problems impelled us to develop two additional

categories: one for parameterized-speci�cations with their re�nements, and

another for diagrams with diagram-morphisms.

6 Parameterized Speci�cations

One problem with simple speci�cations and morphisms is that they only

support covariant re�nement. For example, given one spec for partial orders

4Recall that specs are the �nite presentations of theories containing an in�nite number

of implicit terms and theorems.

22

and another for sorting, plus a morphism from the former to the latter, it

is possible to attach an interpretation restricting sorting to quicksort, and

another restricting partial orders to total orders, but this is typically not what

is desired. In a sense, the target of a covariant re�nement must anticipate

the source, hence in general, a restriction to covariant re�nement leads to ad

hoc solutions whose components cannot be reused.

6.1 Illustration of problem

The problem can be illustrated by the following example, where the goal is

to re�ne an abstract theory for sets of integers into an implementable theory

for arrays of bitvectors.

In what follows, the colimit of Set Triv! Int is described as Set(Int),

and similarly, the colimit of Array Triv ! BV is Array(BV).

The covariant construction of an interpretation Set(Int)) Array(BV)

then needs three vertical interpretations: Set) Array, Triv) Triv, and

Int) BV, as follows:

Set

��

Triv��

��

�� Int

��
Array Triv�� �� BV

This can be expanded to a diagram of the underlying spec-morphisms as

follows:

Set

��

Triv��

��

�� Int

��
Set-as-Array Triv-as-Triv�� �� Int-as-BV

Array

d

��

Triv��

d

��

�� BV

d

��

If the three mediator specs are connected as shown and the diagram

commutes, we can compute the colimit of the three interpretations to produce

the desired interpretation Set(Int)) Array(BV)

The details of the interpretation Set) Array are irrelevant.

The interpretation Int) BV proceeds through Int-as-BV, which im-

ports BV and adds the sort Integer-as-Bitvector plus operations that de�ne

23

integers using bit-vectors, so as to provide suitable target symbols for the

spec-morphism Int ! Int-as-BV.

Now however, any attempt to construct Triv) Triv will fail.

To see why, �rst consider the box of arrows at the upper right | it de�nes

two paths from the source spec Triv to to the spec Int-as-BV. The upper path

maps sort E from Triv to sort Integer in Int, which is then mapped to sort

Integer-as-BitVector in Int-as-BV. Hence the composite arrow maps sort E

from Triv to sort Integer-as-BitVector in Int-as-BV. Since the top and bottom

paths must commute, this means that if sort E from Triv maps to sort E1

in Triv-as-Triv, then E1 in turn must map to sort Integer-as-BitVector in

Int-as-BV.

But by a similar argument using the box of arrows at the lower right, we

see that if sort E in the target Triv maps to E2 in Triv-as-Triv, then E2 must

map to sort BitVector in Int-as-BV.

Since E1 and E2 map to di�erent targets in Int-as-BV, they must be

di�erent sorts in Triv-as-Triv.

But E1 and E2 must also map to sorts in Set-as-Array.

Then for everything to combine properly in the �nal result, the structure

of the mediating spec Int-as-BV will need to be compatible in ad hoc ways

with the structure of the mediating spec Set-as-Array, destroying modularity

and leading to excessive propagation of changes.

6.2 Solution

The solution starts by noticing that the morphism Triv! Set is a parametric

speci�cation. Essentially this means that Set does not add any axioms within

the subtheory it imports from Triv, or alternatively, that any model for Triv

can be expanded into a model for Set. Hence for any arrow Triv ! X, the

colimit of the diagram Set Triv! X cannot introduce inconsistency. This

is a highly desirable property.

Not all morphisms are parametric. For example, consider the morphism

from spec BinRel, containing a sort with one (otherwise unspeci�ed) binary

relation R, into spec Reexive, which adds the axiom that R(x; x) holds for

all x. Then consider the spec Irreexive, which has one sort and a binary

relation R with the axiom that :R(x; x) holds for all x. Then the colimit of

the diagram Reexive BinRel ! Irreexive would be inconsistent.

Starting from such insights, we developed a new category whose objects

are parametric speci�cations (i.e., spec-morphisms with the property above),

24

called pspecs for brevity, and whose arrows are contravariant re�nements

of pspecs. Pspecs will be indicated in diagrams by p �� .

6.2.1 Contravariance

Contravariant re�nement of pspecs is directly analogous to contravariant

re�nement of functions. To implement F : A!B in terms of G : C!D

it suÆces to show that A is a subset of C, that D is a subset of B, and that

for x in A, DtoC(G(AtoB(x))) is the desired value for F(x). In e�ect, we

follow arrows around three sides of a square to implement the fourth.

Similarly, to re�ne BodyA p�� ParmA into BodyB p�� ParmB we want

BodyA)BodyB, but (contravariantly) ParmB)ParmA.

6.2.2 Example

Consider an abstract speci�cation for Sort p�� TotalOrder. Then note that

Common Lisp has a routine called sort which accepts a comparison function

as one of its arguments. We can specify the lisp sort routine as

LispSort p�� LispRel, where LispRel describes a binary relation. In lisp, even

with traditional strong type-checking added, there is nothing to prevent us

from calling the sort function with a relation that returns arbitrary boolean

values, in which case we may get nonsense. However, we also know that if

the supplied relation de�nes a total order then the sort function will return

an ordered list. The latter knowledge justi�es adding a library re�nement

that re�nes Sort p�� TotalOrder into LispSort p�� LispRel. We will never

generate the nonsense cases because the instantiated spec Sort(RandomRel)

would require an impossible morphism TotalOrder ! RandomRel. Hence we

can guarantee properties at the problem speci�cation level, and re�ne those

abstract speci�cations to primitive routines, in a manner that preserves the

guarantees, even though using the target system directly could lead to non-

sense.

6.2.3 Category of Pspecs

The actual details for the category of pspecs and their re�nements are some-

what complex, but are presented clearly in Re�nement of Parameterized Al-

gebraic Speci�cations by Yellamraju V. Srinivas [19]. This paper discusses

25

the alternative semantics available for pspecs, and provides proofs of sev-

eral desired properties. Among other things, it provides semantics for the

following constructions:

� Instantiation of Pspecs

For example, given Set p�� Triv and the morphism Triv!Int, generate

the instantiated spec Set(Int) using the colimit operation.

� Contravariant Re�nement of Pspecs

For example, re�ne Sort p�� TotalOrder into Array p�� BinRel using a

re�nement that contains an interpretation from BinRel into TotalOrder

and an interpretation from Sort into Array(TotalOrder).

� Vertical Composition of Contravariant Re�nements

For example, compose a re�nement of Bag p�� TotalOrder into

Seq p�� PartialOrder with a re�nement of Seq p�� PartialOrder into

Array p�� BinRel, yielding a re�nement of Bag p�� TotalOrder into

Array p�� BinRel.

� Horizontal Composition of Pspecs

For example, compose a re�nement of Set p�� Triv with

Array p�� Triv to get Set(Array) p�� Triv.

7 Hereditary Diagrams

Hereditary diagrams formalize the notion of designs as diagrams, and make

explicit the notion of diagrams of (diagrams of ...) diagrams, de�ning their

properties, the way they should be implemented, and how to compute col-

imits of them. In the process, this new technology bridges a signi�cant

representational discrepancy between the way humans think about diagrams

of diagrams and the way computers can e�ectively implement them.

Moreover, a pleasant discovery is that the notion of parameterized spec-

i�cations can be captured as speci�c instances of this more general notion.

The e�ect of these additions has been to greatly expand the expressive-

ness of Specware, and to make it possible to codify at any desired level of

abstraction software composition, transformation, re�nement, evolution, etc.

26

in term of hereditary diagrams, viz. diagrams of diagrams of ..., with this re-

cursion ultimately grounding in some base category such as that for specs and

spec-morphisms. The user is able to access and manipulate these increasingly

more abstract concepts using just one set of recursive mechanisms, which is

a tremendously liberating new paradigm.

7.1 Diagrams as Designs

Diagrams provide a good mathematical structure for capturing the informal

notion of designs. They can be used to describe the horizontal composition

of a complex design, the vertical re�nement of a design from one level of

abstraction to another, parameterization of a design, and designs of designs.

Horizontal Composition

We saw small examples of horizontal composition above, in the

creation of speci�cations such as Set(Int) using the diagram

Set Triv ! Int. But the technology scales readily to inde�nitely

larger and more complex objects, arrows, and graphs. For example,

the diagram in �gure 5 expresses that the components for avionics and

on-board communications obey the same on-board network protocol,

and that the on-board communications and air-traÆc control system

each obey the same broadcast protocols.

J
JĴ

�
��/

J
JĴ

�
��/

CommunicationsAvionics ATC

Broadcast-ProtocolsLAN-Protocols

Figure 5: Diagram composing complex speci�cations

The colimit of this diagram would provide a speci�cation in which one

could express interactions between air-traÆc control and the avionics

software, with rigorous adherence to the broadcast protocols and to

behavioral restrictions imposed by the on-board network.

For another example, which we'll refer to later, suppose we want to

formally specify a certain kind of operating system (OS). Assuming

the spec describing the OS doesn't depend on the particular details of

the virtual memory (VM), we can abstract out as a parameter the spec

describing the VM. Likewise, a particular VM0 might not depend on

27

the details of the paging policy (PP), so we could abstract a second

parameterization of VM0 by PP.

?
-

?

?

-

HHHj

-
VM [PP]

OS[VM]

VM

OS

PP

p

p

0

0

0PP

VM

0 0OS[VM [PP]]

Figure 6: Diagram composing parameterized speci�cations

Vertical Re�nement

We also saw small examples of vertical re�nement above, for example

the implementation of sets as arrays: Set) Array. Traditional imple-

mentation techniques such as compilers tend to go in one or two �xed

logical steps from user-provided speci�cations to machine-executable

implementation. Making the re�nement steps explicit and composable

provides a whole new realm of exibility for expressing the �nal imple-

mentation.

The level of detail provided by Specware also allows for alternative

re�nement of the same abstract data structure in alternative contexts.

E.g., one set might be implemented as a stack, another as an array,

and a third as a bitvector.

Future work might even allow the same object to be implemented in

di�erent ways in di�erent parts of the system, with automatically gen-

erated transitions at the phase boundaries.

Orthogonal Development Paths

The horizontal composition arrows and vertical re�nement arrows are

expressed using the same structure, and have the important property

that they commute. What this means is that developers are not re-

quired to follow a �xed development path | they can do some hor-

izontal composition of components, then some vertical re�nements of

all or part of those, then more composition, more re�nement, etc.

28

7.2 Lazy Colimits

Recently we have developed technology to make diagrams more \�rst-class"

within Specware. In particular, we shifted from doing colimits of diagrams ea-

gerly, before various other operations are performed, to doing colimits lazily,

as late as as possible in the development process.

7.3 Problems with old Approach

Older versions of Specware use colimits eagerly: the developer makes a

diagram of specs, takes the colimit, and then proceeds to do re�nement etc.

on the colimit spec. This collapses and hides information inside the colimit

spec. In fact, when it comes time to re�ne such a spec, machinery inside

Specware recovers the original diagram as a cover for the colimit spec, i.e. a

structured decomposition into pieces that collectively describe the composite

object. From there, the user can re�ne the component specs and Specware

machinery will automatically combine the results using the chosen cover.

There are several problems with this approach, all stemming from the

fact that structure which was explicit, visible, and modi�able by users has

been made implicit, invisible, and restricted to a set of operations built into

Specware.

In the example above for a parameterized operating system, the colimit

spec OS[VM0[PP 0]] has been \cooked" to glue together all of the structure

that was explicit in the original diagram. Except by remembering the origin

of the colimit spec, there is no simple way to recover that diagram structure.

7.4 Promise of First Class Diagrams

Our design for heritary diagrams does colimits lazily: it keeps the origi-

nal structure visible as long as possible, performing the colimits at the last

possible moment.

This laziness implies that diagrams acquire a more prominent status

within Specware. Instead of being primarily the sca�olding used by Specware

to manipulate speci�cations, they become explicit objects in their own right.

The user can view them and manipulate them directly, instead of being lim-

ited by reliance on ad hoc mechanisms.

Moreover, because the diagrams are more explicit and visible, new kinds

of structure can be expressed, especially with respect to parameters.

29

7.5 Category of Diagrams

For diagrams truly to be \�rst-class" objects in Specware, we need be able

to build categories of diagrams, hence we need certain precise de�nitions for

diagrams and for the arrows that connect them.

A diagram is just a functor D : S) C, where S is a small5 category,

the shape of D, and C is some arbitrary base or target category. For the

purposes of Specware, C will tend to be a category such as that for specs

and spec-morphisms, or a category of diagrams.

Technically, a diagram morphism f : A! B is a pair f =< f0; f
0 > of a

functor f0 : A0 ! B0 and a natural transformation f 0 : A! B Æ f 0.

A0

f0

��

A

�����������������

f 0

C

B0

B

�����������������

(1)

In other words, there is a shape morphism f0 that maps the shape of

one diagram into the shape of another, and a relabeling morphism f 0 that

maps the labeling of A0 done by the �rst diagram into the labeling for A0

that would be implied by traveling �rst through the arrow f0 on the way to

the target category. This allows us to map one diagram into another where

the shape has been changed and the nodes and arcs have been relabeled.

7.6 OS Example Revisited

Let us reconsider the diagram above for the parameterized operating sys-

tem, but now exploiting the new paradigm of diagrams of diagrams. In-

stead of treating the OS diagram as one at diagram and using colimit

eagerly to collapse the structure, we will encapsulate portions of the dia-

gram into subdiagrams. For example, �gure 7 shows the exposed parameter-

ization VM p �� OS being applied to the encapsulated parameterization

PP p �� VM.

5\Small" is a technical term simply meaning that its possible to put all the arrows in

some set. A \small" category can be in�nite.

30

HHHHj ?

?

-

-

-PP

PP

OS

VM
0

0

OS[PP]

OS[VM]

VM [PP]

VM

OS

Figure 7: Parameterized specs via heritary diagrams

Combining those two subdiagrams as shown yields a third parameterized

diagram for PP p �� OS. We have thus captured much of the mechanism

previously available for parameterized specs, but using just operations on

diagrams.

7.7 Novel Kinds of Parameterization

With diagrams of diagrams, though, we are not limited to the old kinds of

manipulations on parameters. For example, consider thes diagram in �gure

8, expressing X p �� List[Array[X]].

?

-

-��
��1

?

��
��*

List[Array[X]]

List[Y]Y

Array[X]

X X

Figure 8: List of Array of X

31

By simply shifting our focus, we can also extract the parameter

List[Y] p �� List[Array[X]], and use that parameterization to construct

List[Y] p �� Set[List[Array[X]]] as follows:

-

��
��1

?

?

��
��*

?

?

-

Z

X

List[Array[X]]

List[Y]

Set[Z]

X

Set[List[Array[X]]]

List[Y]

Figure 9: Novel parameterizations

This is something new. Instead of parameterizing merely on the innermost

element type, as traditional languages would allow, we have constructed a

parameterization of the \middle" structure in a construct, with upper and

lower structures �xed (or separately parameterized). And it was done lazily.

Long after the diagrams are constructed we can go back and simply reexamine

them to exploit new kinds of parameterization | no one had to anticipate

our future needs.

This kind of lazy discovery of parameters is now used extensively by

DesignwareTM 6, and forms the basis of the ladder diagrams discussed in

various related publications ([2] [13] [14] [15]).

The diagram in �gure 10 (from [15]) shows how a diagram pushout may

be used in practice.

6Designware is a trademark of Kestrel Development Corporation

32

TRIV

SEQ
BAG

BAG+SEQ

LINEAR-ORDER

BAG+SEQ-CONV

BAG+SEQ-LinOrd

BAG+SEQ-over-LinOrd

TRIV

SEQBaS

BaS+SEQ

LINEAR-ORDER

BaS+SEQ-CONV

BaS+SEQ-LinOrd

BaS+SEQ-over-LinOrd

TRIV

BaS

TRIV

BAG

SEQ SEQ

SORTING

BaS-SORTING

Figure 10: Re�ning Bags to Seqs in Sorting

7.8 Category of Diagrams

All of the above technology sounds nice, but how can one implement it? As

it happens, naive approaches will not work.

The correct computation of colimits in the category of diagrams involves

what are known as left Kan extensions, which are a somewhat advanced con-

cept from category theory. They are related to the notion of adjunction, and

�rst arose in the context of describing logical quanti�ers. A full explanation

of the theory here is beyond the scope of this report | the motivated reader

is referred to the category texts recommended above.

The algorithm we developed for computing colimits in the category of

33

diagrams is eÆcient and scales well to large diagrams. Kestrel has a patent

pending which describes this algorithm, and at some point it also will be

described in a forthcoming paper [10].

An important aspect of this algorithm is that it recursively invokes the

mechanism for computing colimits of the component diagrams. This leads

us to the next big idea: inde�nite levels of diagrams of (diagrams of ...)

diagrams.

7.9 Category of Designs { Diagrams of Diagrams

Given a speci�cation (or any other kind of object, for that matter) we can

create a one-node diagram that is essentially equivalent to it. Now we are in

the category of diagrams, and by applying our new tools, we can create new

diagrams at successive levels of abstraction.

There is an interesting issue of eÆciency. Humans tend to view the di-

agrams as nested structures, where each node in a diagram at one level

\explodes out" to a diagram at the next level down. This is an accurate de-

scription of the information, but implementing that model in the computer

would lead to exponentially long computations for colimits | the system

would be unusable.

To avoid this problem, our technology uses an alternative representation

employing op�brations, which essentially capture the idea of a category

acting as an index for another category: subcategories in the main category

are mapped to nodes in the indexing category, and arrows between nodes in

di�erent subcategories are mapped to arrows in the indexing category.

Our representation for diagrams of diagrams uses towers of op�brations

as a kind of multi-level indexing scheme, to avoid the exponential growth

that an explicit construction would involve.

A0

f0

��

A1
��

f1

��

� � ��� An
��

fn

��

���������������

C

B0 B1
�� � � ��� Bn

��

���������������

(2)

34

The category of designs thus consists of

� objects: �nite towers of op�brations, with a diagram at the top

A0 � A1 � � � � � An�1 � An �! C

� morphisms: ladders of opcartesian functors, with a diagram morphism

at the top.

In essence, we have developed technology that allows us to manipulate

these indexing schemes, without paying the price of actually expanding the

structure they describe. That operation needs to be done only once at the

very end of the software development process, and only for the �nal struc-

tures.

References

[1] Barr, M. and Wells, C. Category Theory for Computing Science,

Prentice Hall, 1990.

[2] Blaine, L., Gilham, L., Liu, J., Smith, D., , and Westfold, S.

Planware { domain-speci�c synthesis of high-performance schedulers. In

Proceedings of the Thirteenth Automated Software Engineering Confer-

ence (October 1998), IEEE Computer Society Press, pp. 270{280.

[3] Boehm, B. Software Engineering Economics, Prentice-Hall, Inc., Engle-

wood Cli�s, New Jersey, 1981.

[4] Tammet, T. Reference Manual GANDALF version c-2.0b Department

of Computing Science, University of G�oteborg / Chalmers Univ. of Tech-

nology, S-412 96 G�oteborg, Sweden, Computing Centre, Tallinn Univer-

sity of Technology, Raja 15, Tallinn, Estonia, January 2000.

[5] Huang, X. A Comparison Between Standard and Formal Mathematical

Software Development. Master of Science Thesis, University of Maryland

Department of Nuclear Materials and Reliability Engineering, 1999.

[6] Lawvere, F. W. and Schanuel, S. Conceptual Mathematics: a First

Introduction to Categories, Cambridge University Press, 1997.

[7] MacLane, S. Categories for the Working Mathematician, Springer Ver-

lag, 1971.

35

[8] Paulk, M. C., Curis, B., Chrissis, M. B., and Weber, C. V

Capability Maturity Model, Version 1.1. In IEEE Software, Vol. 10,

Number 4, IEEE Computer Society, Los Alamitos, CA., July 1993.

[9] Pavlovi�c, D. Semantics of �rst order parametric speci�cations. In

Formal Methods '99 (1999), J. Woodcock and J. Wing, Eds., Lecture

Notes in Computer Science, Springer Verlag. to appear.

[10] Pavlovi�c, D. Compositionality via diagrams in software design. In

progress.

[11] Pierce, B. Basic Category Theory for Computer Scientists, MIT Press,

1991.

[12] Smith, D. R. Constructing speci�cation morphisms. Journal of Sym-

bolic Computation, Special Issue on Automatic Programming 15, 5-6

(May-June 1993), 571{606.

[13] Smith, D. R., Parra, E., and Westfold, S. J. Generic Tools for

Transportation Planning and Scheduling. Final Technical Report RL-

TR-95-143, Rome Laboratory, Air Force Materiel Command, GriÆss Air

Force Base, N.Y., August, 1995.

[14] Smith, D. R. Toward a classi�cation approach to design. In Proceedings

of the Fifth International Conference on Algebraic Methodology and Soft-

ware Technology, AMAST'96 (1996), vol. LNCS 1101, Springer-Verlag,

pp. 62{84.

[15] Smith, D. R. Mechanizing the development of software. In Calcula-

tional System Design, Proceedings of the NATO Advanced Study Insti-

tute, M. Broy and R. Steinbrueggen, Eds. IOS Press, Amsterdam, 1999,

pp. 251{292.

[16] Stickel, M. E., Waldinger, R. J., Chaudhri, V. K. A Guide

to SNARK. Technical Note Unassigned, AI Center, SRI International,

333 Ravenswood Ave., Menlo Park, CA 94025, May 2000. Available at

http://www.ai.sri.com/pubs/technotes/aic-tn-2000:Unassigned/

36

[17] Srinivas, Y. V., and J�ullig, R. Specware: Formal support for

composing software. In Proceedings of the Conference on Mathematics

of Program Construction, B. Moeller, Ed. LNCS 947, Springer-Verlag,

Berlin, 1995, pp. 399{422.

[18] Srinivas, Y. V., and McDonald, J. The Architecture of

SPECWARETM , a Formal Software Development System. Technical

report KES.U.96.7, Kestrel Institute, Palo Alto, CA., August 1996.

[19] Srinivas, Y. V. Re�nement of Parameterized Algebraic Speci�cations.

In IFIP TC2 Working Conference on Algorithmic Languages and Calculi,

Chapman & Hall, Le Bischenberg, France, February, 1997.

[20] Taylor, P. Practical Foundations of Mathematics, Cambridge Univer-

sity Press, Cambridge, U.K., 1999.

37

